1
|
Negi Y, Kumar K. OsWNK9 mitigates salt stress by promoting root growth and stomatal closure in rice. PHYSIOLOGIA PLANTARUM 2025; 177:e70129. [PMID: 39968709 PMCID: PMC11836919 DOI: 10.1111/ppl.70129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 01/20/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
Salinity stress severely affects rice growth and reduces its productivity. With No Lysine Kinases (WNKs) are serine/threonine kinases emerging as potential candidate genes due to their involvement in various abiotic stress tolerance responses. However, studies providing mechanistic insights into the roles of WNKs in plants remain scarce. In the present study, OsWNK9-overexpressing rice lines showed strong tolerance to salinity stress. Overexpression of OsWNK9 also triggered the accumulation of abscisic acid (ABA) and restored indole-3-acetic acid (IAA) concentrations in roots, triggering stomatal closure in shoots and maintaining cell expansion of the root epidermal cells when challenged with salt treatment. The overexpression lines showed increased activity of antioxidant enzymes, which further mitigated ROS-mediated cellular damage under salinity stress. We also identified that OsWNK9 interacts with Receptor for Activated Kinase C1A (RACK1A), ABA-8'-hydroxylase, and (Vacuolar Type ATPase) V-Type ATPase. Taken together, our findings suggest that OsWNK9 expression is warranted under salinity stress and exerts its effects by interacting with its downstream targets and by increased accumulation of ABA and IAA, thereby regulating seed germination, stomatal activity, improved root growth, and ionic homeostasis, which all contribute to significantly higher yield produced per plant under long term salinity stress.
Collapse
Affiliation(s)
- Yogesh Negi
- Department of Biological SciencesBirla Institute of Technology & Science Pilani, K. K. Birla Goa CampusGoaIndia
| | - Kundan Kumar
- Department of Biological SciencesBirla Institute of Technology & Science Pilani, K. K. Birla Goa CampusGoaIndia
| |
Collapse
|
2
|
Guo Z, Guo J, Yu H, Huang H, Ye D, Liu T, Zhang X, Zhang L, Zheng Z, Wang Y, Li T. OsWNK9 regulates cadmium concentration in brown rice by restraining cadmium transport from straw to brown rice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116810. [PMID: 39096692 DOI: 10.1016/j.ecoenv.2024.116810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Selecting and breeding rice cultivars that enable strong cadmium (Cd) accumulation in rice straw but low accumulation in brown rice is a promising way to achieve Cd phytoremediation as well as to ensure the food safety of rice. Herein, we isolated a gene OsWNK9 from the quantitative trait locus associated with reducing Cd translocation from rice straw to brown rice and decreasing the Cd concentration in brown rice (BRCdC). Continuous strong expression of OsWNK9 was observed in nodes and internode and was induced after Cd supply. OsWNK9 was localized in the rice cell nucleus and participated in the regulation of Cd transport in yeast. Two independent oswnk9 rice mutants were generated via CRISPR/Cas9 gene-editing and showed significantly higher BRCdC than that of the wild type (WT). The BRCdC of knockout oswnk9 mutants was 0.227 mg kg-1and 0.238 mg kg-1, increased by 14 % and 19 % compared with that of the WT due to the lower Cd allocation in the basal stem, internode, and node III, which was unrelated to Cd uptake. Interestingly, OsWNK9 could promote iron (Fe) accumulation in rice under Cd-contaminated conditions, suggesting that OsWNK9 is an ideal gene for Cd phytoremediation and Fe biofortification in rice to support safe food production.
Collapse
Affiliation(s)
- Zhipeng Guo
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Jingyi Guo
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China; Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, Gatersleben 06466, Germany
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Daihua Ye
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Tao Liu
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Lu Zhang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Zicheng Zheng
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University (SAU), Huimin Road 211, Chengdu 611130, China.
