1
|
Zuo Y, Abbas A, Dauda SO, Chen C, Bose J, Donovan-Mak M, Wang Y, He J, Zhang P, Yan Z, Chen ZH. Function of key ion channels in abiotic stresses and stomatal dynamics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109574. [PMID: 39903947 DOI: 10.1016/j.plaphy.2025.109574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Climate changes disrupt environmental and soil conditions that affect ionic balance in plants, presenting significant challenges to their survival and productivity. Membrane transporters are crucial for maintaining ionic homeostasis and regulating the movement of substances across plasma and organellar membranes, particularly under abiotic stresses. Among these abiotic stress-responsive mechanisms, stomata are critical for regulating water loss and carbon dioxide uptake, reflecting a plant's ability to respond and adapt to abiotic stresses effectively. This review highlights the role of ion transporters, including both anion and cation transporters in plant abiotic stress responses. It explores the interplay between different ion channels and regulatory components that enable plants to withstand key abiotic stresses such as drought, salinity, and heat. Moreover, we emphasized the contributions of three essential types of ion channels - potassium, anion, and calcium to abiotic stress-related stomatal regulation. These ion channels orchestrate complex signaling networks that allow plants to modulate stomatal behavior and maintain physiological balance under adverse conditions. This article provides valuable molecular and physiological insights into the mechanisms of ion transport and regulation for plants to adapt to environmental challenges. Thus, this review offers a useful foundation for developing innovative strategies to enhance crop resilience and performance in an era of increasingly unpredictable and harsh climates.
Collapse
Affiliation(s)
- Yuanyuan Zuo
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Asad Abbas
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | | | - Chen Chen
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia; Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, PR China; The University of Sydney, School of Life and Environmental Sciences, Plant Breeding Institute, Cobbitty, NSW, 2570, Australia
| | - Jayakumar Bose
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Michelle Donovan-Mak
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Yuanyuan Wang
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Jing He
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Peng Zhang
- The University of Sydney, School of Life and Environmental Sciences, Plant Breeding Institute, Cobbitty, NSW, 2570, Australia
| | - Zehong Yan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
| |
Collapse
|
2
|
Li W, Zhang J, Ma S, Zhou M, Li R, Tang H, Qiu H, Ren P, Tang Y, Lu Y, Huang R, Chen K. The formaldehyde stress on photosynthetic efficiency and oxidative stress response of moss Racomitrium japonicum L. FRONTIERS IN PLANT SCIENCE 2025; 15:1525522. [PMID: 39898266 PMCID: PMC11782196 DOI: 10.3389/fpls.2024.1525522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025]
Abstract
Introduction Formaldehyde is a common gaseous pollutant emitted by buildings and decorative materials. In recent years, growing concerns have been raised regarding its harmful effects on health in indoor air. Therefore, this study aims to investigate the physiological and photosynthetic response mechanisms of Racomitrium japonicum under formaldehyde stress. Methods R. japonicum was exposed to dynamic fumigation with formaldehyde for 7 days, with each day comprising an 8-h exposure period within a sealed container. The effects on plant structure, pigment content, photosynthetic efficiency, and reactive oxygen species (ROS) generation were assessed. Results and discussion Our findings revealed that formaldehyde stress caused structural damage, reduced pigment content, decreased photosynthetic efficiency, and increased ROS production in R. japonicum. Significantly, distinct stress-response pathways were observed at different formaldehyde concentrations. In response to low and moderate formaldehyde concentrations, R. japonicum activated its antioxidant enzyme system to mitigate ROS accumulation. In contrast, the high-concentration treatment group demonstrated suppressed antioxidant enzyme activity. In response, R. japonicum used nonphotochemical quenching and activated cyclic electron flow to mitigate severe cellular damage. This study provides an in-depth understanding of the physiological changes in R. japonicum under formaldehyde stress, elucidating its response mechanisms. The findings offer valuable insights for developing effective indoor formaldehyde monitoring and purification methods.
