1
|
Bao Y, Magallanes-Lundback M, Kim SS, Deason N, Niu Y, Johnny C, Froehlich J, DellaPenna D. A family of α/β hydrolases removes phytol from chlorophyll metabolites for tocopherol biosynthesis in Arabidopsis. THE PLANT CELL 2025; 37:koaf021. [PMID: 40036548 PMCID: PMC11878634 DOI: 10.1093/plcell/koaf021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/15/2025] [Indexed: 03/06/2025]
Abstract
Tocopherol synthesis requires phytyl diphosphate derived from phytol esterified to chlorophyll metabolites. The >600-member Arabidopsis thaliana α/β hydrolase (ABH) gene family contains 4 members that can release phytol from chlorophyll metabolites in vitro; however, only pheophytinase (PPH) affects tocopherol synthesis when mutated, reducing seed tocopherols by 5%. We report the biochemical analysis of 2 previously uncharacterized ABHs, chlorophyll dephytylase 2 (CLD2) and CLD3, and their respective mutants singly and in combinations with pph and cld1 alleles. While all CLDs localized to the thylakoid and could hydrolyze phytol from chlorophylls and Pheophytin a in vitro, CLD3 had the highest in vitro activity and the largest effect on tocopherol synthesis in vivo. The 3 CLDs acted cooperatively to provide phytol for 31% of tocopherols synthesized in light-grown leaf tissue. Dark-induced leaf senescence assays showed PPH is required for 18% of the tocopherols synthesized. Though the cld123 triple mutant had no impact on dark-induced tocopherol content, cld123 in the pph background reduced tocopherol levels by an additional 18%. In seeds, pph and cld123 each reduced tocopherol content by 5% and by 15% in the cld123pph quadruple mutant. VTE7 (ViTamin E7) is an envelope-localized ABH that specifically affects chlorophyll biosynthetic intermediates in vivo and is required for 55% of seed tocopherol synthesis. The introduction of cld123pph into the vte7 background further reduced seed tocopherol levels to 23% of that of the wild type. Our findings demonstrate that phytol provision for tocopherol biosynthesis and homeostasis is a complex process involving the coordinated spatiotemporal expression of multiple ABH family members.
Collapse
Affiliation(s)
- Yan Bao
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Maria Magallanes-Lundback
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Sung Soo Kim
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Nicholas Deason
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Yue Niu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cassandra Johnny
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - John Froehlich
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Knapp M, Jo M, Henthorn CL, Brimberry M, Gnann AD, Dowling DP, Bridwell-Rabb J. Chlorophyllase from Arabidopsis thaliana Reveals an Emerging Model for Controlling Chlorophyll Hydrolysis. ACS BIO & MED CHEM AU 2024; 4:353-370. [PMID: 39712203 PMCID: PMC11659893 DOI: 10.1021/acsbiomedchemau.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 12/24/2024]
Abstract
Chlorophyll (Chl) is one of Nature's most complex pigments to biosynthesize and derivatize. This pigment is vital for survival and also paradoxically toxic if overproduced or released from a protective protein scaffold. Therefore, along with the mass production of Chl, organisms also invest in mechanisms to control its degradation and recycling. One important enzyme that is involved in these latter processes is chlorophyllase. This enzyme is employed by numerous photosynthetic organisms to hydrolyze the phytol tail of Chl. Although traditionally thought to catalyze the first step of Chl degradation, recent work suggests that chlorophyllase is instead employed during times of abiotic stress or conditions that produce reactive oxygen species. However, the molecular details regarding how chlorophyllases are regulated to function under such conditions remain enigmatic. Here, we investigate the Arabidopsis thaliana chlorophyllase isoform AtCLH2 using site-directed mutagenesis, mass spectrometry, dynamic light scattering, size-exclusion multiangle light scattering, and both steady-state enzyme kinetic and thermal stability measurements. Through these experiments, we show that AtCLH2 exists as a monomer in solution and contains two disulfide bonds. One disulfide bond putatively maps to the active site, whereas the other links two N-terminal Cys residues together. These disulfide bonds are cleaved by chemical or chemical and protein-based reductants, respectively, and are integral to maintaining the activity, stability, and substrate scope of the enzyme. This work suggests that Cys residue oxidation in chlorophyllases is an emerging regulatory strategy for controlling the hydrolysis of Chl pigments.
