1
|
Mokshina N, Sautkina O, Gorshkov O, Mikshina P. A Fresh Look at Celery Collenchyma and Parenchyma Cell Walls Through a Combination of Biochemical, Histochemical, and Transcriptomic Analyses. Int J Mol Sci 2025; 26:738. [PMID: 39859452 PMCID: PMC11765706 DOI: 10.3390/ijms26020738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/20/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Celery (Apium graveolens) can be considered as a model plant for studying pectin-enriched primary cell walls. In addition to parenchyma cells with xyloglucan-deficient walls, celery petioles contain collenchyma, a mechanical tissue with thickened cell walls of similar composition. This study presents a comprehensive analysis of these tissues at both early and late developmental stages, integrating data on polysaccharide yield, composition, localization, and transcriptome analysis. Our results reveal that young collenchyma walls possess distinct polysaccharide compositions, including higher levels of rhamnogalacturonan I (RG-I), branched galactans, esterified homogalacturonan, and xyloglucan, compared to parenchyma cells. A significant number of genes encoding proteins involved in pectin methylesterification and acetylation were upregulated in young collenchyma. Different gene isoforms encoding glycosyltransferases involved in RG-I biosynthesis were activated in both collenchyma and parenchyma, suggesting potential variations in RG-I structure and function across different primary cell walls. We identified a set of potential glycosyltransferases involved in RG-I biosynthesis in collenchyma and proposed synthase complexes for heteromannan and heteroxylan. The transcriptome data not only confirmed known biochemical traits of celery cell walls but also provided deeper insights into the peculiarities of cell wall polysaccharide metabolism, thereby helping to narrow down candidate genes for further molecular genetic studies.
Collapse
Affiliation(s)
- Natalia Mokshina
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Lobachevsky Str., 2/31, 420111 Kazan, Russia; (O.S.); (O.G.); (P.M.)
| | | | | | | |
Collapse
|
2
|
Zhang KL, Leng YN, Hao RR, Zhang WY, Li HF, Chen MX, Zhu FY. Adaptation of High-Altitude Plants to Harsh Environments: Application of Phenotypic-Variation-Related Methods and Multi-Omics Techniques. Int J Mol Sci 2024; 25:12666. [PMID: 39684378 DOI: 10.3390/ijms252312666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
High-altitude plants face extreme environments such as low temperature, low oxygen, low nutrient levels, and strong ultraviolet radiation, causing them to adopt complex adaptation mechanisms. Phenotypic variation is the core manifestation of ecological adaptation and evolution. Many plants have developed a series of adaptive strategies through long-term natural selection and evolution, enabling them to survive and reproduce under such harsh conditions. This article reviews the techniques and methods used in recent years to study the adaptive evolution of high-altitude plants, including transplantation techniques, genomics, transcriptomics, proteomics, and metabolomics techniques, and their applications in high-altitude plant adaptive evolution. Transplantation technology focuses on phenotypic variation, which refers to natural variations in morphological, physiological, and biochemical characteristics, exploring their key roles in nutrient utilization, photosynthesis optimization, and stress-resistance protection. Multiple omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, have revealed genes, regulatory pathways, and metabolic networks associated with phenotypic variations at the genetic and molecular levels. At the same time, the limitations and deficiencies of current technologies used to study plant adaptation to high-altitude environments were discussed. In addition, we propose future improvements to existing technologies and advocate for the integration of different technologies at multiple levels to study the molecular mechanisms of plant adaptation to high-altitude environments, thus providing insights for future research in this field.
