1
|
Yu J, Xue Y, Sarwar R, Wei S, Geng R, Zhang Y, Mu J, Tan X. The BnaBPs gene regulates flowering time and leaf angle in Brassica napus. PLANT DIRECT 2024; 8:e70018. [PMID: 39411452 PMCID: PMC11479600 DOI: 10.1002/pld3.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
The flowering time and plant architecture of Brassica napus were significantly associated with yield. In this study, we found that the BREVIPEDICELLUS/KNAT1(BP) gene regulated the flowering time and plant architecture of B. napus. However, the precise regulatory mechanism remains unclear. We cloned two homologous BP genes, BnaBPA03 and BnaBPC03, from B. napus Xiaoyun. The protein sequence analysis showed two proteins containing conserved domains KNOX I, KNOX II, ELK, and HOX of the KONX protein family. The CRISPR/Cas9 knockout lines exhibited early budding and flowering time, coupled with floral organ abscission earlier and a larger leaf angle. On the contrary, overexpression plants displayed a phenotype that was the inverse of these characteristics. Furthermore, we observed upregulation of gibberellin and ethylene biosynthesis genes, as well as floral integrator genes in knocked-out plants. The results revealed that BnaBPs play a role in flowering time, floral organ abscission, and leaf angle as well as germination processes mediated. Additionally, BnaBPs exerted an impact on the biosynthesis pathways of ethylene and GA.
Collapse
Affiliation(s)
- Jiang Yu
- School of Life SciencesJiangsu UniversityZhenjiangJiangsuChina
| | - Yi‐Xuan Xue
- School of Life SciencesJiangsu UniversityZhenjiangJiangsuChina
| | - Rehman Sarwar
- School of Life SciencesJiangsu UniversityZhenjiangJiangsuChina
| | - Shi‐Hao Wei
- Hybrid Rape Research Center Shaanxi ProvYanglingShanxiChina
| | - Rui Geng
- School of Life SciencesJiangsu UniversityZhenjiangJiangsuChina
| | - Yan‐Feng Zhang
- Hybrid Rape Research Center Shaanxi ProvYanglingShanxiChina
| | - Jian‐Xin Mu
- Hybrid Rape Research Center Shaanxi ProvYanglingShanxiChina
| | - Xiao‐Li Tan
- School of Life SciencesJiangsu UniversityZhenjiangJiangsuChina
| |
Collapse
|
2
|
Diot A, Groth G, Blanchet S, Chervin C. Responses of animals and plants to physiological doses of ethanol: a molecular messenger of hypoxia? FEBS J 2024; 291:1102-1110. [PMID: 38232057 DOI: 10.1111/febs.17056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 01/19/2024]
Abstract
Our viewpoint is that ethanol could act as a molecular messenger in animal and plant organisms under conditions of hypoxia or other stresses and could elicit physiological responses to such conditions. There is evidence that both animal and plant organisms have endogenous levels of ethanol, but reports on the changes induced by this alcohol at physiological levels are sparse. Studies have shown that ethanol has different effects on cell metabolism at low and high concentrations, resembling a hormetic response. Further studies have addressed the potential cellular and molecular mechanisms used by organisms to sense changes in physiological concentrations of ethanol. This article summarizes the possible mechanisms by which ethanol may be sensed, particularly at the cell membrane level. Our analysis shows that current knowledge on this subject is limited. More research is required on the effects of ethanol at very low doses, in plants and animals at both molecular and physiological levels. We believe that further research on this topic could lead to new discoveries in physiology and may even help us understand metabolic adjustments related to climate change. As temperatures rise more frequently, dissolved oxygen levels drop, leading to hypoxic conditions and consequently, an increase in cellular ethanol levels.