Collapse
Affiliation(s)
- Madison Knapp
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Minshik Jo
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Courtney L. Henthorn
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Marley Brimberry
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Andrew D. Gnann
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Daniel P. Dowling
- Department
of Chemistry, University of Massachusetts
Boston, Boston, Massachusetts 02125, United States
| | - Jennifer Bridwell-Rabb
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
3
|
Hu ZH, Sun MZ, Yang KX, Zhang N, Chen C, Xiong JW, Yang N, Chen Y, Liu H, Li XH, Chen X, Xiong AS, Zhuang J. High-Throughput Transcriptomic Analysis of Circadian Rhythm of Chlorophyll Metabolism under Different Photoperiods in Tea Plants. Int J Mol Sci 2024; 25:9270. [PMID: 39273222 PMCID: PMC11395263 DOI: 10.3390/ijms25179270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/24/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Tea plants are a perennial crop with significant economic value. Chlorophyll, a key factor in tea leaf color and photosynthetic efficiency, is affected by the photoperiod and usually exhibits diurnal and seasonal variations. In this study, high-throughput transcriptomic analysis was used to study the chlorophyll metabolism, under different photoperiods, of tea plants. We conducted a time-series sampling under a skeleton photoperiod (6L6D) and continuous light conditions (24 L), measuring the chlorophyll and carotenoid content at a photoperiod interval of 3 h (24 h). Transcriptome sequencing was performed at six time points across two light cycles, followed by bioinformatics analysis to identify and annotate the differentially expressed genes (DEGs) involved in chlorophyll metabolism. The results revealed distinct expression patterns of key genes in the chlorophyll biosynthetic pathway. The expression levels of CHLE (magnesium-protoporphyrin IX monomethyl ester cyclase gene), CHLP (geranylgeranyl reductase gene), CLH (chlorophyllase gene), and POR (cytochrome P450 oxidoreductase gene), encoding enzymes in chlorophyll synthesis, were increased under continuous light conditions (24 L). At 6L6D, the expression levels of CHLP1.1, POR1.1, and POR1.2 showed an oscillating trend. The expression levels of CHLP1.2 and CLH1.1 showed the same trend, they both decreased under light treatment and increased under dark treatment. Our findings provide potential insights into the molecular basis of how photoperiods regulate chlorophyll metabolism in tea plants.
Collapse
Affiliation(s)
- Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Meng-Zhen Sun
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Kai-Xin Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Chen Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jia-Wen Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ni Yang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Li X, Zhang W, Niu D, Liu X. Effects of abiotic stress on chlorophyll metabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112030. [PMID: 38346561 DOI: 10.1016/j.plantsci.2024.112030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/08/2024] [Indexed: 02/22/2024]
Abstract
Chlorophyll, an essential pigment in the photosynthetic machinery of plants, plays a pivotal role in the absorption of light energy and its subsequent transfer to reaction centers. Given that the global production of chlorophyll reaches billions of tons annually, a comprehensive understanding of its biosynthetic pathways and regulatory mechanisms is important. The metabolic pathways governing chlorophyll biosynthesis and catabolism are complex, encompassing a series of interconnected reactions mediated by a spectrum of enzymes. Environmental fluctuations, particularly abiotic stressors such as drought, extreme temperature variations, and excessive light exposure, can significantly perturb these processes. Such disruptions in chlorophyll metabolism have profound implications for plant growth and development. This review delves into the core aspects of chlorophyll metabolism, encompassing both biosynthetic and degradative pathways. It elucidates key genes and enzymes instrumental in these processes and underscores the impact of abiotic stress on chlorophyll metabolism. Furthermore, the review aims to deepen the understanding of the interplay between chlorophyll metabolic dynamics and stress responses, thereby shedding light on potential regulatory mechanisms.