| |
Collapse
|
3
|
Boyd-Shiwarski CR, Shiwarski DJ, Subramanya AR. A New Phase for WNK Kinase Signaling Complexes as Biomolecular Condensates. Physiology (Bethesda) 2024; 39:0. [PMID: 38624245 PMCID: PMC11460533 DOI: 10.1152/physiol.00013.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/17/2024] Open
Abstract
The purpose of this review is to highlight transformative advances that have been made in the field of biomolecular condensates, with special emphasis on condensate material properties, physiology, and kinases, using the With-No-Lysine (WNK) kinases as a prototypical example. To convey how WNK kinases illustrate important concepts for biomolecular condensates, we start with a brief history, focus on defining features of biomolecular condensates, and delve into some examples of how condensates are implicated in cellular physiology (and pathophysiology). We then highlight how WNK kinases, through the action of "WNK droplets" that ubiquitously regulate intracellular volume and kidney-specific "WNK bodies" that are implicated in distal tubule salt reabsorption and potassium homeostasis, exemplify many of the defining features of condensates. Finally, this review addresses the controversies within this emerging field and questions to address.
Collapse
Affiliation(s)
- Cary R Boyd-Shiwarski
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
| | - Daniel J Shiwarski
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Arohan R Subramanya
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Pittsburgh Heart, Lung, Blood Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
- VA Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
4
|
Wei Z, Wu ZC, Zang J, Zhao D, Guo W, Dai H. Genome-Wide Identification and Expression Pattern Analysis of the WNK Gene Family in Apple under Abiotic Stress and Colletotrichum siamense Infection. Int J Mol Sci 2024; 25:8528. [PMID: 39126096 PMCID: PMC11313067 DOI: 10.3390/ijms25158528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/28/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
With-no-lysine kinase (WNK) is a unique serine/threonine kinase family member. WNK differs from other protein kinases by not having a standard lysine in subdomain II of the universally preserved kinase catalytic region. Conversely, the amino acid lysine located in subdomain I plays a crucial role in its phosphorylation. The WNK family has been reported to regulate Arabidopsis flowering, circadian rhythm, and abiotic stress. Eighteen members of the WNK gene family were discovered in apples in this research, and they were primarily grouped into five categories on the phylogenetic tree. Conserved domains and motifs also confirmed their identity as members of the WNK family. Promoter cis-acting element analysis indicated their potential role in responses to both abiotic stress and phytohormones. Furthermore, qRT-PCR analysis showed that the expression of MdWNK family genes was stimulated to different extents by Colletotrichum siamense, NaCl, mannitol, ABA, JA, and SA, with Colletotrichum siamense being the most prominent stimulant. MdWNK family genes were expressed across all apple tissues, with young fruits showing the greatest expression and roots showing the least expression. The research offered detailed insights into the MdWNK gene family, serving as a crucial basis for investigating the biological roles of MdWNK genes.
Collapse
Affiliation(s)
- Ziwen Wei
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China;
| | - Zheng-Chao Wu
- Analytical and Testing Center, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; (Z.-C.W.); (J.Z.); (D.Z.)
| | - Jian Zang
- Analytical and Testing Center, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; (Z.-C.W.); (J.Z.); (D.Z.)
| | - Di Zhao
- Analytical and Testing Center, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; (Z.-C.W.); (J.Z.); (D.Z.)
| | - Wei Guo
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China;
- Analytical and Testing Center, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China; (Z.-C.W.); (J.Z.); (D.Z.)
| | - Hongyan Dai
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China;
| |
Collapse
|
5
|
Su B, Ge T, Zhang Y, Wang J, Wang F, Feng T, Liu B, Kong F, Sun Z. Genome-wide identification and expression analysis of the WNK kinase gene family in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:16. [PMID: 38371442 PMCID: PMC10869327 DOI: 10.1007/s11032-024-01440-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/25/2023] [Indexed: 02/20/2024]
Abstract
WNK kinases are a unique class of serine/threonine protein kinases that lack a conserved catalytic lysine residue in the kinase domain, hence the name WNK (with no K, i.e., lysine). WNK kinases are involved in various physiological processes in plants, such as circadian rhythm, flowering time, and stress responses. In this study, we identified 26 WNK genes in soybean and analyzed their phylogenetic relationships, gene structures, chromosomal distribution, cis-regulatory elements, expression patterns, and conserved protein motifs. The soybean WNK genes were unevenly distributed on 15 chromosomes and underwent 21 segmental duplication events during evolution. We detected 14 types of cis-regulatory elements in the promoters of the WNK genes, indicating their potential involvement in different signaling pathways. The transcriptome database revealed tissue-specific and salt stress-responsive expression of WNK genes in soybean, the second of which was confirmed by salt treatments and qRT-PCR analysis. We found that most WNK genes were significantly up-regulated by salt stress within 3 h in both roots and leaves, except for WNK5, which showed a distinct expression pattern. Our findings provide valuable insights into the molecular characteristics and evolutionary history of the soybean WNK gene family and lay a foundation for further analysis of WNK gene functions in soybean. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01440-5.
