1
|
Shi Q, He B, Knauer J, Peguero-Pina JJ, Zhang SB, Huang W. Leaf nutrient basis for the differentiation of photosynthetic traits between subtropical evergreen and deciduous trees. PLANT PHYSIOLOGY 2024; 197:kiae566. [PMID: 39454624 DOI: 10.1093/plphys/kiae566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Compared with evergreens, deciduous tree species usually have higher photosynthetic efficiency to complete vegetative and reproductive growth in a shorter growing season. However, the nutrient basis for the differentiation of photosynthesis functional traits between evergreen and deciduous tree species has not yet been clarified. Thirty evergreen and 20 deciduous angiosperm tree species from a subtropical common garden were compared in terms of photosynthetic traits and leaf nutrients. Generally, their differences in area-based photosynthetic capacity were uncorrelated with area-based leaf nutrient content but were caused by the fraction of nitrogen allocated to photosynthetic components. By comparison, the differences in mass-based photosynthetic capacity were more correlated with leaf nitrogen content than leaf phosphorus and potassium content. Convergence in phosphorus and potassium constraints to photosynthesis occurred in deciduous tree species but not in evergreen tree species. Furthermore, leaf C/N ratio played a more significant role than leaf mass per area in determining the differentiation of photosynthetic traits between evergreen and deciduous groups. Our findings provide insight into the nutrient basis for photosynthetic carbon gain and functional strategies across tree species.
Collapse
Affiliation(s)
- Qi Shi
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin He
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jürgen Knauer
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jose Javier Peguero-Pina
- Departamento de Sistemas Agrícolas, Forestales y Medio Ambiente, Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Avda. Montañana 930, Zaragoza 50059, Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
2
|
Saini D, Rao DE, Bapatla RB, Aswani V, Raghavendra AS. Measurement of Photorespiratory Cycle Enzyme Activities in Leaves Exposed to Abiotic Stress. Methods Mol Biol 2024; 2832:145-161. [PMID: 38869793 DOI: 10.1007/978-1-0716-3973-3_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Photorespiration, an essential metabolic component, is a classic example of interactions between the intracellular compartments of a plant cell: the chloroplast, peroxisome, mitochondria, and cytoplasm. The photorespiratory pathway is often modulated by abiotic stress and is considered an adaptive response. Monitoring the patterns of key enzymes located in different subcellular components would be an ideal approach to assessing the modulation of the photorespiratory metabolism under abiotic stress. This chapter describes the procedures for assaying several individual enzyme activities of key photorespiratory enzymes and evaluating their response to oxidative/photooxidative stress. It is essential to ascertain the presence of stress in the experimental material. Therefore, procedures for typical abiotic stress induction in leaves by highlighting without or with menadione (an oxidant that targets mitochondria) are also included.
Collapse
Affiliation(s)
- Deepak Saini
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Duvvarapu Easwar Rao
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Ramesh Babu Bapatla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Vetcha Aswani
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Agepati S Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
3
|
Saini D, Bharath P, Gahir S, Raghavendra AS. Suppression of photorespiratory metabolism by low O 2 and presence of aminooxyacetic acid induces oxidative stress in Arabidopsis thaliana leaves. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1851-1861. [PMID: 38222271 PMCID: PMC10784248 DOI: 10.1007/s12298-023-01388-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/04/2023] [Accepted: 11/10/2023] [Indexed: 01/16/2024]
Abstract
Photorespiration, an essential component of plant metabolism, was upregulated under abiotic stress conditions, such as high light or drought. One of the signals for such upregulation was the rise in reactive oxygen species (ROS). Photorespiration was expected to mitigate oxidative stress by reducing ROS levels. However, it was unclear if ROS levels would increase when photorespiration was lowered. Our goal was to examine the redox status in leaves when photorespiratory metabolism was restricted under low O2 (medium flushed with N2 gas) or by adding aminooxyacetic acid (AOA), a photorespiratory inhibitor. We examined the impact of low O2 and AOA in leaves of Arabidopsis thaliana under dark, moderate, or high light. Downregulation of typical photorespiratory enzymes, including catalase (CAT), glycolate oxidase (GO), and phosphoglycolate phosphatase (PGLP) under low O2 or with AOA confirmed the lowering of photorespiratory metabolism. A marked increase in ROS levels (superoxide and H2O2) indicated the induction of oxidative stress. Thus, our results demonstrated for the first time that restricted photorespiratory conditions increased the extent of oxidative stress. We propose that photorespiration is essential to sustain normal ROS levels and optimize metabolism in cellular compartments of Arabidopsis leaves. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01388-4.
