1
|
Wang X, Li G, Yang Y, Yuan H, Huang Q, Liang J, Zhen A. Grafting improves nitrogen efficiency and stabilizes yield and quality of cucumber by enhancing the NO 3 - uptake. PHYSIOLOGIA PLANTARUM 2025; 177:e70152. [PMID: 40091428 DOI: 10.1111/ppl.70152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/17/2025] [Accepted: 02/24/2025] [Indexed: 03/19/2025]
Abstract
Grafting can promote the growth and nitrogen use efficiency (NUE) of cucumber seedlings under reduced nitrogen (N) application, however, its underlying mechanisms and effects on mature plants remain unknown. For this purpose, self-grafted and rootstock-grafted cucumber plants were treated with two N levels (7 and 4 mM) throughout the entire growth period. The long-term reduced-N treatment significantly limited the growth, root morphology, nitrate (NO3 -) uptake, NUE traits, photosynthesis, phenylalanine ammonia-lyase (PAL) activity, yield, and fruit quality of self-grafted plants but had no influence on rootstock-grafted plants, it even improved their NUE traits, total phenolic and flavonoid contents, and PAL activity. Furthermore, the expression of the NRT1.2, NRT1.5, NRT2.2, and NRT2.5 genes were significantly down-regulated in self-grafted plant roots, while they and the transcription factors NLP6 and LBD38 were up-regulated in rootstock-grafted plant roots under reduced-N environments. Correlation analysis showed that plant growth, root surface area, N-accumulation, N-uptake efficiency (NUpE), NUE, photosynthesis, PAL activity, yield, and fruit quality were all positively correlated with each other; meanwhile, the root morphology, NRT1.2 and NRT2.1 gene expression were all positively correlated with NUpE and NUE. The results demonstrate that under reduced-N application, rootstock grafting can enhance NO3 - uptake and N accumulation to improve the NUE of cucumber plants and resist reduced-N environment through secondary metabolism, maintaining growth, photosynthesis, yield, and fruit quality without adverse effects. The up-regulation of NRT genes and related transcription factors regulates the NO3 - uptake in rootstock-grafted plants. Rootstock grafting will be beneficial for fertilizer conservation and efficient cucumber production. yield and fruit quality.
Collapse
Affiliation(s)
- Xun Wang
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Guohu Li
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Yanfei Yang
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Hongyan Yuan
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Qi Huang
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
| | - Jiayi Liang
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, China
| | - Ai Zhen
- College of Horticulture, Northwest Agricultural and Forestry University, Yangling, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Calabritto M, Mininni AN, Di Biase R, Petrozza A, Summerer S, Cellini F, Dichio B. Physiological and image-based phenotyping assessment of waterlogging responses of three kiwifruit rootstocks and grafting combinations. FRONTIERS IN PLANT SCIENCE 2025; 16:1499432. [PMID: 39974725 PMCID: PMC11835816 DOI: 10.3389/fpls.2025.1499432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 01/13/2025] [Indexed: 02/21/2025]
Abstract
Introduction Kiwifruit species have a relatively high rate of root oxygen consumption, making them very vulnerable to low root zone oxygen concentrations resulting from soil waterlogging. Recently, kiwifruit rootstocks have been increasingly used to improve biotic and abiotic stress tolerance and crop performance under adverse conditions. The aim of the present study was to evaluate morpho-physiological changes in kiwifruit rootstocks and grafting combinations under short-term waterlogging stress. Methods A pot trial was conducted at the ALSIA PhenoLab, part of the Phen-Italy infrastructures, using non-destructive RGB and NIR image-based analysis and physiological measurements to identify waterlogging stress indicators and more tolerant genotypes. Three pot-grown kiwifruit rootstocks ('Bounty 71,' Actinidia macrosperma-B; 'D1,' Actinidia chinensis var. deliciosa-D; and 'Hayward,' A. chinensis var. deliciosa-H) and grafting combinations, with a yellow-fleshed kiwifruit cultivar ('Zesy 002,' A. chinensis var. chinensis) grafted on each rootstock (Z/B, Z/D, Z/H), were subjected to a control irrigation treatment (WW), restoring their daily water consumption, and to a 9-day waterlogging stress (WL), based on substrate saturation. Leaf gas exchange, photosynthetic activity, leaf temperature, RGB, and NIR data were collected during waterlogging stress. Results Stomatal conductance and transpiration reached very low values (less than 0.05 mol m-2 s-1 and 1 mmol m-2 s-1, respectively) in both waterlogged D and H rootstocks and their grafting combinations. In turn, leaf temperature was significantly increased and photosynthesis was reduced (1-6 μmol m-2 s-1) from the first days of waterlogging stress compared to B rootstock and combination. Discussion The B rootstock showed prolonged leaf gas exchange and photosynthetic activity, indicating that it can cope with short-term and temporary waterlogging and improve the tolerance of grafted kiwi vines, which showed a decrease in stomatal conductance 5 days after the onset of stress. Morphometric and colorimetric parameters from the image-based analysis confirmed the greater susceptibility of D and H rootstocks and their grafting combinations to waterlogging stress compared to B. The results presented confirm the role of physiological measurements and enhance that of RGB and NIR images in detecting the occurrence of water stress and identifying more tolerant genotypes in kiwifruit.