Collapse
Affiliation(s)
- Kai-Lu Zhang
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Ya-Nan Leng
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Rui-Rui Hao
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Wen-Yao Zhang
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Hong-Fei Li
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Mo-Xian Chen
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Fu-Yuan Zhu
- The Southern Modern Forestry Collaborative Innovation Center, State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| |
Collapse
|
3
|
Takahashi D, Soga K, Kikuchi T, Kutsuno T, Hao P, Sasaki K, Nishiyama Y, Kidokoro S, Sampathkumar A, Bacic A, Johnson KL, Kotake T. Structural changes in cell wall pectic polymers contribute to freezing tolerance induced by cold acclimation in plants. Curr Biol 2024; 34:958-968.e5. [PMID: 38335960 DOI: 10.1016/j.cub.2024.01.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/20/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Subzero temperatures are often lethal to plants. Many temperate herbaceous plants have a cold acclimation mechanism that allows them to sense a drop in temperature and prepare for freezing stress through accumulation of soluble sugars and cryoprotective proteins. As ice formation primarily occurs in the apoplast (the cell wall space), cell wall functional properties are important for plant freezing tolerance. Although previous studies have shown that the amounts of constituent sugars of the cell wall, in particular those of pectic polysaccharides, are altered by cold acclimation, the significance of this change during cold acclimation has not been clarified. We found that β-1,4-galactan, which forms neutral side chains of the acidic pectic rhamnogalacturonan-I, accumulates in the cell walls of Arabidopsis and various freezing-tolerant vegetables during cold acclimation. The gals1 gals2 gals3 triple mutant, which has reduced β-1,4-galactan in the cell wall, exhibited impaired freezing tolerance compared with wild-type Arabidopsis during initial stages of cold acclimation. Expression of genes involved in the galactan biosynthesis pathway, such as galactan synthases and UDP-glucose 4-epimerases, was induced during cold acclimation in Arabidopsis, explaining the galactan accumulation. Cold acclimation resulted in a decrease in extensibility and an increase in rigidity of the cell wall in the wild type, whereas these changes were not observed in the gals1 gals2 gals3 triple mutant. These results indicate that the accumulation of pectic β-1,4-galactan contributes to acquired freezing tolerance by cold acclimation, likely via changes in cell wall mechanical properties.
Collapse
Affiliation(s)
- Daisuke Takahashi
- Graduate School of Science & Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan.
| | - Kouichi Soga
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Takuma Kikuchi
- Graduate School of Science & Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Tatsuya Kutsuno
- Graduate School of Science & Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Pengfei Hao
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kazuma Sasaki
- Graduate School of Science & Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Yui Nishiyama
- Department of Biochemistry & Molecular Biology, Faculty of Science, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| | - Satoshi Kidokoro
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuda-cho, Midori-ku, Yokohama 226-8503, Japan
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany
| | - Antony Bacic
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Kim L Johnson
- La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Toshihisa Kotake
- Graduate School of Science & Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama 338-8570, Japan
| |
Collapse
|
4
|
Duruflé H, Déjean S. Multi-omics Data Integration in the Context of Plant Abiotic Stress Signaling. Methods Mol Biol 2023; 2642:295-318. [PMID: 36944885 DOI: 10.1007/978-1-0716-3044-0_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
In order to answer new biological questions, high-throughput data generated by new biotechnologies can be very meaningful but require specific and adapted statistical treatments. Thus, in the context of abiotic stress signaling studies, understanding the integration of cascading mechanisms from stress perception to biochemical and physiological adjustments necessarily entails efficient and valid analysis of multilevel and heterogeneous data. In this chapter, we propose examples to manage, analyze, and integrate multi-omics heterogeneous data. This workflow suggests and follows different general biological questions or issues answered with detailed code, data analysis, multiple visualizations, and always followed by brief interpretations. We illustrated this using the mixOmics package for the R software, as it specifically provides tools to address vertical and horizontal data integration issues. In order to illustrate this workflow, we used the usual omics datasets biologists can generate (phenomics, metabolomics, proteomics, and transcriptomics). These data were collected from two organs (leaf rosettes, floral stems) of five ecotypes of the model plant Arabidopsis thaliana exposed to two temperature growth conditions. They are available in the R package WallOmicsData. The workflow presented here is not limited to Arabidopsis thaliana and can be applied to any plant species. It can even be largely deployed to whatever the organisms of interest and the biological questions may be.