Collapse
Affiliation(s)
- Alice Diot
- Laboratoire de Recherche en Sciences Végétales (UMR5546), Université de Toulouse, CNRS, UPS, Toulouse-INP, Castanet-Tolosan, France
- CNRS, Station d'Ecologie Théorique et Expérimentale (UAR 2029), Moulis, France
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Bioeconomy Science Center (BioSC), Jülich, Germany
| | - Simon Blanchet
- CNRS, Station d'Ecologie Théorique et Expérimentale (UAR 2029), Moulis, France
| | - Christian Chervin
- Laboratoire de Recherche en Sciences Végétales (UMR5546), Université de Toulouse, CNRS, UPS, Toulouse-INP, Castanet-Tolosan, France
| |
Collapse
|
3
|
Hu X, Lee S, Manohar M, Chen J. Efficacy of Ascaroside #18 Treatments in Control of Salmonella enterica on Alfalfa and Fenugreek Seeds and Sprouts. J Food Prot 2023; 86:100064. [PMID: 36916549 PMCID: PMC10807822 DOI: 10.1016/j.jfp.2023.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023]
Abstract
A novel, natural, and effective antimicrobial intervention is in demand for improving the microbial safety of vegetable seeds/sprouts. This study assessed the efficacy of ascaroside treatment in the control of Salmonella enterica on alfalfa and fenugreek sprouts. Sanitized commercial seeds were treated with 1 mM or 1 µM ascaroside (ascr)#18, a plant immunity modulator (PIM) and dried for an hour before being inoculated with lyophilized S. Cubana or S. Stanley cells in sandy soil (104 CFU/g). Treated and untreated seeds were spouted on 1% water agar at 25°C in the dark. Seed or sprout samples were collected on days 0, 1, 3, 5, and 7, and the population of Salmonella was determined. Data were fit into the general linear arrangement, and means were separated using Fisher's least significant difference test. Seed type, strain type, treatment type, and sprouting time were significant factors (P ≤ 0.05) influencing Salmonella growth on sprouts. The populations of Salmonella were significantly higher on fenugreek than on alfalfa sprouts. S. Stanley had a significantly higher population than S. Cubana. The population of Salmonella increased from day 0 to day 3 and reached the peak population on Day 5. Treatments with both concentrations of ascaroside significantly decreased the populations of Salmonella compared to the controls. The mean Salmonella population reduction was ca. 4 or 1 log CFU/g by treatment with 1 mM and 1 µM of the PIM, respectively. Treatment with the PIM could be potentially used to improve the microbial safety of vegetable seeds and sprouts.
Collapse
Affiliation(s)
- Xueyan Hu
- Department of Food Science and Technology, The University of Georgia, Griffin, GA 30223-1797, USA
| | - Seulgi Lee
- Department of Food Science and Technology, The University of Georgia, Griffin, GA 30223-1797, USA
| | | | - Jinru Chen
- Department of Food Science and Technology, The University of Georgia, Griffin, GA 30223-1797, USA.
| |
Collapse
|
4
|
Aung T, Kim BR, Kim S, Shin EC, Kim MJ. Comparative volatiles, amino acids, and phenolic compounds and characteristics of roasted germinated wheat (Triticum aestivum L.) during beverage preparation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2022.114412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
5
|
Althiab-Almasaud R, Chen Y, Maza E, Djari A, Frasse P, Mollet JC, Mazars C, Jamet E, Chervin C. Ethylene signaling modulates tomato pollen tube growth through modifications of cell wall remodeling and calcium gradient. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:893-908. [PMID: 34036648 DOI: 10.1111/tpj.15353] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Ethylene modulates plant developmental processes including flower development. Previous studies have suggested ethylene participates in pollen tube (PT) elongation, and both ethylene production and perception seem critical at the time of fertilization. The full gene set regulated by ethylene during PT growth is unknown. To study this, we used various EThylene Receptor (ETR) tomato (Solanum lycopersicum) mutants: etr3-ko, a loss-of-function (LOF) mutant; and NR (NEVER RIPE), a gain-of-function (GOF) mutant. The etr3-ko PTs grew faster than wild-type (WT) PTs. Oppositely, NR PT elongation was slower than in WT, and PTs displayed larger diameters. ETR mutations result in feedback control of ethylene production. Furthermore, ethylene treatment of germinating pollen grains increased PT length in etr-ko mutants and WT, but not in NR. Treatment with the ethylene perception inhibitor 1-methylcyclopropene decreased PT length in etr-ko mutants and WT, but had no effect on NR. This confirmed that ethylene regulates PT growth. The comparison of PT transcriptomes in LOF and GOF mutants, etr3-ko and NR, both harboring mutations of the ETR3 gene, revealed that ethylene perception has major impacts on cell wall- and calcium-related genes as confirmed by microscopic observations showing a modified distribution of the methylesterified homogalacturonan pectic motif and of calcium load. Our results establish links between PT growth, ethylene, calcium, and cell wall metabolism, and also constitute a transcriptomic resource.