Collapse
Affiliation(s)
- Bohong Su
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Tianli Ge
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Yuhang Zhang
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Jianhao Wang
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Fan Wang
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Tu Feng
- School of Ecological Engineering, Guizhou University of Engineering Science, Bijie, 551700 People’s Republic of China
| | - Baohui Liu
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Fanjiang Kong
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Zhihui Sun
- Guangzhou Key Laboratory of Crop Gene Editing, Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| |
Collapse
|
6
|
Negi Y, Kumar K. Cloning, homology modelling and expression analysis of Oryza sativa WNK gene family. Int J Biol Macromol 2023; 229:994-1008. [PMID: 36608863 DOI: 10.1016/j.ijbiomac.2022.12.328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/17/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023]
Abstract
With No Lysine kinases (WNKs) represents a gene family that encodes Ser/Thr kinases, with anomalous disposition of catalytic lysine residue in subdomain I. In plants, WNKs had been linked to circadian rhythm, photoperiodic response and abiotic stress tolerance with mechanism yet undeciphered. In the present study, full-length CDS sequences of rice WNKs (OsWNK1 to 8) were cloned from indica cultivar IR64. A total of six highly conserved kinase subdomains were identified. Comparative analysis of protein sequences from six different species of rice showed varying magnitudes of substitution (76.2 %), deletion (15.4 %), and addition (8.4 %) events. ConSurf analysis coupled with CASTp results identified functional residues that were clustered together in modelled 3-D structures. Among post-translational modifications (PTMs) studied, 87.7 % of phosphorylation sites were predicted. Mined protein-protein interactions (PPIs) depicted OsWNKs to interact notably with other OsWNK members and with key proteins like PRR95 involved in photoperiodic response and protein phosphatase like PP2C involved in ABA signalling. Gene duplication analysis revealed two paralogous duplicated gene pairs: WNK6-WNK9 and WNK7-WNK8. Oryza sativa showed maximum syntenic relationship with Sorghum bicolor among the compared species. OsWNKs showed differential transcript expression profiles on treatment with plant growth regulators indicating its versatile role in plant growth and development.
Collapse
Affiliation(s)
- Yogesh Negi
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa 403726, India
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa 403726, India.
| |
Collapse
|
7
|
Zhou M, Zhao B, Li H, Ren W, Zhang Q, Liu Y, Zhao J. Comprehensive analysis of MAPK cascade genes in sorghum (Sorghum bicolor L.) reveals SbMPK14 as a potential target for drought sensitivity regulation. Genomics 2022; 114:110311. [PMID: 35176445 DOI: 10.1016/j.ygeno.2022.110311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 01/04/2022] [Accepted: 02/06/2022] [Indexed: 11/16/2022]
Abstract
The mitogen-activated protein kinase (MAPK) cascade plays a crucial role in regulating many important biological processes in plants. Here, we identified and characterized eight MAPKK and 49 MAPKKK genes in sorghum and analyzed their differential expression under drought treatment; we also characterized 16 sorghum MAPK genes. RNA-seq analysis revealed that 10 MAPK cascade genes were involved in drought stress response at the transcriptome level in sorghum. Overexpression of SbMPK14 in Arabidopsis and maize resulted in hypersensitivity to drought by promoting water loss, indicating that SbMPK14 functions as a negative regulator of the drought response. Subsequent transcriptome analysis and qRT-PCR verification of maize SbMPK14 overexpression lines revealed that SbMPK14 likely increases plant drought sensitivity by suppressing the activity of specific ERF and WRKY transcription factors. This comprehensive study provides valuable insight into the mechanistic basis of MAPK cascade gene function and their responses to drought in sorghum.