Collapse
Affiliation(s)
- Xu Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wei Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Di Niu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaomin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Sinijadas K, Paul A, Radhika NS, Johnson JM, Manju RV, Anuradha T. Piriformospora indica suppresses the symptoms produced by Banana bract mosaic virus by inhibiting its replication and manipulating chlorophyll and carotenoid biosynthesis and degradation in banana. 3 Biotech 2024; 14:141. [PMID: 38693914 PMCID: PMC11058171 DOI: 10.1007/s13205-024-03983-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/03/2024] [Indexed: 05/03/2024] Open
Abstract
Banana bract mosaic virus (BBrMV) infection results in characteristic reddish streaks on pseudostem and chlorotic spindle lesions on leaves leading to traveler's palm appearance and complete crop loss depending on the stage of infection in banana plants. Here, we discuss the influence of P. indica colonization (a beneficial fungal root endophyte) on BBrMV infection, specific viral component genes responsible for symptom development, chlorophyll and carotenoid biosynthesis, and degradation in BBrMV-infected banana plants. P. indica colonization significantly and substantially reduced the severity of Banana bract mosaic disease (BBrMD) in addition to increased growth, development and yield of banana plants. The percent disease incidence (PDI) of BBrMV ranges from 50 to 70 per cent in plants raised from suckers and from 58 to 92 per cent in TC plants under artificial inoculation. P. indica-colonized plants inoculated with BBrMV resulted in an enhanced plant height, root length, leaf width, and leaf length of 72, 88, 90, and 60 per cent, respectively, compared to BBrMV alone-infected banana plants along with the reduced disease severity. BBrMV infection showed a drastic decrease of chlorophyll a, chlorophyll b, and total chlorophyll contents by down-regulating chlorophyll biosynthesis (Chlorophyll synthase-CHLG) and upregulating chlorophyll degradation (Chlorophyllase-CLH1 and CLH2 and Pheophytin pheophorbide hydrolase-PPH) genes; and by up-regulating carotenoids biosynthesis (Phytoene synthases-PSY1 and PSY2) and down-regulating its degradation (Phytoene desaturase-PDS) genes compared to P. indica-colonized banana plants challenge inoculated with BBrMV. P. indica also inhibited the expression of the viral genes (P3 and HC-Pro) involved in symptom development. P. indica-colonized banana plants reduced the BBrMV symptoms severity by enhancing chlorophyll biosynthesis; and decreasing chlorophyll degradation and carotenoid biosynthesis and degradation; and inhibiting the viral genes responsible for symptom development in addition to enhanced growth and yield of banana plants. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-03983-y.
Collapse
Affiliation(s)
- K. Sinijadas
- Department of Plant Pathology, College of Agriculture (Kerala Agricultural University), Vellayani, Thiruvananthapuram, Kerala 695 522 India
| | - Amitha Paul
- Department of Plant Pathology, College of Agriculture (Kerala Agricultural University), Vellayani, Thiruvananthapuram, Kerala 695 522 India
| | - N. S. Radhika
- Department of Plant Pathology, College of Agriculture (Kerala Agricultural University), Vellayani, Thiruvananthapuram, Kerala 695 522 India
| | - Joy Michal Johnson
- Coconut Research Station (Kerala Agricultural University), Balaramapuram, Thiruvananthapuram, Kerala 695 501 India
| | - R. V. Manju
- Department of Plant Physiology, College of Agriculture (Kerala Agricultural University), Vellayani, Thiruvananthapuram, Kerala 695 522 India
| | - T. Anuradha
- Department of Molecular Biology and Biotechnology, College of Agriculture (Kerala Agricultural University), Vellayani, Thiruvananthapuram, Kerala 695 522 India
| |
Collapse
|
6
|
Zhi Y, Li X, Wang X, Jia M, Wang Z. Photosynthesis promotion mechanisms of artificial humic acid depend on plant types: A hydroponic study on C3 and C4 plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170404. [PMID: 38281646 DOI: 10.1016/j.scitotenv.2024.170404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 01/30/2024]
Abstract
It is feasible to improve plant photosynthesis to address the global climate goals of carbon neutrality. The application of artificial humic acid (AHA) is a promising approach to promote plant photosynthesis, however, the associated mechanisms for C3 and C4 plants are still unclear. In this study, the real-time chlorophyll synthesis and microscopic physiological changes in plant leave cells with the application of AHA were first revealed using the real-time chlorophyll fluorescence parameters and Non-invasive Micro-test Technique. The transcriptomics suggested that the AHA application up-regulated the genes in photosynthesis, especially related to chlorophyll synthesis and light energy capture, in maize and the genes in photosynthetic vitality and carbohydrate metabolic process in lettuce. Structural equation model suggested that the photodegradable substances and growth hormones in AHA directly contributes to photosynthesis of C4 plants (0.37). AHA indirectly promotes the photosynthesis in the C4 plants by upregulating functional genes (e.g., Mg-CHLI and Chlorophyllase) involved in light