Collapse
Affiliation(s)
- Deepak Saini
- School of Life Sciences, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Pulimamidi Bharath
- School of Life Sciences, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Shashibhushan Gahir
- School of Life Sciences, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Agepati S. Raghavendra
- School of Life Sciences, Department of Plant Sciences, University of Hyderabad, Hyderabad, 500046 India
| |
Collapse
|
4
|
Wang XQ, Zeng ZL, Shi ZM, Wang JH, Huang W. Variation in Photosynthetic Efficiency under Fluctuating Light between Rose Cultivars and its Potential for Improving Dynamic Photosynthesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12051186. [PMID: 36904047 PMCID: PMC10005413 DOI: 10.3390/plants12051186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/09/2023] [Accepted: 02/21/2023] [Indexed: 06/09/2023]
Abstract
Photosynthetic efficiency under both steady-state and fluctuating light can significantly affect plant growth under naturally fluctuating light conditions. However, the difference in photosynthetic performance between different rose genotypes is little known. This study compared the photosynthetic performance under steady-state and fluctuating light in two modern rose cultivars (Rose hybrida), "Orange Reeva" and "Gelato", and an old Chinese rose plant Rosa chinensis cultivar, "Slater's crimson China". The light and CO2 response curves indicated that they showed similar photosynthetic capacity under steady state. The light-saturated steady-state photosynthesis in these three rose genotypes was mainly limited by biochemistry (60%) rather than diffusional conductance. Under fluctuating light conditions (alternated between 100 and 1500 μmol photons m-2 m-1 every 5 min), stomatal conductance gradually decreased in these three rose genotypes, while mesophyll conductance (gm) was maintained stable in Orange Reeva and Gelato but decreased by 23% in R. chinensis, resulting in a stronger loss of CO2 assimilation under high-light phases in R. chinensis (25%) than in Orange Reeva and Gelato (13%). As a result, the variation in photosynthetic efficiency under fluctuating light among rose cultivars was tightly related to gm. These results highlight the importance of gm in dynamic photosynthesis and provide new traits for improving photosynthetic efficiency in rose cultivars.
Collapse
Affiliation(s)
- Xiao-Qian Wang
- School of Life Sciences, Northwest University, Xi’an 710069, China
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhi-Lan Zeng
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zi-Ming Shi
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Ji-Hua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
5
|
Perera-Castro AV, Flexas J. The ratio of electron transport to assimilation (ETR/A N): underutilized but essential for assessing both equipment's proper performance and plant status. PLANTA 2023; 257:29. [PMID: 36592261 DOI: 10.1007/s00425-022-04063-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
ETR/AN ratios should be in the range 7.5-10.5 for non-stressed C3 plants. Ratios extremely out of this range can be reflecting both uncontrolled plant status and technical mistakes during measurements. We urge users to explicitly refer to this ratio in future studies as a proof for internal data quality control. For the last few decades, the use of infra-red gas-exchange analysers (IRGAs) coupled with chlorophyll fluorometers that allow for measurements of net CO2 assimilation rate and estimates of electron transport rate over the same leaf area has been popularized. The evaluation of data from both instruments in an integrative manner can result in additional valuable information, such as the estimation of the light respiration, mesophyll conductance and the partitioning of the flux of electrons into carboxylation, oxygenation and alternative processes, among others. In this review, an additional and more 'straight' use of the combination of chlorophyll fluorescence and gas exchange-derived parameters is presented, namely using the direct ratio between two fully independently estimated parameters, electron transport rate (ETR)-determined by the fluorometer-and net CO2 assimilation rate (AN)-determined by the IRGA, i.e., the ETR/AN ratio, as a tool for fast detection of incongruencies in the data and potential technical problems associated with them, while checking for the study plant's status. To illustrate this application, a compilation of 75 studies that reported both parameters for a total of 178 species under varying physiological status is presented. Values of ETR/AN between 7.5 and 10.5 were most frequently found for non-stressed C3 plants. C4 species showed an average ETR/AN ratio of 4.7. The observed ratios were larger for species with high leaf mass per area and for plants subjected to stressful factors like drought or nutritional deficit. Knowing the expected ETR/AN ratio projects this ratio as a routinary and rapid check point for guaranteeing both the correct performance of equipment and the optimal/stress status of studied plants. All known errors associated with the under- or overestimation of ETR or AN are summarized in a checklist that aims to be routinely used by any IRGA/fluorometer user to strength the validity of their data.