Collapse
Affiliation(s)
| | - Sébastien Déjean
- Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, UPS, UMR 5219, Toulouse, France.
| |
Collapse
|
5
|
San Clemente H, Jamet E. N-glycoproteins in Plant Cell Walls: A Survey. PLANTS (BASEL, SWITZERLAND) 2022; 11:3204. [PMID: 36501244 PMCID: PMC9738366 DOI: 10.3390/plants11233204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Cell walls are an extracellular compartment specific to plant cells, which are not found in animal cells. Their composition varies between cell types, plant species, and physiological states. They are composed of a great diversity of polymers, i.e., polysaccharides, proteins, and lignins. Cell wall proteins (CWPs) are major players involved in the plasticity of cell walls which support cell growth and differentiation, as well as adaptation to environmental changes. In order to reach the extracellular space, CWPs are transported through the secretory pathway where they may undergo post-translational modifications, including N-glycosylations on the Asn residues in specific motifs (Asn-X-Ser/Thr-X, with X≠Pro). This review aims at providing a survey of the present knowledge related to cell wall N-glycoproteins with (i) an overview of the experimental workflows, (ii) a selection of relevant articles dedicated to N-glycoproteomics, (iii) a description of the diversity of N-glycans, and (iv) a focus on the importance of N-glycans for CWP structure and/or function.
Collapse
|
6
|
San Clemente H, Kolkas H, Canut H, Jamet E. Plant Cell Wall Proteomes: The Core of Conserved Protein Families and the Case of Non-Canonical Proteins. Int J Mol Sci 2022; 23:4273. [PMID: 35457091 PMCID: PMC9029284 DOI: 10.3390/ijms23084273] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 12/25/2022] Open
Abstract
Plant cell wall proteins (CWPs) play critical roles during plant development and in response to stresses. Proteomics has revealed their great diversity. With nearly 1000 identified CWPs, the Arabidopsis thaliana cell wall proteome is the best described to date and it covers the main plant organs and cell suspension cultures. Other monocot and dicot plants have been studied as well as bryophytes, such as Physcomitrella patens and Marchantia polymorpha. Although these proteomes were obtained using various flowcharts, they can be searched for the presence of members of a given protein family. Thereby, a core cell wall proteome which does not pretend to be exhaustive, yet could be defined. It comprises: (i) glycoside hydrolases and pectin methyl esterases, (ii) class III peroxidases, (iii) Asp, Ser and Cys proteases, (iv) non-specific lipid transfer proteins, (v) fasciclin arabinogalactan proteins, (vi) purple acid phosphatases and (vii) thaumatins. All the conserved CWP families could represent a set of house-keeping CWPs critical for either the maintenance of the basic cell wall functions, allowing immediate response to environmental stresses or both. Besides, the presence of non-canonical proteins devoid of a predicted signal peptide in cell wall proteomes is discussed in relation to the possible existence of alternative secretion pathways.
Collapse
Affiliation(s)
| | | | | | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Toulouse INP, 31320 Auzeville-Tolosane, France; (H.S.C.); (H.K.); (H.C.)
| |
Collapse
|
7
|
Takahashi D, Willick IR, Kasuga J, Livingston III DP. Responses of the Plant Cell Wall to Sub-Zero Temperatures: A Brief Update. PLANT & CELL PHYSIOLOGY 2021; 62:1858-1866. [PMID: 34240199 PMCID: PMC8711693 DOI: 10.1093/pcp/pcab103] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 05/04/2023]
Abstract
Our general understanding of plant responses to sub-zero temperatures focuses on mechanisms that mitigate stress to the plasma membrane. The plant cell wall receives comparatively less attention, and questions surrounding its role in mitigating freezing injury remain unresolved. Despite recent molecular discoveries that provide insight into acclimation responses, the goal of reducing freezing injury in herbaceous and woody crops remains elusive. This is likely due to the complexity associated with adaptations to low temperatures. Understanding how leaf cell walls of herbaceous annuals promote tissue tolerance to ice does not necessarily lead to understanding how meristematic tissues are protected from freezing by tissue-level barriers formed by cell walls in overwintering tree buds. In this mini-review, we provide an overview of biological ice nucleation and explain how plants control the spatiotemporal location of ice formation. We discuss how sugars and pectin side chains alleviate adhesive injury that develops at sub-zero temperatures between the matrix polysaccharides and ice. The importance of site-specific cell-wall elasticity to promote tissue expansion for ice accommodation and control of porosity to impede ice growth and promote supercooling will be presented. How specific cold-induced proteins modify plant cell walls to mitigate freezing injury will also be discussed. The opinions presented in this report emphasize the importance of a plant's developmental physiology when characterizing mechanisms of freezing survival.