Collapse
Affiliation(s)
- Miaoyi Zhou
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
| | - Bingbing Zhao
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330046, China
| | - Hanshuai Li
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
| | - Wen Ren
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China
| | - Qian Zhang
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China; College of Life Science, Yangtze University, Jingzhou, Hubei 434025, China
| | - Ya Liu
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China.
| | - Jiuran Zhao
- Maize Research Institute, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097, China.
| |
Collapse
|
8
|
Chen P, Liu P, Zhang Q, Zhao L, Hao X, Liu L, Bu C, Pan Y, Zhang D, Song Y. Dynamic physiological and transcriptome changes reveal a potential relationship between the circadian clock and salt stress response in Ulmus pumila. Mol Genet Genomics 2022; 297:303-317. [PMID: 35089426 DOI: 10.1007/s00438-021-01838-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 11/13/2021] [Indexed: 11/26/2022]
Abstract
Despite the important role the circadian clock plays in numerous critical physiological responses in plants, such as hypocotyl elongation, leaf movement, stomatal opening, flowering, and stress responses, there have been no investigations into the effect of the circadian clock on physiological and transcriptional networks under salt stress. Ulmus pumila L. has been reported to tolerate 100-150 mM NaCl treatment. We measured the diurnal variation in photosynthesis and chlorophyll fluorescence parameters and performed a time-course transcriptome analysis of 2-years-old U. pumila seedlings under salt treatment to dissect the physiological regulation and potential relationship between the circadian network and the salt stress response. Seedlings in 150 mM NaCl treatment exhibited salt-induced physiological enhancement compared to the control group. A total of 7009 differentially expressed unigenes (DEGs) were identified under salt stress, of which 16 DEGs were identified as circadian rhythm-related DEGs (crDEGs). Further analysis of dynamic expression changes revealed that DEGs involved in four crucial pathways-photosynthesis, thiamine metabolism, abscisic acid synthesis and metabolism, and the hormone-MAPK signal crosstalk pathway-are closely related to the circadian clock. Finally, we constructed a co-expression network between the circadian clock and these four crucial pathways. Our results help shed light on the molecular link between the circadian network and salt stress tolerance in U. pumila.
Collapse
Affiliation(s)
- Panfei Chen
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Experimental Center of Forestry in North China, Chinese Academy of Forestry, Beijing, 102300, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Peng Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Quanfeng Zhang
- Hebei Academy of Forestry Sciences, No. 75, Xuefu Road, Hebei, 050072, People's Republic of China
| | - Lei Zhao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Xuri Hao
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Lei Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Chenhao Bu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Yanjun Pan
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Deqiang Zhang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China
| | - Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China.
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing, 100083, People's Republic of China.
| |
Collapse
|
9
|
Liu R, Vasupalli N, Hou D, Stalin A, Wei H, Zhang H, Lin X. Genome-wide identification and evolution of WNK kinases in Bambusoideae and transcriptional profiling during abiotic stress in Phyllostachys edulis. PeerJ 2022; 10:e12718. [PMID: 35070502 PMCID: PMC8761366 DOI: 10.7717/peerj.12718] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/09/2021] [Indexed: 01/11/2023] Open
Abstract
With-no-lysine (WNK) kinases play vital roles in abiotic stress response, circadian rhythms, and regulation of flowering time in rice, Arabidopsis, and Glycine max. However, there are no previous reports of WNKs in the Bambusoideae, although genome sequences are available for diploid, tetraploid, and hexaploid bamboo species. In the present study, we identified 41 WNK genes in five bamboo species and analysed gene evolution, phylogenetic relationship, physical and chemical properties, cis-elements, and conserved motifs. We predicted the structure of PeWNK proteins of moso bamboo and determined the exposed, buried, structural and functional amino acids. Real-time qPCR analysis revealed that PeWNK5, PeWNK7, PeWNK8, and PeWNK11 genes are involved in circadian rhythms. Analysis of gene expression of different organs at different developmental stages revealed that PeWNK genes are tissue-specific. Analysis of various abiotic stress transcriptome data (drought, salt, SA, and ABA) revealed significant gene expression levels in all PeWNKs except PeWNK11. In particular, PeWNK8 and PeWNK9 were significantly down- and up-regulated, respectively, after abiotic stress treatment. A co-expression network of PeWNK genes also showed that PeWNK2, PeWNK4, PeWNK7, and PeWNK8 were co-expressed with transcriptional regulators related to abiotic stress. In conclusion, our study identified the PeWNKs of moso bamboo involved in circadian rhythms and abiotic stress response. In addition, this study serves as a guide for future functional genomic studies of the WNK genes of the Bambusoideae.