Collapse
Affiliation(s)
- Wanting Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- College of Biological Engineering, Jingchu University of Technology, Jingmen, Hubei, China
| | - Jiawen Zhang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Siqi Ma
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Min Zhou
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- College of Biological Engineering, Jingchu University of Technology, Jingmen, Hubei, China
| | - Ruixin Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- College of Biological Engineering, Jingchu University of Technology, Jingmen, Hubei, China
| | - Hao Tang
- Ecological Protection and Development Research Institute of Aba Tibetan and Qiang Autonomous Prefecture, Wenchuan, Sichuan, China
| | - Haiyan Qiu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Yunlai Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Yunmei Lu
- College of Biological Engineering, Jingchu University of Technology, Jingmen, Hubei, China
| | - Renhua Huang
- College of Biological Engineering, Jingchu University of Technology, Jingmen, Hubei, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
- Engineering Research Center of Biomass Materials, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan, China
| |
Collapse
|
3
|
Liu M, Liu X, Song Y, Hu Y, Yang C, Li J, Jin S, Gu K, Yang Z, Huang W, Su J, Wang L. Tobacco production under global climate change: combined effects of heat and drought stress and coping strategies. FRONTIERS IN PLANT SCIENCE 2024; 15:1489993. [PMID: 39670262 PMCID: PMC11635999 DOI: 10.3389/fpls.2024.1489993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/08/2024] [Indexed: 12/14/2024]
Abstract
With the intensification of global climate change, high-temperature and drought stress have emerged as critical environmental stressors affecting tobacco plants' growth, development, and yield. This study provides a comprehensive review of tobacco's physiological and biochemical responses to optimal temperature conditions and limited irrigation across various growth stages. It assesses the effects of these conditions on yield and quality, along with the synergistic interactions and molecular mechanisms associated with these stressors. High-temperature and drought stress induces alterations in both enzymatic and non-enzymatic antioxidant activities, lead to the accumulation of reactive oxygen species (ROS), and promote lipid peroxidation, all of which adversely impact physiological processes such as photosynthetic gas exchange, respiration, and nitrogen metabolism, ultimately resulting in reduced biomass, productivity, and quality. The interaction of these stressors activates novel plant defense mechanisms, contributing to exacerbated synergistic damage. Optimal temperature conditions enhance the activation of heat shock proteins (HSPs) and antioxidant-related genes at the molecular level. At the same time, water stress triggers the expression of genes regulated by both abscisic acid-dependent and independent signaling pathways. This review also discusses contemporary agricultural management strategies, applications of genetic engineering, and biotechnological and molecular breeding methods designed to mitigate adverse agroclimatic responses, focusing on enhancing tobacco production under heat and drought stress conditions.
Collapse
Affiliation(s)
- Ming Liu
- College of Agronomy and Biotechnology, Southwest University/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Xianglu Liu
- College of Agronomy and Biotechnology, Southwest University/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yuxiao Song
- Institute of Grain Crops, Agricultural Science Extension Research Institute of Dali Bai Autonomous Prefecture, Dali, Yunnan, China
| | - Yanxia Hu
- Dali Prefecture Branch of Yunnan Tobacco Company, Dali, Yunnan, China
| | - Chengwei Yang
- Dali Prefecture Branch of Yunnan Tobacco Company, Dali, Yunnan, China
| | - Juan Li
- Dali Prefecture Branch of Yunnan Tobacco Company, Dali, Yunnan, China
| | - Shuangzhen Jin
- Dali Prefecture Branch of Yunnan Tobacco Company, Dali, Yunnan, China
| | - Kaiyuan Gu
- College of Agronomy and Biotechnology, Southwest University/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Zexian Yang
- Yunnan Agricultural University, Kunming, Yunnan, China
| | - Wenwu Huang
- Yunnan Agricultural University, Kunming, Yunnan, China
| | - Jiaen Su
- Dali Prefecture Branch of Yunnan Tobacco Company, Dali, Yunnan, China
| | - Longchang Wang
- College of Agronomy and Biotechnology, Southwest University/Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
4
|
Ansari AA, Akhatar J, Sharma S, Banga SS, Atri C. Integrating multiple statistical indices to measure the stability of photosynthetic pigment content and composition in Brassica juncea (L.) Czern germplasm under varying environmental conditions. PHOTOSYNTHESIS RESEARCH 2024; 162:63-74. [PMID: 39133366 DOI: 10.1007/s11120-024-01116-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024]
Abstract
Understanding the stability of photosynthetic pigments is crucial for developing crop cultivars with high productivity and resilience to the environmental stresses. This study leveraged GGE biplot, WAASB, and MTSI indices to assess the stability of content and composition of photosynthetic pigments in leaves and siliques of 286 Brassica juncea (L.) Czern. genotypes across three environments. The GGE biplot analysis identified NRCQR-9901 as the best genotype in terms of chlorophyll 'a' under conditions of high irradiance and long days (E1). For chlorophyll 'b' and total chlorophyll, NC-533728 performed the best. AJ-2 and NPJ-208 had the maximum total carotenoids levels in leaves. RLC-2 was characterized by maximum values for chlorophyll a, chlorophyll b, and total chlorophyll in the siliques. The low irradiance, short days, and moderate to high temperatures (E2) seemed perfect for the synthesis of photosynthetic pigments. NPJ-182 shows the maximum concentrations of chlorophyll 'a', total chlorophyll, and total carotenoids in leaves. Conversely, IC-597869, RE-389, and IC-597894 exhibited the highest concentrations of chlorophyll 'b' under an environment characterized by low light intensity, shorter daylights, and low temperatures (E3) during flowering and siliqua formation stages. The combined analysis found NPJ-182, NC-533728, CN-105233, RLC-2, CN-101846, JA-96, PBR-357, JM-3, and DTM-34 as top performers with high stability. Comparative transcriptome analysis with two stable and high-performing genotypes (PBR-357 and DTM-34) and two average performers revealed upregulation of critical photosynthesis-related genes (ELIP1, CAB3.1, ELIP1.5, and LHCB5) in top performers. This study identified promising trait donors for use in breeding programs aimed at improving the mustard crop's photosynthetic efficiency, productivity, and stability.