Collapse
Affiliation(s)
- Maria Calabritto
- Department of Agricultural, Forest, Food, and Environmental Sciences (DAFE), University of Basilicata, Potenza, Italy
| | - Alba N. Mininni
- Department of Agricultural, Forest, Food, and Environmental Sciences (DAFE), University of Basilicata, Potenza, Italy
| | - Roberto Di Biase
- Department of Agricultural, Forest, Food, and Environmental Sciences (DAFE), University of Basilicata, Potenza, Italy
| | - Angelo Petrozza
- Agenzia Lucana di Sviluppo e Innovazione in Agricoltura (ALSIA) Centro Ricerche Metapontum Agrobios, Metaponto, Italy
| | - Stephan Summerer
- Agenzia Lucana di Sviluppo e Innovazione in Agricoltura (ALSIA) Centro Ricerche Metapontum Agrobios, Metaponto, Italy
| | - Francesco Cellini
- Agenzia Lucana di Sviluppo e Innovazione in Agricoltura (ALSIA) Centro Ricerche Metapontum Agrobios, Metaponto, Italy
| | - Bartolomeo Dichio
- Department of Agricultural, Forest, Food, and Environmental Sciences (DAFE), University of Basilicata, Potenza, Italy
| |
Collapse
|
3
|
Razi K, Suresh P, Mahapatra PP, Al Murad M, Venkat A, Notaguchi M, Bae DW, Prakash MAS, Muneer S. Exploring the role of grafting in abiotic stress management: Contemporary insights and automation trends. PLANT DIRECT 2024; 8:e70021. [PMID: 39678018 PMCID: PMC11646695 DOI: 10.1002/pld3.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/06/2024] [Accepted: 10/21/2024] [Indexed: 12/17/2024]
Abstract
Grafting is a technique that involves attaching a rootstock to the aerial part of another genotype or species (scion), leading to improved crop performance and sustainable growth. The ability to tolerate abiotic stresses depends on cell membrane stability, a reduction in electrolyte leakage, and the species of scion and rootstock chosen. This external mechanism, grafting, serves as a beneficial tool in influencing crop performance by combining nutrient uptake and translocation to shoots, promoting sustainable plant growth, and enhancing the potential yield of both fruit and vegetable crops. Grafting helps to enhance crop production and improve the capacity of plants to utilize water when undergoing abiotic stress, particularly in genotypes that produce high yields upon rootstocks that are capable of decreasing the impact of drought stress on the shoot. The rootstock plays a pivotal role in establishing a grafted plant by forming a union between the graft and the rootstock. This process is characterized by its integrative, reciprocal nature, enabling plants to tolerate abiotic stress conditions. Grafting has been shown to alleviate the overproduction of lipid peroxidation and reactive oxygen species in the leaves and roots and enhance drought tolerance in plants by maintaining antioxidant enzyme activities and stress-responsive gene expression. Phytohormones, such as cytokinin, auxin, and gibberellin, play a critical role in maintaining rootstock-scion interactions. This review unveils the role of grafting in mitigating various environmental stressors, establishment of a robust graft junction, physiology of rootstock-scion communication, the mechanism underlying rootstock influence, hormonal regulations and the utilization of agri-bots in perfect healing and further cultivation of vegetable crops through grafting.
Collapse
Affiliation(s)
- Kaukab Razi
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced LearningVellore Institute of TechnologyVelloreTamil NaduIndia
| | - Preethika Suresh
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced LearningVellore Institute of TechnologyVelloreTamil NaduIndia
- School of Biosciences and TechnologyVellore Institute of TechnologyVelloreTamil NaduIndia
| | - Pritam Paramguru Mahapatra
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced LearningVellore Institute of TechnologyVelloreTamil NaduIndia
- School of Biosciences and TechnologyVellore Institute of TechnologyVelloreTamil NaduIndia
| | - Musa Al Murad
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced LearningVellore Institute of TechnologyVelloreTamil NaduIndia
| | - Ajila Venkat
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced LearningVellore Institute of TechnologyVelloreTamil NaduIndia
- School of Biosciences and TechnologyVellore Institute of TechnologyVelloreTamil NaduIndia
| | | | - Dong Won Bae
- Central Instrument FacilityGyeongsang National UniversityJinjuSouth Korea
| | - Muthu Arjuna Samy Prakash
- Department of Genetics and Plant Breeding, Faculty of AgricultureAnnamalai UniversityAnnamalai NagarTamil NaduIndia
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced LearningVellore Institute of TechnologyVelloreTamil NaduIndia
| |
Collapse
|
4
|
Miao C, Zhang Y, Cui J, Zhang H, Wang H, Jin H, Lu P, He L, Zhou Q, Yu J, Ding X. An Enhanced Interaction of Graft and Exogenous SA on Photosynthesis, Phytohormone, and Transcriptome Analysis in Tomato under Salinity Stress. Int J Mol Sci 2024; 25:10799. [PMID: 39409129 PMCID: PMC11477039 DOI: 10.3390/ijms251910799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
Salt stress can adversely affect global agricultural productivity, necessitating innovative strategies to mitigate its adverse effects on plant growth and yield. This study investigated the effects of exogenous salicylic acid (SA), grafting (G), and their combined application (GSA) on various parameters in tomato plants subjected to salt stress. The analysis focused on growth characteristics, photosynthesis, osmotic stress substances, antioxidant enzyme activity, plant hormones, ion content, and transcriptome profiles. Salt stress severely inhibits the growth of tomato seedlings. However, SA, G, and GSA improved the plant height by 22.5%, 26.5%, and 40.2%; the stem diameter by 11.0%, 26.0%, and 23.7%; the shoot fresh weight by 76.3%, 113.2%, and 247.4%; the root fresh weight by 150.9%, 238.6%, and 286.0%; the shoot dry weight by 53.5%, 65.1%, and 162.8%; the root dry weight by 150.0%, 150.0%, and 166.7%, and photosynthesis by 4.0%, 16.3%, and 32.7%, with GSA presenting the most pronounced positive effect. Regarding the osmotic stress substances, the proline content increased significantly by more than 259.2% in all treatments, with the highest levels in GSA. Under salt stress, the tomato seedlings accumulated high Na+ levels; the SA, G, and GSA treatments enhanced the K+ and Ca2+ absorption while reducing the Na+ and Al3+ levels, thereby alleviating the ion toxicity. The transcriptome analysis indicated that SA, G, and GSA influenced tomato growth under salt stress by regulating specific signaling pathways, including the phytohormone and MAPK pathways, which were characterized by increased endogenous SA and decreased ABA content. The combined application of grafting and exogenous SA could be a promising strategy for enhancing plant tolerance to salt stress, offering potential solutions for sustainable agriculture in saline environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiaotao Ding
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticulture Research Institute, Shanghai Academy of Agricultural Sciences, Jinqi Road No. 1000, Fengxian District, Shanghai 201403, China; (C.M.)
| |
Collapse
|
5
|
Notaguchi M, Ichita M, Kawasoe T, Monda K, Kurotani KI, Higaki T, Iba K, Hashimoto-Sugimoto M. The PATROL1 function in roots contributes to the increase in shoot biomass. PLANTA 2024; 260:105. [PMID: 39325207 PMCID: PMC11427605 DOI: 10.1007/s00425-024-04526-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
MAIN CONCLUSION PATOL1 contributes to increasing biomass not only by effective stomatal movement but also by root meristematic activity. PATROL1 (PROTON ATPase TRANSLOCATION CONTROL 1), a protein with a MUN domain, is involved in the intercellular trafficking of AHA1 H+-ATPase to the plasma membrane in guard cells. This allows for larger stomatal opening and more efficient photosynthesis, leading to increased biomass. Although PATROL1 is expressed not only in stomata but also in other tissues of the shoot and root, the role in other tissues than stomata has not been determined yet. Here, we investigated PATROL1 functions in roots using a loss-of-function mutant and an overexpressor. Cytological observations revealed that root meristematic size was significantly smaller in the mutant resulting in the short primary root. Grafting experiments showed that the shoot biomass of the mutant scion was increased when it grafted onto wild-type or overexpressor rootstocks. Conversely, grafting of the overexpressor scion shoot enhanced the growth of the mutant rootstock. The leaf temperatures of the grafted plants were consistent with those of their respective genotypes, indicating cell-autonomous behavior of stomatal movement and independent roles of PATROL1 in plant growth. Moreover, plasma membrane localization of AHA1 was not altered in root epidermal cells in the patrol1 mutant implying existence of a different mode of PATROL1 action in roots. Thus PATROL1 plays a role in root meristem and contributes to increase shoot biomass.