Collapse
Affiliation(s)
- RongXiu Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang, China
| | - Naresh Vasupalli
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang, China
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang, China
| | - Antony Stalin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang, China,State Key Laboratory of Subtropical Silviculture, Department of Traditional Chinese Medicine, Zhejiang A & F University, Lin’an, Zhejiang, China
| | - Hantian Wei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang, China
| | - Huicong Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang, China
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin’an, Zhejiang, China
| |
Collapse
|
10
|
Saddhe AA, Mishra AK, Kumar K. Molecular insights into the role of plant transporters in salt stress response. PHYSIOLOGIA PLANTARUM 2021; 173:1481-1494. [PMID: 33963568 DOI: 10.1111/ppl.13453] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/29/2021] [Accepted: 05/06/2021] [Indexed: 05/23/2023]
Abstract
Salt stress disturbs the cellular osmotic and ionic balance, which then creates a negative impact on plant growth and development. The Na+ and Cl- ions can enter into plant cells through various membrane transporters, including specific and non-specific Na+ , K+ , and Ca2+ transporters. Therefore, it is important to understand Na+ and K+ transport mechanisms in plants along with the isolation of genes, their characterization, the structural features, and their post-translation regulation under salt stress. This review summarizes the molecular insights of plant ion transporters, including non-selective cation transporters, cyclic nucleotide-gated cation transporters, glutamate-like receptors, membrane intrinsic proteins, cation proton antiporters, and sodium proton antiporter families. Further, we discussed the K+ transporter families such as high-affinity K+ transporters, HAK/KUP/KT transporters, shaker type K+ transporters, and K+ efflux antiporters. Besides the ion transport process, we have shed light on available literature on epigenetic regulation of transport processes under salt stress. Recent advancements of salt stress sensing mechanisms and various salt sensors within signaling transduction pathways are discussed. Further, we have compiled salt-stress signaling pathways, and their crosstalk with phytohormones.
Collapse
Affiliation(s)
- Ankush Ashok Saddhe
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| | - Ajay Kumar Mishra
- Biology Centre, Czech Academy of Sciences, Department of Molecular Genetics, Institute of Plant Molecular Biology, České Budějovice, Czech Republic
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India
| |
Collapse
|
11
|
Saddhe AA, Karle SB, Aftab T, Kumar K. With no lysine kinases: the key regulatory networks and phytohormone cross talk in plant growth, development and stress response. PLANT CELL REPORTS 2021; 40:2097-2109. [PMID: 34110446 DOI: 10.1007/s00299-021-02728-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/03/2021] [Indexed: 05/25/2023]
Abstract
With No Lysine kinases (WNKs) are a distinct family of Serine/Threonine protein kinase with unique arrangement of catalytic residues in kinase domain. In WNK, an essential catalytic lysine requisite for attaching ATP and phosphorylation reaction is located in subdomain I, instead of subdomain II, which is essentially a typical feature of other Ser/Thr kinases. WNKs are identified in diverse organisms including multicellular and unicellular organisms. Mammalian WNKs are well characterized at structural and functional level, while plant WNKs are not explored much except few recent studies. Plant WNKs role in various physiological processes viz. ion maintenance, osmotic stress, pH homeostasis, circadian rhythms, regulation of flowering time, proliferation and organ development, and abiotic stresses are known, but the mechanisms involved are unclear. Plant WNKs are known to be involved in enhanced drought and salt stress response via ABA-signaling pathway, but the complete signaling cascade is yet to be elucidated. The current review will discuss the interplay between WNKs and growth regulators and their cross talks in plant growth and development. We have also highlighted the link between the stress phytohormones and WNK members in regulating abiotic stress responses in plants. The present review will provide an overall known mechanism on the involvement of WNKs in plant growth and development and abiotic stress response and highlight its role/applications in the development of stress-tolerant plants.