Collapse
Affiliation(s)
- Aaftab Alam Ansari
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Javed Akhatar
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Sanjula Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Surinder Singh Banga
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Chhaya Atri
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India.
| |
Collapse
|
5
|
He S, Xu S, He Z, Hao X. Genome-wide identification, characterization and expression analysis of the bZIP transcription factors in garlic ( Allium sativum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1391248. [PMID: 39148621 PMCID: PMC11324451 DOI: 10.3389/fpls.2024.1391248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
Introduction The bZIP genes (bZIPs) are essential in numerous biological processes, including development and stress responses. Despite extensive research on bZIPs in many plants, a comprehensive genome-wide analysis of bZIPs in garlic has yet to be undertaken. Methods In this study, we identified and classified 64 AsbZIP genes (AsbZIPs) into 10 subfamilies. A systematic analysis of the evolutionary characteristics of these AsbZIPs, including chromosome location, gene structure, conserved motifs, and gene duplication, was conducted. Furthermore, we also examined the nucleotide diversity, cis-acting elements, and expression profiles of AsbZIPs in various tissues and under different abiotic stresses and hormone treatments. Results and Discussion Our findings revealed that gene replication plays a crucial role in the expansion of AsbZIPs, with a minor genetic bottleneck observed during domestication. Moreover, the identification of cis-acting elements suggested potential associations of AsbZIPs with garlic development, hormone, and stress responses. Several AsbZIPs exhibited tissue-preferential and stress/hormone-responsive expression patterns. Additionally, Asa7G01972 and Asa7G01379 were notably differentially expressed under various stresses and hormone treatments. Subsequent yeast two-hybridization and yeast induction experiments validated their interactions with Asa1G01577, a homologue of ABI5, reinforcing their importance in hormone and abiotic stress responses. This study unveiled the characteristics of the AsbZIP superfamily and lays a solid foundation for further functional analysis of AsbZIP in garlic.
Collapse
Affiliation(s)
- Shutao He
- Institute of Neurobiology, Jining Medical University, Jining, China
- Institute of Biotechnology and Health, Beijing Academy of Science and Technology, Beijing, China
| | - Sen Xu
- Institute of Neurobiology, Jining Medical University, Jining, China
| | - Zhengjie He
- Rehabilitation Department, Traditional Chinese Medicine Hospital of Yanzhou District of Jining City, Jining, China
| | - Xiaomeng Hao
- Institute of Neurobiology, Jining Medical University, Jining, China
| |
Collapse
|
6
|
Zeng ZL, Wang XQ, Zhang SB, Huang W. Mesophyll conductance limits photosynthesis in fluctuating light under combined drought and heat stresses. PLANT PHYSIOLOGY 2024; 194:1498-1511. [PMID: 37956105 DOI: 10.1093/plphys/kiad605] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Drought and heat stresses usually occur concomitantly in nature, with increasing frequency and intensity of both stresses expected due to climate change. The synergistic agricultural impacts of these compound climate extremes are much greater than those of the individual stresses. However, the mechanisms by which drought and heat stresses separately and concomitantly affect dynamic photosynthesis have not been thoroughly assessed. To elucidate this, we used tomato (Solanum lycopersicum) seedlings to measure dynamic photosynthesis under individual and compound stresses of drought and heat. Individual drought and heat stresses limited dynamic photosynthesis at the stages of diffusional conductance to CO2 and biochemistry, respectively. However, the primary limiting factor for photosynthesis shifted to mesophyll conductance under the compound stresses. Compared with the control, photosynthetic carbon gain in fluctuating light decreased by 38%, 73%, and 114% under the individual drought, heat, and compound stresses, respectively. Therefore, compound stresses caused a greater reduction in photosynthetic carbon gain in fluctuating light conditions than individual stress. These findings highlight the importance of mitigating the effects of compound climate extremes on crop productivity by targeting mesophyll conductance and improving dynamic photosynthesis.