Collapse
Affiliation(s)
- Michitaka Notaguchi
- Department of Botany, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-Cho, Kyoto, 606-8502, Japan.
- Bioscience and Biotechnology Center, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8601, Japan.
| | - Manami Ichita
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Takaya Kawasoe
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Keina Monda
- Department of Biology, Faculty of Science, Kyushu University, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Ken-Ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8601, Japan
| | - Takumi Higaki
- Graduate School of Science and Technology, Kumamoto University, Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
- International Research Center for Agricultural and Environmental Biology, Kumamoto University, Kurokami, Chuo-Ku, Kumamoto, 860-8555, Japan
| | - Koh Iba
- Department of Biology, Faculty of Science, Kyushu University, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Mimi Hashimoto-Sugimoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-Cho, Chikusa-Ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
6
|
Elsadek MA, Wang R, Xu K, Wang T, Zhang A, Qi Z, Liu B, Yuan L, Chen L. Tuber quality enhancement via grafting potato onto a wooden goji rootstock through vitalizing multi-pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108927. [PMID: 39067104 DOI: 10.1016/j.plaphy.2024.108927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Grafting is applied in Solanaceae to improve growth and quality traits. However, grafting potato onto a wooden goji rootstock is rare. Our study introduces a novel distant grafting technique to investigate potato scion responses, specifically regarding photosynthetic and tuber nutritional quality. The physiological and transcriptomic findings reveal an increase in photosynthesis ratio and carbon fixation in potato leaves after 45 days of grafting due to the upregulation of pivotal genes (PsbA, PPC1, rbcl, and GAPDH). After 95 days of long-term growth, the leaf redox balance was maintained with intensified chlorophyll synthesis, facilitated by the enrichment of crucial genes (GUN4, CHLH, CHLP, CAO) and several light-harvesting proteins (Lhca and Lhcb) in potato leaves. The tubers of grafted plants showed a 6.5% increase in crude protein, 51% in anthocyanin, and lower carbohydrate content. Goji altered the expression of tubers genes involved in assimilatory sulfate reduction, which subsequently affects cysteine-methionine biosynthesis. Furthermore, the tuber transcriptome shows ABA signaling and transcription factors regulate the expression of key biosynthetic genes involved in inducing the secondary metabolites, such as scopoletin and anthocyanin accumulation, which are primary polyphenols in goji. Our innovative grafting approach offers valuable insights into the interactions between woody and herbaceous plants for developing future strategies to modulate growth efficiency and tuber quality in the face of climate challenges and to meet the demand for nutritious food.
Collapse
Affiliation(s)
- Mohamed A Elsadek
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Department of Horticulture, Faculty of Agriculture, South Valley University, Qena, 83523, Egypt
| | - Ruiting Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Kexin Xu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Tingjin Wang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Aijun Zhang
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyu Qi
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Bin Liu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Lu Yuan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Liping Chen
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Han Q, Yang L, Xia L, Zhang H, Zhang S. Interspecific grafting promotes poplar growth and drought resistance via regulating phytohormone signaling and secondary metabolic pathways. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108594. [PMID: 38581808 DOI: 10.1016/j.plaphy.2024.108594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/22/2023] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Populus cathayana (C) grafted onto P. deltoides (D) (C/D) can promote growth better than self-grafting (C/C and D/D). However, the mechanisms underlying growth and resistance to drought stress are not clear. In this study, we performed physiological and RNA-seq analysis on the different grafted combinations. It was found that C/D plants exhibited higher growth, net photosynthetic rate, IAA content and intrinsic water use efficiency (WUEi) than C/C and D/D plants under both well-watered and drought-stressed conditions. However, most growth, photosynthetic indices, and IAA content were decreased less in C/D, whereas ABA content, WUEi and root characteristics (e.g., root length, volume, surface area and vitality) were increased more in C/D than in other grafting combinations under drought-stressed conditions. Transcriptomic analysis revealed that the number of differentially expressed genes (DEGs) in leaves of C/D vs C/C (control, 181; drought, 121) was much lower than that in the roots of C/D vs D/D (control, 1639; drought, 1706), indicating that the rootstocks were more responsive to drought resistance. KEGG and GO functional enrichment analysis showed that the enhanced growth and drought resistance of C/D were mainly related to DEGs involved in the pathways of ABA and IAA signaling, and secondary metabolite biosynthesis, especially the pathways for lignin and dopamine synthesis and metabolism. Therefore, our results further demonstrated the dominant role of rootstock in drought resistance, and enriched our knowledge on the mechanism of how interspecific grafting enhanced the growth and drought resistance in poplar.
Collapse
Affiliation(s)
- Qingquan Han
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Le Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Linchao Xia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
8
|
Renau-Morata B, Jiménez-Benavente E, Gil-Villar D, Cebolla-Cornejo J, Romero-Hernández G, Carrillo L, Vicente-Carbajosa J, Medina J, Molina RV, Nebauer SG. Arabidopsis CDF3 transcription factor increases carbon and nitrogen assimilation and yield in trans-grafted tomato plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108607. [PMID: 38593486 DOI: 10.1016/j.plaphy.2024.108607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/24/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Grafting in tomato (Solanum lycopersicum L.) has mainly been used to prevent damage by soil-borne pathogens and the negative effects of abiotic stresses, although productivity and fruit quality can also be enhanced using high vigor rootstocks. In the context of a low nutrients input agriculture, the grafting of elite cultivars onto rootstocks displaying higher Nitrogen Use Efficiency (NUE) supports a direct strategy for yield maximization. In this study we assessed the use of plants overexpressing the Arabidopsis (AtCDF3) or tomato (SlCDF3) CDF3 genes, previously reported to increase NUE in tomato, as rootstocks to improve yield in the grafted scion under low N inputs. We found that the AtCDF3 gene induced greater production of sugars and amino acids, which allowed for greater biomass and fruit yield under both sufficient and limiting N supplies. Conversely, no positive impact was found with the SlCDF3 gene. Hormone analyses suggest that gibberellins (GA4), auxin and cytokinins (tZ) might be involved in the AtCDF3 responses to N. The differential responses triggered by the two genes could be related, at least in part, to the mobility of the AtCDF3 transcript through the phloem to the shoot. Consistently, a higher expression of the target genes of the transcription factor, such as glutamine synthase 2 (SlGS2) and GA oxidase 3 (SlGA3ox), involved in amino acid and gibberellin biosynthesis, respectively, was observed in the leaves of this graft combination. Altogether, our results provided further insights into the mode of action of CDF3 genes and their biotechnology potential for transgrafting approaches.