Collapse
Affiliation(s)
- Ankush Ashok Saddhe
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403 726, India
- Institute of Experimental Botany of the Czech Academy of Sciences, 16502, Prague 6, Czech Republic
| | - Suhas Balasaheb Karle
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403 726, India
| | - Tariq Aftab
- Department of Botany, Aligarh Muslim University, Uttar Pradesh, Aligarh, 202 002, India
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, K. K. Birla Goa Campus, Goa, 403 726, India.
| |
Collapse
|
12
|
Manuka R, Saddhe AA, Srivastava AK, Kumar K, Penna S. Overexpression of rice OsWNK9 promotes arsenite tolerance in transgenic Arabidopsis plants. J Biotechnol 2021; 332:114-125. [PMID: 33864842 DOI: 10.1016/j.jbiotec.2021.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/03/2021] [Accepted: 04/11/2021] [Indexed: 12/25/2022]
Abstract
Protein kinases are involved in the transfer of phosphate group to serine, threonine, and tyrosine residues of a target protein. With No Lysine (WNK) kinase is a member of the serine/threonine protein kinase family, which has conserved catalytic lysine (K) residue in subdomain I instead of being in subdomain II.The WNKs family members in plants are stress inducible and have been validated for their role in abiotic stress tolerance. In the present study, we have characterized Arabidopsis overexpressed lines of OsWNK9 regulated by the constitutive promoter under arsenite stress. Moreover, we have performed In silico expression analysis of OsWNK9 under nutrient deficiency and heavy metal stress. Three independent transgenic Arabidopsis (OsWNK9-OX T11, T12,andT13) lines showed tolerance to arsenite stress compared to wild-type (WT) plants. Under arsenite stress, transgenic lines T11, T12 and T13 showed 56.46, 57.8 and 51.66 % increased biomass respectively, as compared to WT plants. All three ArabidopsisOsWNK9-OX lines exhibited higher proline content, increased antioxidant enzyme activities and lower hydrogen peroxide levels under arsenite stress. Besides, the total antioxidant capacity in terms of DPPH (2, 2-diphenyl-1-picrylhydrazyl) free radical scavenging percentage was increased by 8-15 % in three independent OsWNK9-OX lines compared with those of WT plants. Protein-protein interaction analysis of OsWNK9 predicted interaction partners with protein kinase and oxidative stress-responsive protein. Co-expression analysis of OsWNK9 in phosphate deficiency and arsenate stress condition predicted various proteins including membrane transporter and transcription factors. Taken together, our results, for the first time, provide evidence that OsWNK9 could positively mediate arsenite stress tolerance in plants.
Collapse
Affiliation(s)
- Rakesh Manuka
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400084, India; Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India; Department of Biological Sciences and Biotechnology, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, 382426, India
| | - Ankush Ashok Saddhe
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India; Institute of Experimental Botany of the Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400084, India
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K. K. Birla Goa Campus, Goa, 403726, India.
| | - Suprasanna Penna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400084, India.
| |
Collapse
|
13
|
Xu L, Hu Y, Jin G, Lei P, Sang L, Luo Q, Liu Z, Guan F, Meng F, Zhao X. Physiological and Proteomic Responses to Drought in Leaves of Amygdalus mira ( Koehne) Yü et Lu. FRONTIERS IN PLANT SCIENCE 2021; 12:620499. [PMID: 34249029 PMCID: PMC8264794 DOI: 10.3389/fpls.2021.620499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/20/2021] [Indexed: 05/05/2023]
Abstract
Various environmental stresses strongly influence plant development. Among these stresses is drought, which is a serious threat that can reduce agricultural productivity and obstruct plant growth. Although the mechanism of plants in response to drought has been studied extensively, the adaptive strategies of Amygdalus mira (Koehne) Yü et Lu grown in drought and rewatered habitats remain undefined. Amygdalus mira from the Tibetan Plateau has outstanding nutritional and medicinal values and can thrive in extreme drought. In this study, the physiological and proteomic responses in leaves of A. mira were investigated during drought and recovery period. The changes in plant growth, photosynthesis, enzymes, and non-enzymatic antioxidant under drought and rewatering were also analyzed in leaves. Compared with controls, A. mira showed stronger adaptive and resistant characteristics to drought. In addition, the proteomic technique was also used to study drought tolerance mechanisms in A. mira leaves. Differentially expressed proteins were identified using mass spectrometry. Accordingly, 103 proteins involved in 10 functional categories: cytoskeleton dynamics, energy metabolism, carbohydrate metabolism, photosynthesis, transcription and translation, transport, stress and defense, molecular chaperones, other materials metabolism, and unknown function were identified. These results showed that an increase of stress-defense-related proteins in leaves after drought treatment contributed to coping with drought. Importantly, A. mira developed an adaptive mechanism to scavenge reactive oxygen species (ROS), including enhancing antioxidant enzyme activities and non-enzymatic antioxidant contents, reducing energy, and adjusting the efficiency of gas exchanges. These results may help to understand the acclimation of A. mira to drought.