Collapse
Affiliation(s)
- Daisuke Takahashi
- *Corresponding authors: Daisuke Takahashi, E-mail, ; Ian R. Willick, E-mail,
| | - Ian R Willick
- *Corresponding authors: Daisuke Takahashi, E-mail, ; Ian R. Willick, E-mail,
| | - Jun Kasuga
- Research Center for Global Agro-Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | | |
Collapse
|
8
|
Huang B, Hu G, Wang K, Frasse P, Maza E, Djari A, Deng W, Pirrello J, Burlat V, Pons C, Granell A, Li Z, van der Rest B, Bouzayen M. Interaction of two MADS-box genes leads to growth phenotype divergence of all-flesh type of tomatoes. Nat Commun 2021; 12:6892. [PMID: 34824241 PMCID: PMC8616914 DOI: 10.1038/s41467-021-27117-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
All-flesh tomato cultivars are devoid of locular gel and exhibit enhanced firmness and improved postharvest storage. Here, we show that SlMBP3 is a master regulator of locular tissue in tomato fruit and that a deletion at the gene locus underpins the All-flesh trait. Intriguingly, All-flesh varieties lack the deleterious phenotypes reported previously for SlMBP3 under-expressing lines and which preclude any potential commercial use. We resolve the causal factor for this phenotypic divergence through the discovery of a natural mutation at the SlAGL11 locus, a close homolog of SlMBP3. Misexpressing SlMBP3 impairs locular gel formation through massive transcriptomic reprogramming at initial phases of fruit development. SlMBP3 influences locule gel formation by controlling cell cycle and cell expansion genes, indicating that important components of fruit softening are determined at early pre-ripening stages. Our findings define potential breeding targets for improved texture in tomato and possibly other fleshy fruits.
Collapse
Affiliation(s)
- Baowen Huang
- grid.508721.9Université de Toulouse, INRAe/INP Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Avenue de l’Agrobiopole, Castanet-Tolosan, F-31326 France ,grid.15781.3a0000 0001 0723 035XLaboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP France
| | - Guojian Hu
- grid.508721.9Université de Toulouse, INRAe/INP Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Avenue de l’Agrobiopole, Castanet-Tolosan, F-31326 France ,grid.15781.3a0000 0001 0723 035XLaboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP France
| | - Keke Wang
- grid.508721.9Université de Toulouse, INRAe/INP Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Avenue de l’Agrobiopole, Castanet-Tolosan, F-31326 France ,grid.15781.3a0000 0001 0723 035XLaboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP France
| | - Pierre Frasse
- grid.508721.9Université de Toulouse, INRAe/INP Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Avenue de l’Agrobiopole, Castanet-Tolosan, F-31326 France ,grid.15781.3a0000 0001 0723 035XLaboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP France
| | - Elie Maza
- grid.508721.9Université de Toulouse, INRAe/INP Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Avenue de l’Agrobiopole, Castanet-Tolosan, F-31326 France ,grid.15781.3a0000 0001 0723 035XLaboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP France
| | - Anis Djari
- grid.508721.9Université de Toulouse, INRAe/INP Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Avenue de l’Agrobiopole, Castanet-Tolosan, F-31326 France ,grid.15781.3a0000 0001 0723 035XLaboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP France
| | - Wei Deng
- grid.190737.b0000 0001 0154 0904Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331 Chongqing, China
| | - Julien Pirrello
- grid.508721.9Université de Toulouse, INRAe/INP Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Avenue de l’Agrobiopole, Castanet-Tolosan, F-31326 France ,grid.15781.3a0000 0001 0723 035XLaboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP France
| | - Vincent Burlat
- grid.15781.3a0000 0001 0723 035XLaboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP France
| | - Clara Pons
- grid.4711.30000 0001 2183 4846Instituto de Biología Molecular y Cellular de Plantas, Consejo Superior de Investigaciones Cientificas- Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Antonio Granell
- grid.4711.30000 0001 2183 4846Instituto de Biología Molecular y Cellular de Plantas, Consejo Superior de Investigaciones Cientificas- Universidad Politécnica de Valencia, 46022 Valencia, Spain
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China. .,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China.