Collapse
Affiliation(s)
- Zhi-Lan Zeng
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Qian Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Shi-Bao Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei Huang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
7
|
Abasi F, Raja NI, Mashwani ZUR, Ehsan M, Ali H, Shahbaz M. Heat and Wheat: Adaptation strategies with respect to heat shock proteins and antioxidant potential; an era of climate change. Int J Biol Macromol 2024; 256:128379. [PMID: 38000583 DOI: 10.1016/j.ijbiomac.2023.128379] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Extreme changes in weather including heat-wave and high-temperature fluctuations are predicted to increase in intensity and duration due to climate change. Wheat being a major staple crop is under severe threat of heat stress especially during the grain-filling stage. Widespread food insecurity underscores the critical need to comprehend crop responses to forthcoming climatic shifts, pivotal for devising adaptive strategies ensuring sustainable crop productivity. This review addresses insights concerning antioxidant, physiological, molecular impacts, tolerance mechanisms, and nanotechnology-based strategies and how wheat copes with heat stress at the reproductive stage. In this study stress resilience strategies were documented for sustainable grain production under heat stress at reproductive stage. Additionally, the mechanisms of heat resilience including gene expression, nanomaterials that trigger transcription factors, (HSPs) during stress, and physiological and antioxidant traits were explored. The most reliable method to improve plant resilience to heat stress must include nano-biotechnology-based strategies, such as the adoption of nano-fertilizers in climate-smart practices and the use of advanced molecular approaches. Notably, the novel resistance genes through advanced molecular approach and nanomaterials exhibit promise for incorporation into wheat cultivars, conferring resilience against imminent adverse environmental conditions. This review will help scientific communities in thermo-tolerance wheat cultivars and new emerging strategies to mitigate the deleterious impact of heat stress.
Collapse
Affiliation(s)
- Fozia Abasi
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | - Naveed Iqbal Raja
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | | | - Maria Ehsan
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Habib Ali
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, 88400 Kota Kinabalu, Malaysia
| |
Collapse
|
8
|
Belal HEE, Abdelpary MAM, Desoky ESM, Ali EF, Al Kashgry NAT, Rady MM, Semida WM, Mahmoud AEM, Sayed AAS. Effect of Eco-Friendly Application of Bee Honey Solution on Yield, Physio-Chemical, Antioxidants, and Enzyme Gene Expressions in Excessive Nitrogen-Stressed Common Bean ( Phaseolus vulgaris L.) Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:3435. [PMID: 37836175 PMCID: PMC10575117 DOI: 10.3390/plants12193435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Excessive use of nitrogen (N) pollutes the environment and causes greenhouse gas emissions; however, the application of eco-friendly plant biostimulators (BSs) can overcome these issues. Therefore, this paper aimed to explore the role of diluted bee honey solution (DHS) in attenuating the adverse impacts of N toxicity on Phaseolus vulgaris growth, yield quality, physio-chemical properties, and defense systems. For this purpose, the soil was fertilized with 100, 125, and 150% of the recommended N dose (RND), and the plants were sprayed with 1.5% DHS. Trials were arranged in a two-factor split-plot design (N levels occupied main plots × DH- occupied subplots). Excess N (150% RND) caused a significant decline in plant growth, yield quality, photosynthesis, and antioxidants, while significantly increasing oxidants and oxidative damage [hydrogen peroxide (H2O2), superoxide (O2•-), nitrate, electrolyte leakage (EL), and malondialdehyde (MDA) levels]. However, DHS significantly improved antioxidant activities (glutathione and nitrate reductases, catalase, ascorbate peroxidase, superoxide dismutase, proline, ascorbate, α-tocopherol, and glutathione) and osmoregulatory levels (soluble protein, glycine betaine, and soluble sugars). Enzyme gene expressions showed the same trend as enzyme activities. Additionally, H2O2, O2•-, EL, MDA, and nitrate levels were significantly declined, reflecting enhanced growth, yield, fruit quality, and photosynthetic efficiency. The results demonstrate that DHS can be used as an eco-friendly approach to overcome the harmful impacts of N toxicity on P. vulgaris plants.