Collapse
Affiliation(s)
| | - Eva Jiménez-Benavente
- Departamento de Producción Vegetal, Universitat Politècnica de València (UPV), València, Spain
| | - Daniel Gil-Villar
- Departamento de Producción Vegetal, Universitat Politècnica de València (UPV), València, Spain
| | - Jaime Cebolla-Cornejo
- Joint Research Unit UJI-UPV Improvement of Agri-Food Quality, COMAV, Universitat Politècnica de València, Valencia, Spain
| | | | - Laura Carrillo
- Centro de Biotecnología y Genómica de Plantas (CBGP), CSIC/UPM-INIA, Madrid, Spain
| | | | - Joaquín Medina
- Centro de Biotecnología y Genómica de Plantas (CBGP), CSIC/UPM-INIA, Madrid, Spain.
| | - Rosa Victoria Molina
- Joint Research Unit UJI-UPV Improvement of Agri-Food Quality, COMAV, Universitat Politècnica de València, Valencia, Spain.
| | - Sergio González Nebauer
- Joint Research Unit UJI-UPV Improvement of Agri-Food Quality, COMAV, Universitat Politècnica de València, Valencia, Spain.
| |
Collapse
|
9
|
Hui T, Bao L, Shi X, Zhang H, Xu K, Wei X, Liang J, Zhang R, Qian W, Zhang M, Su C, Jiao F. Grafting seedling rootstock strengthens tolerance to drought stress in polyploid mulberry (Morus alba L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108441. [PMID: 38377887 DOI: 10.1016/j.plaphy.2024.108441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/06/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
The economically adaptable mulberry (Morus alba L.) has a long history of grafting in China, yet the physiological mechanisms and advantages in drought tolerance remain unexplored. In our study, we investigated the responses of self-rooted 2X (diploid), 3X (triploid), and 4X (tetraploid) plants, as well as polyploid plants grafted onto diploid seedling rootstocks (2X/2X, 3X/2X, and 4X/2X) under drought stress. We found that self-rooted diploid plants exhibited the most severe phenotypic damage, lowest water retention, photosynthetic capacity, and the least effective osmotic stress adjustment compared to tetraploid and triploid plants. However, grafted diploid and triploid plants showed effective mitigation of drought-induced damage, with higher relative water content and improved soil water retention. Grafted plants also improved the photosystem response to drought stress through elevated photosynthetic potential, closed stomatal aperture, and faster recovery of chlorophyll biosynthesis in the leaves. Additionally, grafted plants altered osmotic protective compound levels, including starch, soluble sugar, and proline content, thereby enhancing drought resistance. Absolute quantification PCR indicated that the expression levels of proline synthesis-related genes in grafted plants were not influenced after drought stress, whereas they were significantly increased in self-rooted plants. Consequently, our findings support that self-rooted triploid and tetraploid mulberries exhibited superior drought resistance compared to diploid plants. Moreover, grafting onto seedling rootstocks enhanced tolerance against drought stress in diploid and triploid mulberry, but not in tetraploid. Our study provides valuable insights for a comprehensive analysis of physiological effects in response to drought stress between stem-roots and seedling rootstocks.
Collapse
Affiliation(s)
- Tian Hui
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Lijun Bao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xiang Shi
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Huihui Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Ke Xu
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Xinlan Wei
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Jiajun Liang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Rui Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Wei Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Minjuan Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Chao Su
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China
| | - Feng Jiao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
10
|
Ding X, Miao C, Li R, He L, Zhang H, Jin H, Cui J, Wang H, Zhang Y, Lu P, Zou J, Yu J, Jiang Y, Zhou Q. Artificial Light for Improving Tomato Recovery Following Grafting: Transcriptome and Physiological Analyses. Int J Mol Sci 2023; 24:15928. [PMID: 37958910 PMCID: PMC10650788 DOI: 10.3390/ijms242115928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Grafting is widely used to enhance the phenotypic traits of tomatoes, alleviate biotic and abiotic stresses, and control soil-borne diseases of the scion in greenhouse production. There are many factors that affect the healing and acclimatization stages of seedlings after grafting. However, the role of light has rarely been studied. In this study, we compared the effects of artificial light and traditional shading (under shaded plastic-covered tunnels) on the recovery of grafted tomato seedlings. The results show that the grafted tomato seedlings recovered using artificial light had a higher healthy index, leaf chlorophyll content, shoot dry weight, and net photosynthetic rate (Pn) and water use efficiency (WUE) compared with grafted seedling recovered using the traditional shading method. Transcriptome analysis showed that the differentially expressed genes (DEGs) of grafted seedlings restored using artificial light were mainly enriched in the pathways corresponding to plant hormone signal transduction. In addition, we measured the endogenous hormone content of grafted tomato seedlings. The results show that the contents of salicylic acid (SA) and kinetin (Kin) were significantly increased, and the contents of indoleacetic acid (IAA) and jasmonic acid (JA) were decreased in artificial-light-restored grafted tomato seedlings compared with those under shading treatments. Therefore, we suggest that artificial light affects the morphogenesis and photosynthetic efficiency of grafted tomato seedlings, and it can improve the performance of tomato seedlings during grafting recovery by regulating endogenous hormone levels.