| | - Benoît van der Rest
- Université de Toulouse, INRAe/INP Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole, Castanet-Tolosan, F-31326, France. .,Laboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP, France.
| | - Mondher Bouzayen
- Université de Toulouse, INRAe/INP Toulouse, UMR990 Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole, Castanet-Tolosan, F-31326, France. .,Laboratoire de Recherche en Sciences Végétales - UMR5546, Université de Toulouse, CNRS, UPS, Toulouse, INP, France. .,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China.
| |
Collapse
|
9
|
Pinski A, Roujol D, Pouzet C, Bordes L, San Clemente H, Hoffmann L, Jamet E. Comparison of mass spectrometry data and bioinformatics predictions to assess the bona fide localization of proteins identified in cell wall proteomics studies. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 310:110979. [PMID: 34315595 DOI: 10.1016/j.plantsci.2021.110979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/18/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Plant cell walls have complex architectures made of polysaccharides among which cellulose, hemicelluloses, pectins and cell wall proteins (CWPs). Some CWPs are anchored in the plasma membrane through a glycosylphosphatidylinositol (GPI)-anchor. The secretion pathway is the classical route to reach the extracellular space. Based on experimental data, a canonical signal peptide (SP) has been defined, and bioinformatics tools allowing the prediction of the sub-cellular localization of proteins have been designed. In the same way, the presence of GPI-anchor attachment sites can be predicted using bioinformatics programs. This article aims at comparing the bioinformatics predictions of the sub-cellular localization of proteins assumed to be CWPs to mass spectrometry (MS) data. The sub-cellular localization of a few CWPs exhibiting particular features has been checked by cell biology approaches. Although the prediction of SP length is confirmed in most cases, it is less conclusive for GPI-anchors. Three main observations were done: (i) the variability observed at the N-terminus of a few mature CWPs could play a role in the regulation of their biological activity; (ii) one protein was shown to have a double sub-cellular localization in the cell wall and the chloroplasts; and (iii) peptides were found to be located at the C-terminus of several CWPs previously identified in GPI-anchored proteomes, thus raising the issue of their actual anchoring to the plasma membrane.
Collapse
Affiliation(s)
- Artur Pinski
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville Tolosane, France; Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 40-032, Katowice, Poland
| | - David Roujol
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville Tolosane, France
| | - Cécile Pouzet
- FR AIB-TRI Imaging Platform Facilities, Université de Toulouse, CNRS, Auzeville Tolosane, France
| | - Luc Bordes
- FR AIB-TRI Imaging Platform Facilities, Université de Toulouse, CNRS, Auzeville Tolosane, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville Tolosane, France
| | - Laurent Hoffmann
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville Tolosane, France.
| |
Collapse
|
10
|
Jenkitkonchai J, Marriott P, Yang W, Sriden N, Jung J, Wigge PA, Charoensawan V. Exploring PIF4 's contribution to early flowering in plants under daily variable temperature and its tissue-specific flowering gene network. PLANT DIRECT 2021; 5:e339. [PMID: 34355114 PMCID: PMC8320686 DOI: 10.1002/pld3.339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 05/22/2023]
Abstract
Molecular mechanisms of how constant temperatures affect flowering time have been largely characterized in the model plant Arabidopsis thaliana; however, the effect of natural daily variable temperature outside laboratories is only partly explored. Several flowering genes have been shown to play important roles in temperature responses, including PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) and FLOWERING LOCUS C (FLC), the two genes encoding for the transcription factors (TFs) that act antagonistically to regulate flowering time by activating and repressing floral integrator FLOWERING LOCUS T (FT), respectively. In this study, we have taken a multidisciplinary approach to explore the contribution of PIF4 to the early flowering observed in the daily variable temperature (VAR) and to broaden its transcriptional network using publicly available transcriptomic data. We observed early flowering in the natural accessions Col-0, C24 and their late flowering hybrid C24xCol grown under VAR, as compared with a constant temperature (CON). The loss-of-function mutation of PIF4 exhibits later flowering in VAR in both the Col-0 parent and the C24xCol hybrid, suggesting that PIF4, at least in part, contributes to acceleration of flowering in the VAR condition. To investigate the interplay between PIF4 and its flowering regulator counterparts, FLC and FT, we performed transcriptional analyses and found that VAR increased PIF4 transcription at the end of the day when temperature peaked at 32°C, when FT transcription was also elevated. On the other hand, we observed a decrease in FLC transcription in the 4-week-old plants grown in VAR, as well as in the plants with PIF4 overexpression grown in CON. These results raise a possibility that PIF4 might also regulate FT indirectly through the repression of FLC, in addition to the well-characterized direct control of PIF4 over FT. To further expand our view on the PIF4-orientated flowering gene network in response to temperature changes, we have constructed a coexpression-transcriptional regulatory network by combining publicly available transcriptomic data and gene regulatory interactions of PIF4 and its closely related flowering genes, PIF5, FLC, and ELF3. The network model reveals conserved and tissue-specific regulatory functions, which are useful for confirming as well as predicting the functions and regulatory interactions between these key flowering genes.