Collapse
Affiliation(s)
- Hussein E. E. Belal
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (H.E.E.B.); (M.A.M.A.)
| | - Mostafa A. M. Abdelpary
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (H.E.E.B.); (M.A.M.A.)
| | - El-Sayed M. Desoky
- Botany Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt;
| | - Esmat F. Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.F.A.); (N.A.T.A.K.)
| | - Najla Amin T. Al Kashgry
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; (E.F.A.); (N.A.T.A.K.)
| | - Mostafa M. Rady
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (H.E.E.B.); (M.A.M.A.)
| | - Wael M. Semida
- Horticulture Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Amr E. M. Mahmoud
- Biochemistry Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt;
| | - Ali A. S. Sayed
- Botany Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt; (H.E.E.B.); (M.A.M.A.)
| |
Collapse
|
9
|
Chen X, Han H, Cong Y, Li X, Zhang W, Wan W, Cui J, Xu W, Diao M, Liu H. The Protective Effect of Exogenous Ascorbic Acid on Photosystem Inhibition of Tomato Seedlings Induced by Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1379. [PMID: 36987066 PMCID: PMC10052531 DOI: 10.3390/plants12061379] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/16/2023] [Accepted: 03/16/2023] [Indexed: 06/19/2023]
Abstract
This study investigated the protective effects of exogenous ascorbic acid (AsA, 0.5 mmol·L-1) treatment on salt-induced photosystem inhibition in tomato seedlings under salt stress (NaCl, 100 mmol·L-1) conditions with and without the AsA inhibitor lycorine. Salt stress reduced the activities of photosystem II (PSII) and PSI. AsA treatment mitigated inhibition of the maximal photochemical efficiency of PSII (Fv/Fm), maximal P700 changes (Pm), the effective quantum yields of PSII and I [Y(II) and Y(I)], and non-photochemical quenching coefficient (NPQ) values under salt stress conditions both with and without lycorine. Moreover, AsA restored the balance of excitation energy between two photosystems (β/α-1) after disruption by salt stress, with or without lycorine. Treatment of the leaves of salt-stressed plants with AsA with or without lycorine increased the proportion of electron flux for photosynthetic carbon reduction [Je(PCR)] while decreasing the O2-dependent alternative electron flux [Ja(O2-dependent)]. AsA with or without lycorine further resulted in increases in the quantum yield of cyclic electron flow (CEF) around PSI [Y(CEF)] while increasing the expression of antioxidant and AsA-GSH cycle-related genes and elevating the ratio of reduced glutathione/oxidized glutathione (GSH/GSSG). Similarly, AsA treatment significantly decreased the levels of reactive oxygen species [superoxide anion (O2-) and hydrogen peroxide (H2O2)] in these plants. Together, these data indicate that AsA can alleviate salt-stress-induced inhibition of PSII and PSI in tomato seedlings by restoring the excitation energy balance between the photosystems, regulating the dissipation of excess light energy by CEF and NPQ, increasing photosynthetic electron flux, and enhancing the scavenging of reactive oxygen species, thereby enabling plants to better tolerate salt stress.
Collapse
Affiliation(s)
- Xianjun Chen
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
| | - Hongwei Han
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Yundan Cong
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
| | - Xuezhen Li
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
| | - Wenbo Zhang
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
| | - Wenliang Wan
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
| | - Jinxia Cui
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
| | - Wei Xu
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
| | - Ming Diao
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
| | - Huiying Liu
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Shihezi 832003, China
| |
Collapse
|
10
|
Sun C, Meng S, Wang B, Zhao S, Liu Y, Qi M, Wang Z, Yin Z, Li T. Exogenous melatonin enhances tomato heat resistance by regulating photosynthetic electron flux and maintaining ROS homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:197-209. [PMID: 36724704 DOI: 10.1016/j.plaphy.2023.01.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/26/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Heat stress reduces plant growth and reproduction and increases agricultural risks. As a natural compound, melatonin modulates broad aspects of the responses of plants to various biotic and abiotic stresses. However, regulation of the photosynthetic electron transfer, reactive oxygen species (ROS) homeostasis and the redox state of redox-sensitive proteins in the tolerance to heat stress induced by melatonin remain largely unknown. The oxygen evolution complex activity on the electron-donating side of photosystem II (PSII) is inhibited, and the electron transfer process from QA to QB on the electron-accepting side of PSII is inhibited. In this case, heat stress decreased the chlorophyll content, carbon assimilation rate, PSII activity, and the proportion of light absorbed by tomato seedlings during electron transfer. The ROS burst led to the breakdown of the PSII core protein. However, exogenous melatonin increased the net photosynthetic rate by 11.3% compared with heat stress, substantially reducing the restriction of photosynthetic systems induced by heat stress. Additionally, melatonin reduces the oxidative damage to PSII by balancing electron transfer on the donor, reactive center, and acceptor sides. Melatonin was used under heat stress to increase the activity of the antioxidant enzyme and preserve ROS equilibrium. In addition, redox proteomics also showed that melatonin controls the redox levels of proteins involved in photosynthesis, and stress and defense processes, which enhances the expression of oxidative genes. In conclusion, melatonin via controlling the photosynthetic electron transport and antioxidant, melatonin increased tomato heat stress tolerance and aided plant growth.