Collapse
Affiliation(s)
- Liping Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yanbo Hu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangze Jin
- Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, School of Forestry, Northeast Forestry University, Harbin, China
| | - Pei Lei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Liqun Sang
- Tibet Agriculture and Animal Husbandry College, Nyingchi, China
| | - Qiuxiang Luo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhi Liu
- Department of Medical Genetics, Center for Genome Research, Center for Precision Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fachun Guan
- Tibet Agriculture and Animal Husbandry College, Nyingchi, China
- Jilin Academy of Agricultural Science, Changchun, China
| | - Fanjuan Meng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- *Correspondence: Fanjuan Meng,
| | - Xiyang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
- Xiyang Zhao,
| |
Collapse
|
14
|
Dossa K, Mmadi MA, Zhou R, Liu A, Yang Y, Diouf D, You J, Zhang X. Ectopic expression of the sesame MYB transcription factor SiMYB305 promotes root growth and modulates ABA-mediated tolerance to drought and salt stresses in Arabidopsis. AOB PLANTS 2020; 12:plz081. [PMID: 32099638 PMCID: PMC7019004 DOI: 10.1093/aobpla/plz081] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/21/2019] [Indexed: 05/02/2023]
Abstract
An increasing number of candidate genes related to abiotic stress tolerance are being discovered and proposed to improve the existing cultivars of the high oil-bearing crop sesame (Sesamum indicum L.). However, the in planta functional validation of these genes is remarkably lacking. In this study, we cloned a novel sesame R2-R3 MYB gene SiMYB75 which is strongly induced by drought, sodium chloride (NaCl), abscisic acid (ABA) and mannitol. SiMYB75 is expressed in various sesame tissues, especially in root and its protein is predicted to be located in the nucleus. Ectopic over-expression of SiMYB75 in Arabidopsis notably promoted root growth and improved plant tolerance to drought, NaCl and mannitol treatments. Furthermore, SiMYB75 over-expressing lines accumulated higher content of ABA than wild-type plants under stresses and also increased sensitivity to ABA. Physiological analyses revealed that SiMYB75 confers abiotic stress tolerance by promoting stomatal closure to reduce water loss; inducing a strong reactive oxygen species scavenging activity to alleviate cell damage and apoptosis; and also, up-regulating the expression levels of various stress-marker genes in the ABA-dependent pathways. Our data suggested that SiMYB75 positively modulates drought, salt and osmotic stresses responses through ABA-mediated pathways. Thus, SiMYB75 could be a promising candidate gene for the improvement of abiotic stress tolerance in crop species including sesame.
Collapse
Affiliation(s)
- Komivi Dossa
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, China
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, Dakar, Sénégal
- Corresponding authors’ e-mail addresses: ;
| | - Marie A Mmadi
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, China
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, Dakar, Sénégal
| | - Rong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, China
| | - Aili Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, China
| | - Yuanxiao Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, China
| | - Diaga Diouf
- Laboratoire Campus de Biotechnologies Végétales, Département de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, BP 5005 Dakar-Fann, Dakar, Sénégal
| | - Jun You
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, China
| | - Xiurong Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, No.2 Xudong 2nd Road, Wuhan, China
- Corresponding authors’ e-mail addresses: ;
| |
Collapse
|
15
|
Du B, Zhao W, An Y, Li Y, Zhang X, Song L, Guo C. Overexpression of an alfalfa glutathione S-transferase gene improved the saline-alkali tolerance of transgenic tobacco. Biol Open 2019; 8:bio.043505. [PMID: 31471294 PMCID: PMC6777358 DOI: 10.1242/bio.043505] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Abiotic stresses restrict the productivity and quality of agricultural crops. Glutathione S-transferase (GST) utilizes glutathione to scavenge reactive oxygen species (ROS) that result from abiotic stresses. This study aimed to determine the expression pattern of the MsGSTU8 gene and its effects on saline-alkali tolerance. MsGSTU8, from alfalfa (Medicago sativa 'Zhaodong'), was transformed into transgenic tobacco (Nicotiana tabacum) and overexpressed to determine its effects on saline-alkali tolerance. The gene products in alfalfa localized to the cytoplasm and the transcript levels were higher in the leaves than the roots and stems. Expression was strongly induced by cold, drought, salt and saline-alkali stresses as well as abscisic acid (ABA) treatments. The transgenic tobacco lines had significantly higher transcription levels of the abiotic stress-related genes and higher GST activity than the wild types. Transgenic tobacco lines with saline-alkali treatments maintained their chlorophyll content, showed improved antioxidant enzyme activity and soluble sugar levels, reduced ion leakage, O2 .-, H2O2 accumulation and malondialdehyde content. Our results indicate that overexpression of MsGSTU8 could improve resistance to saline-alkali stresses by decreasing the accumulation of ROS and increasing the levels of antioxidant enzymes. Furthermore, they suggest that MsGSTU8 could be utilized for transgenic crop plant breeding.