Collapse
Affiliation(s)
- Xiaotao Ding
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Chen Miao
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Rongguang Li
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Lizhong He
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Hongmei Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Haijun Jin
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Jiawei Cui
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Hong Wang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Yongxue Zhang
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Panling Lu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Jun Zou
- College of Sciences, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Jizhu Yu
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| | - Yuping Jiang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;
| | - Qiang Zhou
- Shanghai Key Laboratory of Protected Horticultural Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China; (X.D.); (C.M.); (L.H.); (H.Z.); (H.J.); (J.C.); (H.W.); (Y.Z.); (P.L.); (J.Y.)
| |
Collapse
|
11
|
Feng Y, Zhao Y, Li G, Shi H. Reducing nitrate and tobacco-specific nitrosamine level in burley tobacco leaves through grafting on flue-cured tobacco rootstock. PLANT DIRECT 2023; 7:e536. [PMID: 37841064 PMCID: PMC10568975 DOI: 10.1002/pld3.536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/17/2023]
Abstract
Nitrosation of pyridine alkaloids in tobacco generates tobacco-specific nitrosamines (TSNAs), which are notable toxicants in tobacco products and smoke. Burley tobacco, a chloroplast- and nitrogen (N)-deficient phenotype that accumulates high levels of nitrate-nitrogen (NO3-N) in its leaves, is particularly susceptible to TSNAs formation. In this study, reciprocal pot and field grafting experiments were conducted using burley tobacco Eyan No.1 and flue-cured tobacco K326 to investigate whether grafting burley tobacco scions on flue-cured tobacco rootstocks could enhance pigment biosynthesis and photosynthesis, while reducing the NO3-N level in burley tobacco leaves. Grafting burley tobacco scions on flue-cured tobacco rootstocks significantly increased the total pigment content, photosynthetic rate, biomass, nitrate reductase and glutamine synthetase activities, as well as ammonium-nitrogen (NH4-N), total soluble and reducing sugar, and soluble protein levels in burley tobacco leaves compared with burley tobacco self-rooting, while decreasing the NO3-N level and nitrate-N to total N ratio. Transcriptomic analysis revealed that grafting resulted in upregulated expression of genes involved in starch, sucrose, porphyrin, chlorophyll, and N metabolism, as well as carbon fixation and carotenoid biosynthesis. The findings suggest that grafting on high N use efficiency rootstock is an exceptionally promising means of decreasing NO3-N accumulation by improving photosynthesis and N metabolism in the scion, thereby reducing the levels of harmful TSNAs.
Collapse
Affiliation(s)
- Yuqing Feng
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Tobacco Harm Reduction Research Center of China TobaccoHenan Agricultural UniversityZhengzhouChina
| | - Yuanyuan Zhao
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Tobacco Harm Reduction Research Center of China TobaccoHenan Agricultural UniversityZhengzhouChina
| | - Geng Li
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Tobacco Harm Reduction Research Center of China TobaccoHenan Agricultural UniversityZhengzhouChina
| | - Hongzhi Shi
- National Tobacco Cultivation & Physiology & Biochemistry Research Center, Tobacco Harm Reduction Research Center of China TobaccoHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
12
|
Liu Q, Wang X, Zhao Y, Xiao F, Yang Y. Transcriptome and physiological analyses reveal new insights into delayed incompatibility formed by interspecific grafting. Sci Rep 2023; 13:4574. [PMID: 36941326 PMCID: PMC10027664 DOI: 10.1038/s41598-023-31804-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Pinus elliottii used as rootstock instead of homologous rootstock, have been proved to accelerate early growth of the scion (Pinus massoniana), for cultivation of large diameter wood. However, the basal diameter of scions in heterologous grafts was significantly smaller than self-graft 10 years later, according to field investigation, which was opposed to cultivation objectives. Although advantage of heterologous grafts has been reported, less is known about the long term effect of heterologous rootstock on scions of P. massoniana. The aim of present study was to investigate the mechanism of the above difference. Toward this aim, the growth traits and physiological characteristics of scions in the two graft groups were studied, and the underlying mechanism was preliminarily explored through transcriptome sequencing technology. Results showed that scions of heterologous grafts had less TSCA compared to self-grafts, while no significant difference of plant height, number of branches and canopy volume between two graft groups. Besides, scion leaves of heterologous grafts displayed higher antioxidant enzyme activity and lower chlorophyll content. And interactions between rootstocks and scions had also changed the mineral element composition of scion leaves. Compared with homologous grafts, scion leaves of heterologous grafts accumulated more K+, Mg2+ and Zn2+, but less Ca2+,which have been proved to be conducive to the growth of stem diameter of P. massoniana. Moreover, a comparative transcriptome analysis of two graft groups showed that DEGs between them were mainly caused by the specificity of rootstock. GO and KEGG analysis found that heterologous rootstock had different gene expression preferences, and the gene expression level between rootstocks and scions were significantly different, such as auxin auxin-related genes and stress responsive genes. That may imply that auxin pathway played an important role not only in grafting healing process, but also in maintaining the growth between scion and stock. Summary of all above results, we concluded that the long term effect of heterologous rootstock on scions may be unsatisfactory with the later rapidly growth of scion, probably due to delayed graft incompatibility between scion and stock of heterologous grafts. This study may remind us that the long-term growth of the scion deserves attention as well as the healing process, which could also provide a basis for delayed graft incompatibility.
Collapse
Affiliation(s)
- Qiao Liu
- College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Xiurong Wang
- College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Yang Zhao
- College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Feng Xiao
- College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Yao Yang
- College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China
- Institute for Forest Resources and Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
13
|
Zhang X, Yang W, Tahir MM, Chen X, Saudreau M, Zhang D, Costes E. Contributions of leaf distribution and leaf functions to photosynthesis and water-use efficiency from leaf to canopy in apple: A comparison of interstocks and cultivars. FRONTIERS IN PLANT SCIENCE 2023; 14:1117051. [PMID: 37123856 PMCID: PMC10146243 DOI: 10.3389/fpls.2023.1117051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Grafting has been widely used in horticulture to induce dwarfing and avoid stress-derived limitations on plant growth and yield by affecting plant architecture and leaf functions. However, the respective effects on plant photosynthesis and water use efficiency (WUE) of leaf distribution and functions that depend on both rootstock and scion have not been fully elucidated. This study aimed to (i) clarify the scion × interstock impacts on the variability of leaf photosynthetic traits and WUE, and (ii) decipher the respective effects of leaf distribution and functions on canopy photosynthesis and WUE (WUEc). Leaf gas exchange over light gradients and responses to light, CO2, temperature, and vapor pressure deficit were measured in two apple cultivars, 'Liquan Fuji' ('Fuji') and 'Regal Gala' ('Gala'), grafted onto rootstocks combined with interstocks: a vigorous (VV, 'Qinguan'), or a dwarf one (VD, M26). The 3D architecture-based RATP model was parameterized to estimate the canopy photosynthesis rate (Ac ), transpiration rate (E c), and WUEc. Then, virtual scenarios were used to compare the relative contributions of cultivar and interstock to canopy A c, E c, and WUE c. These scenarios changed the leaf distribution and functions of either cultivar or interstock. At the leaf scale, VD trees had significantly higher leaf nitrogen per area but a lower maximum carboxylation rate and dark respiration in both cultivars. In parallel with higher leaf stomatal conductance (gs ) and transpiration in VD 'Fuji' and similar gs in VD 'Gala', VD trees showed significantly lower leaf photosynthesis rate and WUE than VV trees. However, lower leaf photosynthetic capacities in VD trees were compensated at the canopy scale, with A c and WUE c for 'Fuji' significantly improved in VD trees under both sunny and cloudy conditions, and for 'Gala' significantly improved in VD trees under cloudy conditions compared with VV trees. Switching scenarios highlighted that 'Gala' leaf functions and distribution and VD leaf distributions enhanced A c and WUE c simultaneously, irrespective of weather conditions. Up-scaling leaf gas exchange to the canopy scale by utilizing 3D architecture-based modeling and reliable measurements of tree architecture and leaf functional traits provides insights to explore the influence of genetic materials and tree management practices.