Collapse
Affiliation(s)
- Cong Sun
- Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China; Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, 110866, China; College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China; Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, China
| | - Sida Meng
- Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China; Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, 110866, China; College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Baofeng Wang
- Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China; Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, 110866, China; College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Siting Zhao
- Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China; Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, 110866, China; College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yulong Liu
- Mudanjiang Forest Ecosystem Positioning Observation and Research Station, Heilongjiang Ecological Institute, Harbin 150081, China
| | - Mingfang Qi
- Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China; Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, 110866, China; College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhenqi Wang
- Guizhou Aerospace Intelligent Agriculture Co., Ltd., Guizhou, 550000, China
| | - Zepeng Yin
- Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China; Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, 110866, China; College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Tianlai Li
- Key Laboratory of Fruit Postharvest Biology, Shenyang, 110866, China; Key Laboratory of Protected Horticulture, National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, 110866, China; College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
11
|
Photoinhibition of Photosystem I Induced by Different Intensities of Fluctuating Light Is Determined by the Kinetics of ∆pH Formation Rather Than Linear Electron Flow. Antioxidants (Basel) 2022; 11:antiox11122325. [PMID: 36552532 PMCID: PMC9774317 DOI: 10.3390/antiox11122325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/16/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
Fluctuating light (FL) can cause the selective photoinhibition of photosystem I (PSI) in angiosperms. In nature, leaves usually experience FL conditions with the same low light and different high light intensities, but the effects of different FL conditions on PSI redox state and PSI photoinhibition are not well known. In this study, we found that PSI was highly reduced within the first 10 s after transition from 59 to 1809 μmol photons m-2 s-1 in tomato (Solanum lycopersicum). However, such transient PSI over-reduction was not observed by transitioning from 59 to 501 or 923 μmol photons m-2 s-1. Consequently, FL (59-1809) induced a significantly stronger PSI photoinhibition than FL (59-501) and FL (59-923). Compared with the proton gradient (∆pH) level after transition to high light for 60 s, tomato leaves almost formed a sufficient ∆pH after light transition for 10 s in FL (59-501) but did not in FL (59-923) or FL (59-1809). The difference in ∆pH between 10 s and 60 s was tightly correlated to the extent of PSI over-reduction and PSI photoinhibition induced by FL. Furthermore, the difference in PSI photoinhibition between (59-923) and FL (59-1809) was accompanied by the same level of linear electron flow. Therefore, PSI photoinhibition induced by different intensities of FL is more related to the kinetics of ∆pH formation rather than linear electron flow.
Collapse
|
12
|
Duan L, Mo Z, Fan Y, Li K, Yang M, Li D, Ke Y, Zhang Q, Wang F, Fan Y, Liu R. Genome-wide identification and expression analysis of the bZIP transcription factor family genes in response to abiotic stress in Nicotiana tabacum L. BMC Genomics 2022; 23:318. [PMID: 35448973 PMCID: PMC9027840 DOI: 10.1186/s12864-022-08547-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The basic leucine zipper (bZIP) transcription factor (TF) is one of the largest families of transcription factors (TFs). It is widely distributed and highly conserved in animals, plants, and microorganisms. Previous studies have shown that the bZIP TF family is involved in plant growth, development, and stress responses. The bZIP family has been studied in many plants; however, there is little research on the bZIP gene family in tobacco. RESULTS In this study, 77 bZIPs were identified in tobacco and named NtbZIP01 through to NtbZIP77. These 77 genes were then divided into eleven subfamilies according to their homology with Arabidopsis thaliana. NtbZIPs were unevenly distributed across twenty-two tobacco chromosomes, and we found sixteen pairs of segmental duplication. We further studied the collinearity between these genes and related genes of six other species. Quantitative real-time polymerase chain reaction analysis identified that expression patterns of bZIPs differed, including in different organs and under various abiotic stresses. NtbZIP49 might be important in the development of flowers and fruits; NtbZIP18 might be an important regulator in abiotic stress. CONCLUSIONS In this study, the structures and functions of the bZIP family in tobacco were systematically explored. Many bZIPs may play vital roles in the regulation of organ development, growth, and responses to abiotic stresses. This research has great significance for the functional characterisation of the tobacco bZIP family and our understanding of the bZIP family in higher plants.