Collapse
Affiliation(s)
- Alicia V Perera-Castro
- Department of Botany, Ecology and Plant Physiology, Universidad de La Laguna, Av. Astrofísico Francisco Sánchez, S/N, 38200, La Laguna, Canary Islands, Spain.
| | - Jaume Flexas
- Department of Biology, Agro-Environmental and Water Economics Institute (INAGEA), Universitat de LES Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma, Illes Balears, Spain
| |
Collapse
|
6
|
Zhang X, Li H, Zhuo G, He Z, Zhang C, Shi Z, Li C, Wang Y. Improvement in the photoprotective capability benefits the productivity of a yellow-green wheat mutant in N-deficient conditions. PHOTOSYNTHETICA 2022; 60:476-488. [PMID: 39649395 PMCID: PMC11558583 DOI: 10.32615/ps.2022.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 08/18/2022] [Indexed: 12/10/2024]
Abstract
Wheat yellow-green mutant Jimai5265yg has a more efficient photosynthetic system and higher productivity than its wild type under N-deficient conditions. To understand the relationship between photosynthetic properties and the grain yield, we conducted a field experiment under different N application levels. Compared to wild type, the Jimai5265yg flag leaves had higher mesophyll conductance, photosynthetic N-use efficiency, and photorespiration in the field without N application. Chlorophyll a fluorescence analysis showed that PSII was more sensitive to photoinhibition due to lower nonphotochemical quenching (NPQ) and higher nonregulated heat dissipation. In N-deficient condition, the PSI acceptor side of Jimai5265yg was less reduced. We proposed that the photoinhibited PSII protected PSI from over-reduction through downregulation of electron transport. PCA analysis also indicated that PSI photoprotection and electron transport regulation were closely associated with grain yield. Our results suggested that the photoprotection mechanism of PSI independent of NPQ was critical for crop productivity.
Collapse
Affiliation(s)
- X.H. Zhang
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - H.X. Li
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - G. Zhuo
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet, China
| | - Z.Z. He
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - C.Y. Zhang
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Z. Shi
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - C.C. Li
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| | - Y. Wang
- College of Agronomy, Northwest A&F University, 712100 Yangling, Shaanxi, China
| |
Collapse
|
7
|
Sun H, Zhang YQ, Zhang SB, Huang W. Photosynthetic Induction Under Fluctuating Light Is Affected by Leaf Nitrogen Content in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:835571. [PMID: 35251106 PMCID: PMC8891375 DOI: 10.3389/fpls.2022.835571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/17/2022] [Indexed: 06/09/2023]
Abstract
The response of photosynthetic CO2 assimilation to changes of illumination affects plant growth and crop productivity under natural fluctuating light conditions. However, the effects of nitrogen (N) supply on photosynthetic physiology after transition from low to high light are seldom studied. To elucidate this, we measured gas exchange and chlorophyll fluorescence under fluctuating light in tomato (Solanum lycopersicum) seedlings grown with different N conditions. After transition from low to high light, the induction speeds of net CO2 assimilation (A N ), stomatal conductance (g s ), and mesophyll conductance (g m ) delayed with the decline in leaf N content. The time to reach 90% of maximum A N , g s and g m was negatively correlated with leaf N content. This delayed photosynthetic induction in plants grown under low N concentration was mainly caused by the slow induction response of g m rather than that of g s . Furthermore, the photosynthetic induction upon transfer from low to high light was hardly limited by photosynthetic electron flow. These results indicate that decreased leaf N content declines carbon gain under fluctuating light in tomato. Increasing the induction kinetics of g m has the potential to enhance the carbon gain of field crops grown in infertile soil.