Collapse
Affiliation(s)
| | - Poppy Marriott
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | - Weibing Yang
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | - Napaporn Sriden
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Jae‐Hoon Jung
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
- Department of Biological SciencesSungkyunkwan UniversitySuwonSouth Korea
| | - Philip A. Wigge
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
- Leibniz‐Institut für Gemüse‐ und ZierpflanzenbauGroßbeerenGermany
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
- Integrative Computational BioScience (ICBS) CenterMahidol UniversityNakhon PathomThailand
- Systems Biology of Diseases Research Unit, Faculty of ScienceMahidol UniversityBangkokThailand
| |
Collapse
|
11
|
An integrative Study Showing the Adaptation to Sub-Optimal Growth Conditions of Natural Populations of Arabidopsis thaliana: A Focus on Cell Wall Changes. Cells 2020; 9:cells9102249. [PMID: 33036444 PMCID: PMC7601860 DOI: 10.3390/cells9102249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/28/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022] Open
Abstract
In the global warming context, plant adaptation occurs, but the underlying molecular mechanisms are poorly described. Studying natural variation of the model plant Arabidopsisthaliana adapted to various environments along an altitudinal gradient should contribute to the identification of new traits related to adaptation to contrasted growth conditions. The study was focused on the cell wall (CW) which plays major roles in the response to environmental changes. Rosettes and floral stems of four newly-described populations collected at different altitudinal levels in the Pyrenees Mountains were studied in laboratory conditions at two growth temperatures (22 vs. 15 °C) and compared to the well-described Col ecotype. Multi-omic analyses combining phenomics, metabolomics, CW proteomics, and transcriptomics were carried out to perform an integrative study to understand the mechanisms of plant adaptation to contrasted growth temperature. Different developmental responses of rosettes and floral stems were observed, especially at the CW level. In addition, specific population responses are shown in relation with their environment and their genetics. Candidate genes or proteins playing roles in the CW dynamics were identified and will deserve functional validation. Using a powerful framework of data integration has led to conclusions that could not have been reached using standard statistical approaches.
Collapse
|
12
|
Duruflé H, Selmani M, Ranocha P, Jamet E, Dunand C, Déjean S. A powerful framework for an integrative study with heterogeneous omics data: from univariate statistics to multi-block analysis. Brief Bioinform 2020; 22:5890507. [PMID: 32778869 DOI: 10.1093/bib/bbaa166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/23/2020] [Accepted: 07/03/2020] [Indexed: 01/25/2023] Open
Abstract
High-throughput data generated by new biotechnologies require specific and adapted statistical treatment in order to be efficiently used in biological studies. In this article, we propose a powerful framework to manage and analyse multi-omics heterogeneous data to carry out an integrative analysis. We have illustrated this using the mixOmics package for R software as it specifically addresses data integration issues. Our work also aims at applying the most recent functionalities of mixOmics to real datasets. Although multi-block integrative methodologies exist, we hope to encourage a more widespread use of such approaches in an operational framework by biologists. We have used natural populations of the model plant Arabidopsis thaliana in this work, but the framework proposed is not limited to this plant and can be deployed whatever the organisms of interest and the biological question may be. Four omics datasets (phenomics, metabolomics, cell wall proteomics and transcriptomics) were collected, analysed and integrated to study the cell wall plasticity of plants exposed to sub-optimal temperature growth conditions. The methodologies presented here start from basic univariate statistics leading to multi-block integration analysis. We have also highlighted the fact that each method, either unsupervised or supervised, is associated with one biological issue. Using this powerful framework enabled us to arrive at novel conclusions on the biological system, which would not have been possible using standard statistical approaches.