Collapse
Affiliation(s)
- Lili Duan
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Zejun Mo
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yue Fan
- College of Food Science and Engineering, Xinjiang Institute of Technology, Aksu, 843100, People's Republic of China
| | - Kuiyin Li
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Mingfang Yang
- College of Agriculture, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Dongcheng Li
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yuzhou Ke
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Qian Zhang
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Feiyan Wang
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Yu Fan
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, People's Republic of China.
| | - Renxiang Liu
- Guizhou Key Laboratory for Tobacco Quality Research, Guizhou University, Guiyang, 550025, People's Republic of China.
- College of Tobacco, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
13
|
Wang H, Wang XQ, Zeng ZL, Yu H, Huang W. Photosynthesis under fluctuating light in the CAM plant Vanilla planifolia. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111207. [PMID: 35193751 DOI: 10.1016/j.plantsci.2022.111207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Photosynthetic induction after a sudden increase in illumination affects carbon gain. Photosynthetic dynamics under fluctuating light (FL) have been widely investigated in C3 and C4 plants but are little known in CAM plants. In our present study, the chlorophyll fluorescence, P700 redox state and electrochromic shift signals were measured to examine photosynthetic characteristics under FL in the CAM orchid Vanilla planifolia. The light use efficiency was maximized in the morning but was restricted in the afternoon, indicating that the pool of malic acid dried down in the afternoon. During photosynthetic induction in the morning, electron flow through photosystem I rapidly reached the 95% of the maximum value in 4-6 min, indicating that V. planifolia showed a fast photosynthetic induction when compared with C3 and C4 plants reported previously. Upon a sudden transition from dark to actinic light, a rapid re-oxidation of P700 was observed in V. planifolia, indicating the fast outflow of electrons from PSI to alternative electron acceptors, which was attributed to the O2 photo-reduction mediated by water-water cycle. The functioning of water-water cycle prevented photosystem I over-reduction after transitioning from low to high light and thus protected PSI under FL. In the afternoon, cyclic electron flow was stimulated under FL to fine-tune photosynthetic apparatus when photosynthetic CO2 was restricted. Therefore, water-water cycle cooperates with cyclic electron flow to regulate the photosynthesis under FL in the CAM orchid V. planifolia.
Collapse
Affiliation(s)
- Hui Wang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China
| | - Xiao-Qian Wang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhi-Lan Zeng
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huan Yu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China.
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
14
|
Poór P, Nawaz K, Gupta R, Ashfaque F, Khan MIR. Ethylene involvement in the regulation of heat stress tolerance in plants. PLANT CELL REPORTS 2022; 41:675-698. [PMID: 33713206 DOI: 10.1007/s00299-021-02675-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/14/2021] [Indexed: 05/12/2023]
Abstract
Because of the rise in global temperature, heat stress has become a major concern for crop production. Heat stress deteriorates plant productivity and alters phenological and physiological responses that aid in precise monitoring and sensing of mild-to-severe transient heat stress. Plants have evolved several sophisticated mechanisms including hormone-signaling pathways to sense heat stimuli and acquire heat stress tolerance. In response to heat stress, ethylene, a gaseous hormone, is produced which is indispensable for plant growth and development and tolerance to various abiotic stresses including heat stress. The manipulation of ethylene in developing heat stress tolerance targeting ethylene biosynthesis and signaling pathways has brought promising out comes. Conversely increased ethylene biosynthesis and signaling seem to exhibit inhibitory effects in plant growth responses from primitive to maturity stages. This review mainly focuses on the recent studies of ethylene involvement in plant responses to heat stress and its functional regulation, and molecular mechanism underlying the plant responses in the mitigation of heat-induced damages. Furthermore, this review also describes the crosstalk between ethylene and other signaling molecules under heat stress and approaches to improve heat stress tolerance in plants.