capture and transformation (0.96). In contrast, AHA mainly indirectly promotes C3 plants photosynthesis by increasing chlorophyll synthesis, and the Rubisco activity and the ZmRbcS expression in the dark reaction of lettuce (0.55). In addition, Mg2+ transfer and flux in C3 plant leaves was significantly improved by AHA, indirectly contributes to plant photosynthesis (0.24). Finally, the AHA increased the net photosynthetic rate of maize by 46.50 % and that of lettuce by 88.00 %. Application of the nutrients- and hormone-rich AHA improves plant growth and photosynthesis even better than traditional Hoagland solution. The revelation of the different photosynthetic promotion mechanisms on C3 and C4 plant in this work guides the synthesis and efficient application of AHA in green agriculture and will propose the development of AHA technology to against climate change resulting from CO2 emissions in near future.
Collapse
Affiliation(s)
- Yancai Zhi
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xiaowei Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Minghao Jia
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| |
Collapse
|
7
|
Narai-Kanayama A, Yokosaka SI, Seo Y, Mikami K, Yoshino T, Matsuda H. Evidence of increases of phytol and chlorophyllide by enzymatic dephytylation of chlorophylls in smoothie made from spinach leaves. J Food Sci 2023. [PMID: 37122139 DOI: 10.1111/1750-3841.16588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/05/2023] [Accepted: 04/09/2023] [Indexed: 05/02/2023]
Abstract
Phytol is a diterpene alcohol found abundantly in nature as the phytyl side chain of chlorophylls. Free form of phytol and its metabolites have been attracting attention because they have a potential to improve the lipid and glucose metabolism. On the other hand, phytol is unfavorable for those who suffering from Refsum's disease. However, there is little information on the phytol contents in leafy vegetables rich in chlorophylls. This study indicated that raw spinach leaves contain phytol of 0.4-1.5 mg/100 g fresh weight. Furthermore, crude enzyme extracted from the leaves showed the enzyme activities involved in dephytylation of chlorophyll derivatives and they were high at mild alkaline pH and around 45°C, and lowered at 55°C or above. Under the optimum pH and temperature for such enzymes determined in the model reaction using the crude enzyme, phytol content in the smoothie made from raw spinach leaves increased with an increase of chlorophyllide, another reaction product. Comparison between the increased amounts of phytol and chlorophyllide showed that the enzymatic dephytylation of chlorophylls was critically responsible for the increase of phytol in the smoothie. PRACTICAL APPLICATION: Phytol, which is released by the enzymes related to chlorophyll metabolism in plants, has been investigated because of its potential abilities to improve the lipid metabolism and blood glucose level. In contrast to such health benefits, they are known to be toxic for patients suffering from Refsum's disease. This research for the first time reports the phytol content in raw spinach leaves and that phytol can be increased in the smoothie made from spinach leaves by the action of endogenous enzymes on chlorophyll derivatives under a certain condition. These results help control phytol content in the smoothies.
Collapse
Affiliation(s)
- Asako Narai-Kanayama
- Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan
- Department of Food Science and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Shin-Ichi Yokosaka
- Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Yuji Seo
- Department of Food Science and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Kouji Mikami
- Department of Food Science and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Takayuki Yoshino
- Department of Food Science and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Hiroko Matsuda
- Graduate School of Veterinary Medicine and Life Science, Nippon Veterinary and Life Science University, Tokyo, Japan
- Department of Food Science and Technology, Nippon Veterinary and Life Science University, Tokyo, Japan
| |
Collapse
|
8
|
Genome-wide association identifies a missing hydrolase for tocopherol synthesis in plants. Proc Natl Acad Sci U S A 2022; 119:e2113488119. [PMID: 35639691 DOI: 10.1073/pnas.2113488119] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceTocopherols (vitamin E) are plant-synthesized, lipid-soluble antioxidants whose dietary intake, primarily from seed oils, is essential for human health. Tocopherols contain a phytol-derived hydrophobic tail whose in vivo source has been elusive. The most significant genome-wide association signal for Arabidopsis seed tocopherols identified an uncharacterized, seed-specific esterase (VTE7) localized to the chloroplast envelope, where tocopherol synthesis occurs. VTE7 disruption and overexpression had large impacts on tissue tocopherol contents with metabolic phenotypes consistent with release of prenyl alcohols, including phytol, during chlorophyll synthesis, rather than from the bulk degradation of thylakoid chlorophylls as has long been assumed. Understanding the source of phytol for tocopherols will enable breeding and engineering plants for vitamin E biofortification and enhanced stress resilience.