Collapse
Affiliation(s)
| | - Merwann Selmani
- Laboratoire de Recherche en Sciences Végétales and the Institut de Mathématiques de Toulouse
| | | | | | | | | |
Collapse
|
13
|
Dubiel M, De Coninck T, Osterne VJS, Verbeke I, Van Damme D, Smagghe G, Van Damme EJM. The ArathEULS3 Lectin Ends up in Stress Granules and Can Follow an Unconventional Route for Secretion. Int J Mol Sci 2020; 21:E1659. [PMID: 32121292 PMCID: PMC7084908 DOI: 10.3390/ijms21051659] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/26/2022] Open
Abstract
Stress granules are cytoplasmic compartments, which serve as mRNA storage units during stress, therefore regulating translation. The Arabidopsis thaliana lectin ArathEULS3 has been widely described as a stress inducible gene. This study aimed to examine in detail the localization of ArathEULS3 lectin in normal and stressed cells. Colocalization experiments revealed that the nucleo-cytoplasmic lectin ArathEULS3 relocates to stress granules after stress. The ArathEULS3 sequence encodes a protein with a EUL lectin domain and an N-terminal domain with unknown structure and function. Bioinformatics analyses showed that the N-terminal domain sequence contains intrinsically disordered regions and likely does not exhibit a stable protein fold. Plasmolysis experiments indicated that ArathEULS3 also localizes to the apoplast, suggesting that this protein might follow an unconventional route for secretion. As part of our efforts we also investigated the interactome of ArathEULS3 and identified several putative interaction partners important for the protein translation process.
Collapse
Affiliation(s)
- Malgorzata Dubiel
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Tibo De Coninck
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Vinicius Jose Silva Osterne
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Laboratório de Moléculas Biologicamente Ativas, Universidade Federal do Ceará, José Aurelio Camara, S/N, 61440-970, Fortaleza 60440-970, Brazil
| | - Isabel Verbeke
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052 Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- Center for Advanced Light Microscopy, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
14
|
Duruflé H, Ranocha P, Balliau T, Dunand C, Jamet E. Transcriptomic and cell wall proteomic datasets of rosettes and floral stems from five Arabidopsis thaliana ecotypes grown at optimal or sub-optimal temperature. Data Brief 2019; 27:104581. [PMID: 31673584 PMCID: PMC6817649 DOI: 10.1016/j.dib.2019.104581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/11/2019] [Accepted: 09/23/2019] [Indexed: 12/20/2022] Open
Abstract
This article provides experimental data describing the RNA and the cell wall protein profiles of rosettes and flower stems of five Arabidopsis thaliana ecotypes. Four newly-described Pyrenees ecotypes [1] are analyzed in addition to the well-described and sequenced Columbia (Col) ecotype of A. thaliana. All five ecotypes have been grown at two different temperatures, 22 °C and 15 °C. We provide transcriptomics and cell wall proteomics data regarding (i) rosettes at the bolting stage, and (ii) floral stems at the first flower stage. These data are a valuable resource to study the adaptation of A. thaliana ecotypes to sub-optimal temperature growth conditions.