Collapse
Affiliation(s)
- Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yu-Qi Zhang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
8
|
Guha A, Vharachumu T, Khalid MF, Keeley M, Avenson TJ, Vincent C. Short-term warming does not affect intrinsic thermotolerance but induces strong sustaining photoprotection in tropical evergreen citrus genotypes. PLANT, CELL & ENVIRONMENT 2022; 45:105-120. [PMID: 34723384 DOI: 10.1111/pce.14215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/04/2021] [Accepted: 10/13/2021] [Indexed: 05/27/2023]
Abstract
Consequences of warming and postwarming events on photosynthetic thermotolerance (PT ) and photoprotective responses in tropical evergreen species remain elusive. We chose Citrus to answer some of the emerging questions related to tropical evergreen species' PT behaviour including (i) how wide is the genotypic variation in PT ? (ii) how does PT respond to short-term warming and (iii) how do photosynthesis and photoprotective functions respond over short-term warming and postwarming events? A study on 21 genotypes revealed significant genotypic differences in PT , though these were not large. We selected five genotypes with divergent PT and simulated warming events: Tmax 26/20°C (day-time highest maximum/night-time lowest maximum) (Week 1) < Tmax 33/30°C (Week 2) < Tmax 36/32°C (Week 3) followed by Tmax 26/16°C (Week 4, recovery). The PT of all genotypes remained unaltered despite strong leaf megathermy (leaf temperature > air temperature) during warming events. Though moderate warming showed genotype-specific stimulation in photosynthesis, higher warming unequivocally led to severe loss in net photosynthesis and induced higher nonphotochemical quenching. Even after a week of postwarming, photoprotective mechanisms strongly persisted. Our study points towards a conservative PT in evergreen citrus genotypes and their need for sustaining higher photoprotection during warming as well as postwarming recovery conditions.
Collapse
Affiliation(s)
- Anirban Guha
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| | - Talent Vharachumu
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
- Earth University, San José, Mercedes, Costa Rica
| | - Muhammad F Khalid
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
- Department of Horticulture, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Mark Keeley
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
- Agronomy and Regulatory (GLP) Services, Florida Ag Research, Thonotosassa, Florida, USA
| | - Thomas J Avenson
- Environmental Division, LI-COR Biosciences, Lincoln, Nebraska, USA
| | - Christopher Vincent
- Department of Horticultural Sciences, Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, USA
| |
Collapse
|
9
|
Lei YB, Xia HX, Chen K, Plenković-Moraj A, Huang W, Sun G. Photosynthetic regulation in response to fluctuating light conditions under temperature stress in three mosses with different light requirements. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:111020. [PMID: 34482921 DOI: 10.1016/j.plantsci.2021.111020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Under natural field conditions, mosses experience fluctuating light intensities combined with temperature stress. Alternative electron flow mediated by flavodiiron proteins (FLVs) and cyclic electron flow (CEF) around photosystem I (PSI) allow mosses to growth under fluctuating light conditions. However, little is known about the roles of FLVs and CEF in the regulation of photosynthesis under temperature stress combined with fluctuating light. Here, we measured chlorophyll fluorescence and P700 redox state under fluctuating light conditions at 4 °C, 20 °C, and 35 °C in three mosses with different light requirements. Upon a sudden increase in light intensity, electron flow from photosystem II initially increased and then gradually decreased at 20 °C and 35 °C, indicating that the operation of FLV-dependent flow lasted much longer than previously thought. Furthermore, the absolute rates of FLV-dependent flow and CEF were enhanced under fluctuating light at 35 °C, pointing to their important roles in photoprotection when exposed to fluctuating light at moderate high temperature. Furthermore, the downregulation of FLV activity at 4 °C was partially compensated for by enhanced CEF activity. These results suggested the subtle coordination between FLV activity and CEF under fluctuating light and temperature stress. Racomitrium japonicum and Hypnum plumaeforme, which usually grow under relatively high light levels, exhibited higher FLV activity and CEF than the shade-grown moss Plagiomnium ellipticum. Based on our results, we conclude that photosynthetic acclimation to fluctuating light and temperature stress in different mosses is largely linked to the adjustment of FLV activity and CEF.