Collapse
|
9
|
Quiles C, Viera I, Roca M. Multiomics Approach To Decipher the Origin of Chlorophyll Content in Virgin Olive Oil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3807-3817. [PMID: 35290057 PMCID: PMC8972264 DOI: 10.1021/acs.jafc.2c00031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The color of virgin olive oils, ranging from intense green to brown-yellow, is one of the main selection factors for consumers and a quality criterion in specific legislations. Such coloration is due to their chlorophyll content and depends on the composition of the olive fruit. Through analytical chemistry (HPLC-hrMSn), biochemistry (enzymatic activity), and molecular biology (qRT-PCR) approaches, we have analyzed the origin of the differences in the chlorophyll content among several varieties of olive fruit throughout their ripening process. The higher chlorophyll biosynthetic capacity in olive fruits is due to the enzyme protochlorophyllide reductase, whereas chlorophyll degradation is accomplished through the stay-green and pheophytinase pathways. For the first time, the implication of chlorophyll dephytylase during the turnover of chlorophylls in fruit is shown to be responsible for the exclusive accumulation of dephytylated chlorophyll in Arbequina fruit. The multiomics results excluded the in vivo participation of chlorophyllase in chlorophyll degradation in olive fruits.
Collapse
Affiliation(s)
| | | | - María Roca
- . Tel.: +00 34 954.61.15.50. Fax: +00 34 954.61.67.90
| |
Collapse
|
10
|
Hu X, Khan I, Jiao Q, Zada A, Jia T. Chlorophyllase, a Common Plant Hydrolase Enzyme with a Long History, Is Still a Puzzle. Genes (Basel) 2021; 12:genes12121871. [PMID: 34946820 PMCID: PMC8702186 DOI: 10.3390/genes12121871] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 02/01/2023] Open
Abstract
Chlorophyllase (Chlase, CLH) is one of the earliest discovered enzymes present in plants and green algae. It was long considered to be the first enzyme involved in chlorophyll (Chl) degradation, while strong evidence showed that it is not involved in Chl breakdown during leaf senescence. On the other hand, it is possible that CLH is involved in Chl breakdown during fruit ripening. Recently, it was discovered that Arabidopsis CLH1 is located in developing chloroplasts but not in mature chloroplasts, and it plays a role in protecting young leaves from long-term photodamage by catalysing Chl turnover in the photosystem II (PSII) repair cycle. However, there remain other important questions related to CLH. In this article, we briefly reviewed the research progress on CLH and listed the main unanswered questions related to CLH for further study.
Collapse
Affiliation(s)
- Xueyun Hu
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.H.); (Q.J.)
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (I.K.); (A.Z.)
| | - Imran Khan
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (I.K.); (A.Z.)
| | - Qingsong Jiao
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.H.); (Q.J.)
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (I.K.); (A.Z.)
| | - Ahmad Zada
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China; (I.K.); (A.Z.)
| | - Ting Jia
- International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; (X.H.); (Q.J.)
- Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
11
|
Wang YT, Yang CH, Huang KS, Shaw JF. Chlorophyllides: Preparation, Purification, and Application. Biomolecules 2021; 11:biom11081115. [PMID: 34439782 PMCID: PMC8392590 DOI: 10.3390/biom11081115] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/18/2022] Open
Abstract
Chlorophyllides can be found in photosynthetic organisms. Generally, chlorophyllides have a-, b-, c-, d-, and f-type derivatives, and all chlorophyllides have a tetrapyrrole structure with a Mg ion at the center and a fifth isocyclic pentanone. Chlorophyllide a can be synthesized from protochlorophyllide a, divinyl chlorophyllide a, or chlorophyll. In addition, chlorophyllide a can be transformed into chlorophyllide b, chlorophyllide d, or chlorophyllide f. Chlorophyllide c can be synthesized from protochlorophyllide a or divinyl protochlorophyllide a. Chlorophyllides have been extensively used in food, medicine, and pharmaceutical applications. Furthermore, chlorophyllides exhibit many biological activities, such as anti-growth, antimicrobial, antiviral, antipathogenic, and antiproliferative activity. The photosensitivity of chlorophyllides that is applied in mercury electrodes and sensors were discussed. This article is the first detailed review dedicated specifically to chlorophyllides. Thus, this review aims to describe the definition of chlorophyllides, biosynthetic routes of chlorophyllides, purification of chlorophyllides, and applications of chlorophyllides.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-T.W.); (C.-H.Y.)
| | - Chih-Hui Yang
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-T.W.); (C.-H.Y.)
- Pharmacy Department of E-Da Hospital, Kaohsiung 82445, Taiwan
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Taipei 106214, Taiwan
| | - Keng-Shiang Huang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 82445, Taiwan
- Correspondence: (K.-S.H.); (J.-F.S.); Tel.: +886-7-6151100 (ext. 7063) (K.-S.H.); +886-7-6151100 (ext. 7310) (J.-F.S.); Fax: +886-7-6151959 (J.-F.S.)
| | - Jei-Fu Shaw
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 82445, Taiwan; (Y.-T.W.); (C.-H.Y.)
- Correspondence: (K.-S.H.); (J.-F.S.); Tel.: +886-7-6151100 (ext. 7063) (K.-S.H.); +886-7-6151100 (ext. 7310) (J.-F.S.); Fax: +886-7-6151959 (J.-F.S.)
| |
Collapse
|
12
|
Moreau S, van Aubel G, Janky R, Van Cutsem P. Chloroplast Electron Chain, ROS Production, and Redox Homeostasis Are Modulated by COS-OGA Elicitation in Tomato ( Solanum lycopersicum) Leaves. FRONTIERS IN PLANT SCIENCE 2020; 11:597589. [PMID: 33381134 PMCID: PMC7768011 DOI: 10.3389/fpls.2020.597589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
The stimulation of plant innate immunity by elicitors is an emerging technique in agriculture that contributes more and more to residue-free crop protection. Here, we used RNA-sequencing to study gene transcription in tomato leaves treated three times with the chitooligosaccharides-oligogalacturonides (COS-OGA) elicitor FytoSave® that induces plants to fend off against biotrophic pathogens. Results showed a clear upregulation of sequences that code for chloroplast proteins of the electron transport chain, especially Photosystem I (PSI) and ferredoxin. Concomitantly, stomatal conductance decreased by half, reduced nicotinamide adenine dinucleotide phosphate [NAD(P)H] content and reactive oxygen species production doubled, but fresh and dry weights were unaffected. Chlorophyll, β-carotene, violaxanthin, and neoxanthin contents decreased consistently upon repeated elicitations. Fluorescence measurements indicated a transient decrease of the effective PSII quantum yield and a non-photochemical quenching increase but only after the first spraying. Taken together, this suggests that plant defense induction by COS-OGA induces a long-term acclimation mechanism and increases the role of the electron transport chain of the chloroplast to supply electrons needed to mount defenses targeted to the apoplast without compromising biomass accumulation.
Collapse
Affiliation(s)
- Sophie Moreau
- Research Unit in Plant Cellular and Molecular Biology, Biology Department, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| | - Géraldine van Aubel
- Research Unit in Plant Cellular and Molecular Biology, Biology Department, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
- FytoFend S.A., Isnes, Belgium
| | | | - Pierre Van Cutsem
- Research Unit in Plant Cellular and Molecular Biology, Biology Department, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
- FytoFend S.A., Isnes, Belgium
| |
Collapse
|
13
|
Synthesis of Fluorinated Chlorophylls‐
a
and Their Bio/Physico‐Chemical Properties. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000887] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|