Collapse
Affiliation(s)
- Harold Duruflé
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Philippe Ranocha
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Thierry Balliau
- PAPPSO, GQE - Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326 Castanet Tolosan, France
| |
Collapse
|
15
|
Phenotyping and cell wall polysaccharide composition dataset of five arabidopsis ecotypes grown at optimal or sub-optimal temperatures. Data Brief 2019; 25:104318. [PMID: 31489348 PMCID: PMC6717163 DOI: 10.1016/j.dib.2019.104318] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 11/23/2022] Open
Abstract
This article presents experimental data describing the morphology and the cell wall monosaccharide content of rosettes and flower stems of five Arabidopsis thaliana ecotypes grown at two contrasted temperatures. Besides, cell wall polysaccharides are reconstructed from data of monosaccharide quantification. The well-described and sequenced Columbia (Col) ecotype and four newly-described Pyrenees ecotypes (Duruflé et al., 2019) have been grown at two different temperatures (15 °C and 22 °C). For macrophenotyping, we provide dataset regarding (i) rosettes such as measurement of diameter and fresh mass as well as number of leaves just before bolting and (ii) floral stems at the first flower stage such as length, number of cauline leaves, mass and diameter at its base. Regarding cell wall composition, we provide data of quantification of seven monosaccharides and the reconstruction three polysaccharides. All these data are markers to differentiate both growth temperatures and the different ecotypes. They constitute a valuable resource for the community to study the adaptation of A. thaliana ecotypes to sub-optimal temperature growth conditions.
Collapse
|
16
|
Duruflé H, Ranocha P, Mbadinga Mbadinga DL, Déjean S, Bonhomme M, San Clemente H, Viudes S, Eljebbawi A, Delorme-Hinoux V, Sáez-Vásquez J, Reichheld JP, Escaravage N, Burrus M, Dunand C. Phenotypic Trait Variation as a Response to Altitude-Related Constraints in Arabidopsis Populations. FRONTIERS IN PLANT SCIENCE 2019; 10:430. [PMID: 31024596 PMCID: PMC6465555 DOI: 10.3389/fpls.2019.00430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/21/2019] [Indexed: 05/12/2023]
Abstract
UNLABELLED Natural variations help in identifying genetic mechanisms of morphologically and developmentally complex traits. Mountainous habitats provide an altitudinal gradient where one species encounters different abiotic conditions. We report the study of 341 individuals of Arabidopsis thaliana derived from 30 natural populations not belonging to the 1001 genomes, collected at increasing altitudes, between 200 and 1800 m in the Pyrenees. Class III peroxidases and ribosomal RNA sequences were used as markers to determine the putative genetic relationships among these populations along their altitudinal gradient. Using Bayesian-based statistics and phylogenetic analyses, these Pyrenean populations appear with significant divergence from the other regional accessions from 1001 genome (i.e., from north Spain or south France). Individuals of these populations exhibited varying phenotypic changes, when grown at sub-optimal temperature (22 vs. 15°C). These phenotypic variations under controlled conditions reflected intraspecific morphological variations. This study could bring new information regarding the west European population structure of A. thaliana and its phenotypic variations at different temperatures. The integrative analysis combining genetic, phenotypic variation and environmental datasets is used to analyze the acclimation of population in response to temperature changes. Regarding their geographical proximity and environmental diversity, these populations represent a tool of choice for studying plant response to temperature variation. HIGHLIGHTS -Studying the natural diversity of A. thaliana in the Pyrenees mountains helps to understand European population structure and to evaluate the phenotypic trait variation in response to climate change.
Collapse
Affiliation(s)
- Harold Duruflé
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France
| | - Philippe Ranocha
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France
| | - Duchesse Lacour Mbadinga Mbadinga
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France
| | - Sébastien Déjean
- Institut de Mathématiques de Toulouse, Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France
| | - Hélène San Clemente
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France
| | - Sébastien Viudes
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France
| | - Ali Eljebbawi
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France
| | - Valerie Delorme-Hinoux
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, Perpignan, France
| | - Julio Sáez-Vásquez
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, Perpignan, France
| | - Jean-Philippe Reichheld
- Laboratoire Génome et Développement des Plantes, Université Perpignan Via Domitia, Perpignan, France
- Laboratoire Génome et Développement des Plantes, CNRS, Perpignan, France
| | - Nathalie Escaravage
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
| | - Monique Burrus
- Université Toulouse 3 Paul Sabatier, CNRS, ENFA, UMR5174 EDB (Laboratoire Évolution & Diversité Biologique), Toulouse, France
| | - Christophe Dunand
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), Castanet Tolosan, France
- *Correspondence: Christophe Dunand,
| |
Collapse
|