Collapse
Affiliation(s)
- Xiaoyun Zhang
- College of Agriculture, The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization in Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
| | - Weiwei Yang
- College of Agriculture, The Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization in Xinjiang Production and Construction Group, Shihezi University, Shihezi, Xinjiang, China
- *Correspondence: Weiwei Yang,
| | | | - Xilong Chen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Marc Saudreau
- Université Clermont Auvergne, INRAE, PIAF, Clermont-Ferrand, France
| | - Dong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Evelyne Costes
- UMR AGAP Institute, University of Montpellier, INRAE, Institut Agro, CIRAD, Equipe ‘Architecture et Floraison des Especes Fruiteres’, Montpellier, France
| |
Collapse
|
14
|
Sallaku G, Rewald B, Sandén H, Balliu A. Scions impact biomass allocation and root enzymatic activity of rootstocks in grafted melon and watermelon plants. FRONTIERS IN PLANT SCIENCE 2022; 13:949086. [PMID: 36247619 PMCID: PMC9558002 DOI: 10.3389/fpls.2022.949086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Vegetable grafting is increasingly recognized as an effective and sustainable plant production alternative. Grafted plants usually show increased uptake of water and minerals compared with self-rooted plants, mostly thought a consequence of the vigorous rootstocks selected. However, while studies frequently addressed the effects of rootstocks on the performance of scions, knowledge on the influences of scions on biomass allocation, morphology, and metabolic activity of roots is rare. In particular, the plasticity of root traits affecting resource acquisition and its efficiency remains poorly understood. Two different rootstock species, Cucurbita maxima × Cucurbita moschata and Lagenaria siceraria, were grafted in combination with melon (Cucumis melo) and watermelon (Citrullus lanatus). Self-grafted rootstocks were used as control. Plant biomass and root traits were determined after destructive harvesting 30 and/or 60 days after grafting. Traits included biomass allocation, leaf and root morphology, potential activities of four extracellular enzymes on root tips and basal root segments, and root respiration. Successfully grafted scions increase the ratio of root to whole plant dry matter (RMF), and increased ratios of root length to whole plant dry matter (RLR) and to plant leaf area (RL : LA). In contrast, morphological root traits such as diameter, tissue density, and specific root length remain surprisingly stable, and thus scion-induced changes of those traits may only play a minor role for the beneficial effects of grafting in Cucurbitaceae. Incompatibility in melon/L. siceraria grafts, however, was likely responsible for the reduced root growth in combination with clear changes in root morphological traits. Reduced root respiration rates seem to be the effects of a non-compatible rootstock-scion combination rather than an active, C-efficiency increasing acclimation. In contrast, heterografts with melon and watermelon frequently resulted in root-stock-specific, often enhanced potential enzymatic activities of acid phosphatase, β-glucosidase, leucine-amino-peptidase, and N-acetyl-glucosaminidase both at root tips and basal parts of lateral roots-presenting a potential and complementary mechanism of grafted plants to enhance nutrient foraging. The studied melon and watermelon scions may thus increase the nutrient foraging capacity of grafted plants by fostering the relative allocation of C to the root system, and enhancing the extracellular enzymatic activities governed by roots or their rhizobiome.
Collapse
Affiliation(s)
- Glenda Sallaku
- Faculty of Agriculture and Environment, Agricultural University of Tirana, Tirana, Albania
| | - Boris Rewald
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Hans Sandén
- Department of Forest and Soil Sciences, University of Natural Resources and Life Sciences, Vienna (BOKU), Vienna, Austria
| | - Astrit Balliu
- Faculty of Agriculture and Environment, Agricultural University of Tirana, Tirana, Albania
| |
Collapse
|
15
|
Mauro RP, Pérez-Alfocea F, Cookson SJ, Ollat N, Vitale A. Editorial: Physiological and Molecular Aspects of Plant Rootstock-Scion Interactions. FRONTIERS IN PLANT SCIENCE 2022; 13:852518. [PMID: 35251115 PMCID: PMC8895300 DOI: 10.3389/fpls.2022.852518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Affiliation(s)
- Rosario Paolo Mauro
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Catania, Italy
| | - Francisco Pérez-Alfocea
- Centro de Edafología y Biología Aplicada del Segura (CEBAS), Spanish National Research Council (CSIC), Murcia, Spain
| | - Sarah Jane Cookson
- EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux, ISVV, Villenave d'Ornon, France
| | - Nathalie Ollat
- EGFV, Bordeaux Sciences Agro, INRAE, Univ. Bordeaux, ISVV, Villenave d'Ornon, France
| | - Alessandro Vitale
- Dipartimento di Agricoltura, Alimentazione e Ambiente (Di3A), University of Catania, Catania, Italy
| |
Collapse
|
16
|
Martínez-Andújar C, Martínez-Pérez A, Albacete A, Martínez-Melgarejo PA, Dodd IC, Thompson AJ, Mohareb F, Estelles-Lopez L, Kevei Z, Ferrández-Ayela A, Pérez-Pérez JM, Gifford ML, Pérez-Alfocea F. Overproduction of ABA in rootstocks alleviates salinity stress in tomato shoots. PLANT, CELL & ENVIRONMENT 2021; 44:2966-2986. [PMID: 34053093 DOI: 10.1111/pce.14121] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 05/20/2023]
Abstract
To determine whether root-supplied ABA alleviates saline stress, tomato (Solanum lycopersicum L. cv. Sugar Drop) was grafted onto two independent lines (NCED OE) overexpressing the SlNCED1 gene (9-cis-epoxycarotenoid dioxygenase) and wild type rootstocks. After 200 days of saline irrigation (EC = 3.5 dS m-1 ), plants with NCED OE rootstocks had 30% higher fruit yield, but decreased root biomass and lateral root development. Although NCED OE rootstocks upregulated ABA-signalling (AREB, ATHB12), ethylene-related (ACCs, ERFs), aquaporin (PIPs) and stress-related (TAS14, KIN, LEA) genes, downregulation of PYL ABA receptors and signalling components (WRKYs), ethylene synthesis (ACOs) and auxin-responsive factors occurred. Elevated SlNCED1 expression enhanced ABA levels in reproductive tissue while ABA catabolites accumulated in leaf and xylem sap suggesting homeostatic mechanisms. NCED OE also reduced xylem cytokinin transport to the shoot and stimulated foliar 2-isopentenyl adenine (iP) accumulation and phloem transport. Moreover, increased xylem GA3 levels in growing fruit trusses were associated with enhanced reproductive growth. Improved photosynthesis without changes in stomatal conductance was consistent with reduced stress sensitivity and hormone-mediated alteration of leaf growth and mesophyll structure. Combined with increases in leaf nutrients and flavonoids, systemic changes in hormone balance could explain enhanced vigour, reproductive growth and yield under saline stress.