Collapse
Affiliation(s)
- Rasha Althiab-Almasaud
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| | - Yi Chen
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Elie Maza
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| | - Anis Djari
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| | - Pierre Frasse
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| | - Jean-Claude Mollet
- Laboratoire Glyco-MEV, SFR NORVEGE, Innovation Chimie Carnot, Normandie Univ, UniRouen, Rouen, France
| | - Christian Mazars
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Elisabeth Jamet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Auzeville-Tolosane, France
| | - Christian Chervin
- Laboratoire de Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP-ENSAT, INRAE, Auzeville-Tolosane, France
| |
Collapse
|
6
|
Pons S, Fournier S, Chervin C, Bécard G, Rochange S, Frei Dit Frey N, Puech Pagès V. Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis. PLoS One 2020; 15:e0240886. [PMID: 33064769 PMCID: PMC7567356 DOI: 10.1371/journal.pone.0240886] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Arbuscular mycorrhizal symbiosis is a mutualistic interaction between most land plants and fungi of the glomeromycotina subphylum. The initiation, development and regulation of this symbiosis involve numerous signalling events between and within the symbiotic partners. Among other signals, phytohormones are known to play important roles at various stages of the interaction. During presymbiotic steps, plant roots exude strigolactones which stimulate fungal spore germination and hyphal branching, and promote the initiation of symbiosis. At later stages, different plant hormone classes can act as positive or negative regulators of the interaction. Although the fungus is known to reciprocally emit regulatory signals, its potential contribution to the phytohormonal pool has received little attention, and has so far only been addressed by indirect assays. In this study, using mass spectrometry, we analyzed phytohormones released into the medium by germinated spores of the arbuscular mycorrhizal fungus Rhizophagus irregularis. We detected the presence of a cytokinin (isopentenyl adenosine) and an auxin (indole-acetic acid). In addition, we identified a gibberellin (gibberellin A4) in spore extracts. We also used gas chromatography to show that R. irregularis produces ethylene from methionine and the α-keto γ-methylthio butyric acid pathway. These results highlight the possibility for AM fungi to use phytohormones to interact with their host plants, or to regulate their own development.
Collapse
Affiliation(s)
- Simon Pons
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Sylvie Fournier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Christian Chervin
- Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP, INRA, Castanet-Tolosan, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Soizic Rochange
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Nicolas Frei Dit Frey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- * E-mail: (VPP); (NFDF)
| | - Virginie Puech Pagès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- * E-mail: (VPP); (NFDF)
| |
Collapse
|
7
|
Pons S, Fournier S, Chervin C, Bécard G, Rochange S, Frei Dit Frey N, Puech Pagès V. Phytohormone production by the arbuscular mycorrhizal fungus Rhizophagus irregularis. PLoS One 2020. [PMID: 33064769 DOI: 10.1101/2020.06.11.146126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Arbuscular mycorrhizal symbiosis is a mutualistic interaction between most land plants and fungi of the glomeromycotina subphylum. The initiation, development and regulation of this symbiosis involve numerous signalling events between and within the symbiotic partners. Among other signals, phytohormones are known to play important roles at various stages of the interaction. During presymbiotic steps, plant roots exude strigolactones which stimulate fungal spore germination and hyphal branching, and promote the initiation of symbiosis. At later stages, different plant hormone classes can act as positive or negative regulators of the interaction. Although the fungus is known to reciprocally emit regulatory signals, its potential contribution to the phytohormonal pool has received little attention, and has so far only been addressed by indirect assays. In this study, using mass spectrometry, we analyzed phytohormones released into the medium by germinated spores of the arbuscular mycorrhizal fungus Rhizophagus irregularis. We detected the presence of a cytokinin (isopentenyl adenosine) and an auxin (indole-acetic acid). In addition, we identified a gibberellin (gibberellin A4) in spore extracts. We also used gas chromatography to show that R. irregularis produces ethylene from methionine and the α-keto γ-methylthio butyric acid pathway. These results highlight the possibility for AM fungi to use phytohormones to interact with their host plants, or to regulate their own development.
Collapse
Affiliation(s)
- Simon Pons
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Sylvie Fournier
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Christian Chervin
- Génomique et Biotechnologie des Fruits, Université de Toulouse, Toulouse INP, INRA, Castanet-Tolosan, France
| | - Guillaume Bécard
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Soizic Rochange
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Nicolas Frei Dit Frey
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Virginie Puech Pagès
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
- MetaboHub-Metatoul AgromiX, Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| |
Collapse
|