Collapse
Affiliation(s)
- Binghao Du
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Weidi Zhao
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Yimin An
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Yakun Li
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Xue Zhang
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Lili Song
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Changhong Guo
- Key Laboratory of Molecular and Cytogenetics, College of Life Science and Technology, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| |
Collapse
|
16
|
Molecular cloning, expression analysis, and heterologous characterization of a novel sodium/hydrogen exchanger from a mangrove plant, Rhizophora apiculata. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.plgene.2019.100192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Saddhe AA, Malvankar MR, Kumar K. Selection of reference genes for quantitative real-time PCR analysis in halophytic plant Rhizophora apiculata. PeerJ 2018; 6:e5226. [PMID: 30013853 PMCID: PMC6046198 DOI: 10.7717/peerj.5226] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 06/22/2018] [Indexed: 11/26/2022] Open
Abstract
Rhizophora apiculata is a halophytic, small mangrove tree distributed along the coastal regions of the tropical and subtropical areas of the world. They are natural genetic reservoirs of salt adaptation genes and offer a unique system to explore adaptive mechanisms under salinity stress. However, there are no reliable studies available on selection and validation of reference genes for quantitative real-time polymerase chain reaction (qRT-PCR) in R. apiculata physiological tissues and in salt stress conditions. The selection of appropriate candidate reference gene for normalization of qRT-PCR data is a crucial step towards relative analysis of gene expression. In the current study, seven genes such as elongation factor 1α (EF1α), Ubiquitin (UBQ), β-tubulin (β-TUB), Actin (ACT), Ribulose1,5-bisphosphate carboxylase/oxygenase (rbcL), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and 18S rRNA (18S) were selected and analyzed for their expression stability. Physiological tissues such as leaf, root, stem, and flower along with salt stress leaf samples were used for selection of candidate reference genes. The high-quality expression data was obtained from biological replicates and further analyzed using five different programs such as geNorm, NormFinder, BestKeeper, Delta Ct and RefFinder. All algorithms comprehensively ranked EF1α followed by ACT as the most stable candidate reference genes in R. apiculata physiological tissues. Moreover, β-TUB and 18S were ranked as moderately stable candidate reference genes, while GAPDH and rbcL were least stable reference genes. Under salt stress, EF1α was comprehensively recommended top-ranked candidate reference gene followed by ACT and 18S. In order to validate the identified most stable candidate reference genes, EF1α, ACT, 18S and UBQ were used for relative gene expression level of sodium/proton antiporter (NHX) gene under salt stress. The expression level of NHX varied according to the internal control which showed the importance of selection of appropriate reference gene. Taken together, this is the first ever systematic attempt of selection and validation of reference gene for qRT-PCR in R. apiculata physiological tissues and in salt stress. This study would promote gene expression profiling of salt stress tolerance related genes in R. apiculata.
Collapse
Affiliation(s)
- Ankush Ashok Saddhe
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K K Birla Goa Campus, Zuarinagar, Goa, India
| | - Manali Ramakant Malvankar
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K K Birla Goa Campus, Zuarinagar, Goa, India
| | - Kundan Kumar
- Department of Biological Sciences, Birla Institute of Technology & Science Pilani, K K Birla Goa Campus, Zuarinagar, Goa, India
| |
Collapse
|