Collapse
Affiliation(s)
| | | | | | | | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Andrew J Thompson
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | - Fady Mohareb
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | | | - Zoltan Kevei
- Cranfield Soil and AgriFood Institute, Cranfield University, Bedfordshire, UK
| | | | | | - Miriam L Gifford
- School of Life Sciences and Warwick Integrative Synthetic Biology Centre, University of Warwick, Coventry, UK
| | | |
Collapse
|
17
|
Padilla YG, Gisbert-Mullor R, López-Serrano L, López-Galarza S, Calatayud Á. Grafting Enhances Pepper Water Stress Tolerance by Improving Photosynthesis and Antioxidant Defense Systems. Antioxidants (Basel) 2021; 10:antiox10040576. [PMID: 33918024 PMCID: PMC8069515 DOI: 10.3390/antiox10040576] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/25/2021] [Accepted: 04/06/2021] [Indexed: 11/24/2022] Open
Abstract
Currently, limited water supply is a major problem in many parts of the world. Grafting peppers onto adequate rootstocks is a sustainable technique used to cope with water scarcity in plants. For 1 month, this work compared grafted peppers by employing two rootstocks (H92 and H90), with different sensitivities to water stress, and ungrafted plants in biomass, photosynthesis, and antioxidant response terms to identify physiological–antioxidant pathways of water stress tolerance. Water stress significantly stunted growth in all the plant types, although tolerant grafted plants (variety grafted onto H92, Var/H92) had higher leaf area and fresh weight values. Var/H92 showed photosynthesis and stomata conductance maintenance, compared to sensitive grafted plants (Var/H90) and ungrafted plants under water stress, linked with greater instantaneous water use efficiency. The antioxidant system was effective in removing reactive oxygen species (ROS) that could damage photosynthesis; a significant positive and negative linear correlation was observed between the rate of CO2 uptake and ascorbic acid (AsA)/total AsA (AsAt) and proline, respectively. Moreover, in Var/H92 under water stress, both higher proline and ascorbate concentration were observed. Consequently, less membrane lipid peroxidation was quantified in Var/H92.
Collapse
Affiliation(s)
- Yaiza Gara Padilla
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Departamento de Horticultura, CV-315, Km 10,7, Moncada, 46113 Valencia, Spain; (Y.G.P.); (L.L.-S.)
| | - Ramón Gisbert-Mullor
- Departamento de Producción Vegetal, CVER, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain; (R.G.-M.); (S.L.-G.)
| | - Lidia López-Serrano
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Departamento de Horticultura, CV-315, Km 10,7, Moncada, 46113 Valencia, Spain; (Y.G.P.); (L.L.-S.)
| | - Salvador López-Galarza
- Departamento de Producción Vegetal, CVER, Universitat Politècnica de València, Camí de Vera s/n, 46022 Valencia, Spain; (R.G.-M.); (S.L.-G.)
| | - Ángeles Calatayud
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias, Departamento de Horticultura, CV-315, Km 10,7, Moncada, 46113 Valencia, Spain; (Y.G.P.); (L.L.-S.)
- Correspondence:
| |
Collapse
|
18
|
Santolamazza-Carbone S, Iglesias-Bernabé L, Sinde-Stompel E, Gallego PP. Ectomycorrhizal fungal community structure in a young orchard of grafted and ungrafted hybrid chestnut saplings. MYCORRHIZA 2021; 31:189-201. [PMID: 33502579 PMCID: PMC7910378 DOI: 10.1007/s00572-020-01015-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Ectomycorrhizal (ECM) fungal community of the European chestnut has been poorly investigated, and mostly by sporocarp sampling. We proposed the study of the ECM fungal community of 2-year-old chestnut hybrids Castanea × coudercii (Castanea sativa × Castanea crenata) using molecular approaches. By using the chestnut hybrid clones 111 and 125, we assessed the impact of grafting on ECM colonization rate, species diversity, and fungal community composition. The clone type did not have an impact on the studied variables; however, grafting significantly influenced ECM colonization rate in clone 111. Species diversity and richness did not vary between the experimental groups. Grafted and ungrafted plants of clone 111 had a different ECM fungal species composition. Sequence data from ITS regions of rDNA revealed the presence of 9 orders, 15 families, 19 genera, and 27 species of ECM fungi, most of them generalist, early-stage species. Thirteen new taxa were described in association with chestnuts. The basidiomycetes Agaricales (13 taxa) and Boletales (11 taxa) represented 36% and 31%, of the total sampled ECM fungal taxa, respectively. Scleroderma citrinum, S. areolatum, and S. polyrhizum (Boletales) were found in 86% of the trees and represented 39% of total ECM root tips. The ascomycete Cenococcum geophilum (Mytilinidiales) was found in 80% of the trees but accounted only for 6% of the colonized root tips. These results could help to unveil the impact of grafting on fungal symbionts, improving management of chestnut agro-ecosystems and production of edible fungal species.
Collapse
Affiliation(s)
- Serena Santolamazza-Carbone
- Applied Plant & Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310, Vigo, Spain.