Collapse
Affiliation(s)
- Yan-Bao Lei
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hong-Xia Xia
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Anđelka Plenković-Moraj
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Geng Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
10
|
Simin T, Tang J, Holst T, Rinnan R. Volatile organic compound emission in tundra shrubs - Dependence on species characteristics and the near-surface environment. ENVIRONMENTAL AND EXPERIMENTAL BOTANY 2021; 184:104387. [PMID: 33814646 PMCID: PMC7896103 DOI: 10.1016/j.envexpbot.2021.104387] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 06/02/2023]
Abstract
Temperature is one of the key abiotic factors during the life of plants, especially in the Arctic region which is currently experiencing rapid climate change. We evaluated plant traits and environmental variables determining leaf temperature in tundra shrubs and volatile organic compound (VOC) emissions with field measurements on deciduous tundra shrubs, Salix myrsinites and Betula nana, and evergreen Cassiope tetragona and Rhododendron lapponicum. Higher leaf-to-air temperature difference was observed in evergreen, compared to deciduous shrubs. Evergreen shrubs also showed continuously increasing photosynthesis with increasing temperature, suggesting high thermal tolerance. For the deciduous species, the optimum temperature for net photosynthesis was between our measurement temperatures of 24 °C and 38 °C. Air temperature and vapor pressure deficit were the most important variables influencing leaf temperature and VOC emissions in all the studied plants, along with stomatal density and specific leaf area in the deciduous shrubs. Using climate data and emission factors from our measurements, we modelled total seasonal tundra shrub VOC emissions of 0.3-2.3 g m-2 over the main growing season. Our results showed higher-than-expected temperature optima for photosynthesis and VOC emission and demonstrated the relative importance of plant traits and local environments in determining leaf temperature and VOC emissions in a subarctic tundra.
Collapse
Affiliation(s)
- Tihomir Simin
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
| | - Jing Tang
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
- Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, SE-223 62, Lund, Sweden
| | - Thomas Holst
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
- Department of Physical Geography and Ecosystem Science, Lund University, Sölvegatan 12, SE-223 62, Lund, Sweden
| | - Riikka Rinnan
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen Ø, Denmark
- Center for Permafrost (CENPERM), University of Copenhagen, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
| |
Collapse
|
11
|
Ferroni L, Brestič M, Živčak M, Cantelli R, Pancaldi S. Increased photosynthesis from a deep-shade to high-light regime occurs by enhanced CO 2 diffusion into the leaf of Selaginella martensii. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:143-154. [PMID: 33486204 DOI: 10.1016/j.plaphy.2021.01.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
The current understanding of photosynthesis across land plant phylogeny strongly indicates that ancient vascular plants are mainly limited by strong constitutive CO2 diffusional constraints, particularly low stomatal and mesophyll conductance. Considering that the lycophyte Selaginella martensii can demonstrate long-term light acclimation, this study addresses the regulation extent of CO2 assimilation in this species cultivated under contrasting light regimes of deep shade, medium shade and high light. Comparative analyses of photosynthetic traits, CO2 conductance and leaf morpho-anatomy revealed acclimation plasticity similar to that of seed plants, though occurring in the context of an inherently low photosynthetic capacity typical of lycophytes. Specific modulations of the stomatal density and aperture, chloroplast surface exposed to mesophyll airspaces and cell wall thickness sustained a marked improvement in CO2 diffusion from deep shade to high light. However, the maximum carboxylation rate was comparatively less effectively upregulated, leading to a greater incidence of biochemical limitations of photosynthesis. Because of a low carboxylation capacity under any light regime, a lycophyte prevents potential photodamage to the chloroplast by not only exploiting the thermal dissipation of excess absorbed energy but also diverting a large fraction of photosynthetic electrons to sinks alternative to carboxylation.
Collapse
Affiliation(s)
- Lorenzo Ferroni
- Department of Life Sciences and Biotechnology, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy; Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01, Nitra, Slovakia.
| | - Marián Brestič
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01, Nitra, Slovakia.
| | - Marek Živčak
- Department of Plant Physiology, Slovak University of Agriculture, Tr. A. Hlinku 2, 949 01, Nitra, Slovakia
| | - Riccardo Cantelli
- Department of Life Sciences and Biotechnology, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Life Sciences and Biotechnology, University of Ferrara, Corso Ercole I d'Este 32, 44121, Ferrara, Italy
| |
Collapse
|
12
|
Xie Y, Chen L, Sun T, Zhang W. Deciphering and engineering high-light tolerant cyanobacteria for efficient photosynthetic cell factories. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Yang YJ, Hu H, Huang W. The Light Dependence of Mesophyll Conductance and Relative Limitations on Photosynthesis in Evergreen Sclerophyllous Rhododendron Species. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9111536. [PMID: 33182785 PMCID: PMC7697185 DOI: 10.3390/plants9111536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 06/09/2023]
Abstract
Mesophyll conductance (gm) limits CO2 diffusion from sub-stomatal internal cavities to the sites of RuBP carboxylation. However, the response of gm to light intensity remains controversial. Furthermore, little is known about the light response of relative mesophyll conductance limitation (lm) and its effect on photosynthesis. In this study, we measured chlorophyll fluorescence and gas exchange in nine evergreen sclerophyllous Rhododendron species. gm was maintained stable across light intensities from 300 to 1500 μmol photons m-2 s-1 in all these species, indicating that gm did not respond to the change in illumination in them. With an increase in light intensity, lm gradually increased, making gm the major limiting factor for area-based photosynthesis (AN) under saturating light. A strong negative relationship between lm and AN was found at 300 μmol photons m-2 s-1 but disappeared at 1500 μmol photons m-2 s-1, suggesting an important role for lm in determining AN at sub-saturating light. Furthermore, the light-dependent increase in lm led to a decrease in chloroplast CO2 concentration (Cc), inducing the gradual increase of photorespiration. A higher lm under saturating light made AN more limited by RuBP carboxylation. These results indicate that the light response of lm plays significant roles in determining Cc, photorespiration, and the rate-limiting step of AN.
Collapse
Affiliation(s)
- Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Hu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| |
Collapse
|
14
|
Timm S, Woitschach F, Heise C, Hagemann M, Bauwe H. Faster Removal of 2-Phosphoglycolate through Photorespiration Improves Abiotic Stress Tolerance of Arabidopsis. PLANTS 2019; 8:plants8120563. [PMID: 31810232 PMCID: PMC6963629 DOI: 10.3390/plants8120563] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 02/06/2023]
Abstract
Photorespiration metabolizes 2-phosphoglyolate (2-PG) to avoid inhibition of carbon assimilation and allocation. In addition to 2-PG removal, photorespiration has been shown to play a role in stress protection. Here, we studied the impact of faster 2-PG degradation through overexpression of 2-PG phosphatase (PGLP) on the abiotic stress-response of Arabidopsis thaliana (Arabidopsis). Two transgenic lines and the wild type were subjected to short-time high light and elevated temperature stress during gas exchange measurements. Furthermore, the same lines were exposed to long-term water shortage and elevated temperature stresses. Faster 2-PG degradation allowed maintenance of photosynthesis at combined light and temperatures stress and under water-limiting conditions. The PGLP-overexpressing lines also showed higher photosynthesis compared to the wild type if grown in high temperatures, which also led to increased starch accumulation and shifts in soluble sugar contents. However, only minor effects were detected on amino and organic acid levels. The wild type responded to elevated temperatures with elevated mRNA and protein levels of photorespiratory enzymes, while the transgenic lines displayed only minor changes. Collectively, these results strengthen our previous hypothesis that a faster photorespiratory metabolism improves tolerance against unfavorable environmental conditions, such as high light intensity and temperature as well as drought. In case of PGLP, the likely mechanism is alleviation of inhibitory feedback of 2-PG onto the Calvin–Benson cycle, facilitating carbon assimilation and accumulation of transitory starch.
Collapse
Affiliation(s)
- Stefan Timm
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051 Rostock, Germany; (F.W.); (C.H.); (M.H.); (H.B.)
- Correspondence: ; Tel.: +49-(0)381-4986115; Fax: +49-(0)381-4986112
| | - Franziska Woitschach
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051 Rostock, Germany; (F.W.); (C.H.); (M.H.); (H.B.)
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, University Medical Center Rostock, Ernst-Heydemann-Str.6, D-18057 Rostock, Germany
| | - Carolin Heise
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051 Rostock, Germany; (F.W.); (C.H.); (M.H.); (H.B.)
| | - Martin Hagemann
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051 Rostock, Germany; (F.W.); (C.H.); (M.H.); (H.B.)
| | - Hermann Bauwe
- Plant Physiology Department, University of Rostock, Albert-Einstein-Straße 3, D-18051 Rostock, Germany; (F.W.); (C.H.); (M.H.); (H.B.)
| |
Collapse
|