- CITACA - Agri-Food Research and Transfer Cluster, University of Vigo, Ourense, Spain.
| | - Laura Iglesias-Bernabé
- Applied Plant & Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310, Vigo, Spain
| | | | - Pedro Pablo Gallego
- Applied Plant & Soil Biology, Plant Biology and Soil Science Department, Biology Faculty, University of Vigo, E-36310, Vigo, Spain
- CITACA - Agri-Food Research and Transfer Cluster, University of Vigo, Ourense, Spain
| |
Collapse
|
19
|
Tomaz de Oliveira MM, Lu S, Zurgil U, Raveh E, Tel-Zur N. Grafting in Hylocereus (Cactaceae) as a tool for strengthening tolerance to high temperature stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:94-105. [PMID: 33485151 DOI: 10.1016/j.plaphy.2021.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/12/2021] [Indexed: 05/20/2023]
Abstract
The Hylocereus species that are grown as exotic fruit crops are very often farmed under marginal agronomic conditions, which may include exposure to high temperatures. Here we present a pioneering investigation of grafting as an agro-technique to improve heat tolerance in Hylocereus. To this end, we studied the diploid species H. undatus, the tetraploid H. megalanthus and its di-haploid gamete-derived line 2719, and the interspecific-interploid tetraploid Z-10, all grafted onto H. undatus as the rootstock. Self-grafted, grafted and non-grafted plants were acclimated for one week (to obtain baseline values) and then exposed to heat stress (45/35 °C day/night) for three days, followed by a one-week recovery period under optimal temperatures (30/22 °C). A comparison of the physiological, biochemical and molecular performances of the grafted and self-grafted plants under heat stress and during the recovery period vs those of non-stressed plants (control; 30/22 °C) showed that the grafted and self-grafted plants performed better in most of the assessments: grafted and self-grafted plants recovered more rapidly from the heat stress and suffered far less stem damage. An unexpected - but important - finding that may have implications for other crop was that the self-grafted plants showed better performance than non-grafted plants throughout the trial. Our findings provide support for grafting as a strategy for coping with the stress induced by extremely high temperatures. This study thus paves the way for further investigations of grafting in Hylocereus as a valuable technique that will maintain crop productivity in the face of increasing worldwide temperatures.
Collapse
Affiliation(s)
- Milena Maria Tomaz de Oliveira
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Shuhua Lu
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, 8499000, Israel; Guangxi Institute of Botany, Chinese Academy of Science, Guilin, 541006, China
| | - Udi Zurgil
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, 8499000, Israel
| | - Eran Raveh
- Department of Horticultural Sciences, Institute of Plant Sciences, ARO Gilat Research Station, Israel
| | - Noemi Tel-Zur
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, 8499000, Israel.
| |
Collapse
|
20
|
Bristow ST, Hernandez-Espinoza LH, Bonarota MS, Barrios-Masias FH. Tomato Rootstocks Mediate Plant-Water Relations and Leaf Nutrient Profiles of a Common Scion Under Suboptimal Soil Temperatures. FRONTIERS IN PLANT SCIENCE 2021; 11:618488. [PMID: 33552111 PMCID: PMC7859091 DOI: 10.3389/fpls.2020.618488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/23/2020] [Indexed: 05/24/2023]
Abstract
Environments with short growing seasons and variable climates can have soil temperatures that are suboptimal for chilling-sensitive crops. These conditions can adversely affect root growth and physiological performance thus impairing water and nutrient uptake. Four greenhouse trials and a field study were conducted to investigate if rootstocks can enhance tomato performance under suboptimal soil temperatures (SST). In a controlled greenhouse environment, we exposed four commercial rootstocks (Estamino, Maxifort, RST-04-106-T, and Supernatural) grafted with a common scion (cv. BHN-589) to optimal (mean: 24°C) and SST (mean: 13.5°C) and compared their performance with the non-grafted BHN-589 cultivar. Several root and shoot physiological traits were evaluated: root hydraulic conductivity and conductance, root anatomy, leaf gas exchange, leaf δ13C, shoot C and N, and biomass. Under field conditions, the same five phenotypes were evaluated for canopy growth, normalized difference vegetation index (NDVI), leaf nutrients, biomass, and yield. Under SST, root hydraulic conductivity (Lp) and conductance (K R), stomatal conductance (g s), and plant biomass decreased. Hydrostatic Lp decreased more than osmotic Lp (Lp ∗ hyd: 39-65%; Lp ∗ os: 14-40%) and some of the reduced conductivity was explained by the increased cortex area of primary roots observed under SST (67-140%). Under optimal soil temperatures, all rootstocks conferred higher g s than the non-grafted cultivar, but only two rootstocks maintained higher g s under SST. All phenotypes showed greater reductions in shoot biomass than root biomass resulting in greater (∼20%) root-to-shoot ratios. In the field, most grafted phenotypes increased early canopy cover, NDVI, shoot biomass, and fruit yield. Greenhouse results showed that Lp ∗ os may be less affected by SST than Lp ∗ hyd and that reductions in Lp may be offset by enhanced root-to-shoot ratios. We show that some commercial rootstocks possess traits that maintained better rates of stomatal conductance and shoot N content, which can contribute toward better plant establishment and improved performance under SST.
Collapse
|
21
|
Effect of Grafting on the Production, Physico-Chemical Characteristics and Nutritional Quality of Fruit from Pepper Landraces. Antioxidants (Basel) 2020; 9:antiox9060501. [PMID: 32521712 PMCID: PMC7346139 DOI: 10.3390/antiox9060501] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/31/2020] [Indexed: 11/16/2022] Open
Abstract
Grafting is a widely utilized agronomical technique to improve yield, disease resistance, and quality of fruit and vegetables. This work aims to assess the effect of grafting and fruit ripening on the production, physico-chemical characteristics, and nutritional quality of fruit from Spanish local pepper landraces. Landraces "Cuerno," "Sueca," and "Valencia" were used as scions, and "NIBER®" as the rootstock. Two ripening stages of the fruits were sampled: green and red. Grafting improved the yield and marketable quality and did not negatively influence the physico-chemical and nutritional characteristics of the fruit. It was noteworthy that the bioactive compound contents and antioxidant capacity were more related to maturity stage and genotype, and red fruit had a higher antioxidant capacity than green fruit. However, in all the scions, grafting significantly enhanced lycopene content in both red and green fruit. Another important effect of grafting was the volatile compound composition evidenced by discriminant analyses, which was characterized for the first time in the fruit of these landraces. The rootstock and scion combination could be a way to improve not only the production, but also the fruit quality of peppers.
Collapse
|
22
|
Sade N, Peleg Z. Future challenges for global food security under climate change. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 295:110467. [PMID: 32534610 DOI: 10.1016/j.plantsci.2020.110467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Affiliation(s)
- Nir Sade
- School of Plant Sciences and Food Security, Tel Aviv University, Israel.
| | - Zvi Peleg
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|