Collapse
Affiliation(s)
- Peter Poór
- Department of Plant Biology, University of Szeged, Szeged, Hungary
| | - Kashif Nawaz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ravi Gupta
- Department of Botany, Jamia Hamdard, New Delhi, India
| | - Farha Ashfaque
- Department of Botany, Aligarh Muslim University, Aligarh, India
| | | |
Collapse
|
15
|
Filaček A, Živčák M, Ferroni L, Barboričová M, Gašparovič K, Yang X, Landi M, Brestič M. Pre-Acclimation to Elevated Temperature Stabilizes the Activity of Photosystem I in Wheat Plants Exposed to an Episode of Severe Heat Stress. PLANTS 2022; 11:plants11050616. [PMID: 35270085 PMCID: PMC8912596 DOI: 10.3390/plants11050616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 12/01/2022]
Abstract
The importance of high temperature as an environmental factor is growing in proportion to deepening global climate change. The study aims to evaluate the effects of long-term acclimation of plants to elevated temperature on the tolerance of their photosynthetic apparatus to heat stress. Three wheat (Triticum sp. L.) genotypes differing in leaf and photosynthetic traits were analyzed: Thesee, Roter Samtiger Kolbenweizen, and ANK 32A. The pot experiment was established in natural conditions outdoors (non-acclimated variant), from which a part of the plants was placed in foil tunnel with elevated temperature for 14 days (high temperature-acclimated variant). A severe heat stress screening experiment was induced by an exposition of the plans in a growth chamber with artificial light and air temperature up to 45 °C for ~12 h before the measurements. The measurements of leaf photosynthetic CO2 assimilation, stomatal conductance, and rapid kinetics of chlorophyll a fluorescence was performed. The results confirmed that a high temperature drastically reduced the photosynthetic assimilation rate caused by the non-stomatal (biochemical) limitation of photosynthetic processes. On the other hand, the chlorophyll fluorescence indicated only a moderate level of decrease of quantum efficiency of photosystem (PS) II (Fv/Fm parameter), indicating mostly reversible heat stress effects. The heat stress led to a decrease in the number of active PS II reaction centers (RC/ABS) and overall activity o PSII (PIabs) in all genotypes, whereas the PS I (parameter ψREo) was negatively influenced by heat stress in the non-acclimated variant only. Our results showed that the genotypes differ in acclimation capacity to heat stress, and rapid noninvasive techniques may help screen the stress effects and identify more tolerant crop genotypes. The acclimation was demonstrated more at the PS I level, which may be associated with the upregulation of alternative photosynthetic electron transport pathways with clearly protective functions.
Collapse
Affiliation(s)
- Andrej Filaček
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.F.); (M.B.); (K.G.); (M.B.)
| | - Marek Živčák
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.F.); (M.B.); (K.G.); (M.B.)
- Correspondence: (M.Ž.); (L.F.); Tel.: +421-37-6414-821 (M.Ž.); +39-0532-293785 (L.F.)
| | - Lorenzo Ferroni
- Laboratory of Plant Cytophysiology, Department of Environmental and Prevention Sciences, University of Ferrara, Corso Ercole I d’Este 32, 44100 Ferrara, Italy
- Correspondence: (M.Ž.); (L.F.); Tel.: +421-37-6414-821 (M.Ž.); +39-0532-293785 (L.F.)
| | - Mária Barboričová
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.F.); (M.B.); (K.G.); (M.B.)
| | - Kristína Gašparovič
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.F.); (M.B.); (K.G.); (M.B.)
| | - Xinghong Yang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian 271018, China;
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy;
| | - Marián Brestič
- Department of Plant Physiology, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, Trieda A. Hlinku 2, 949 76 Nitra, Slovakia; (A.F.); (M.B.); (K.G.); (M.B.)
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic
| |
Collapse
|
16
|
Zeng ZL, Sun H, Wang XQ, Zhang SB, Huang W. Regulation of Leaf Angle Protects Photosystem I under Fluctuating Light in Tobacco Young Leaves. Cells 2022; 11:252. [PMID: 35053368 PMCID: PMC8773500 DOI: 10.3390/cells11020252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/31/2021] [Accepted: 01/04/2022] [Indexed: 02/05/2023] Open
Abstract
Fluctuating light is a typical light condition in nature and can cause selective photodamage to photosystem I (PSI). The sensitivity of PSI to fluctuating light is influenced by the amplitude of low/high light intensity. Tobacco mature leaves are tended to be horizontal to maximize the light absorption and photosynthesis, but young leaves are usually vertical to diminish the light absorption. Therefore, we tested the hypothesis that such regulation of the leaf angle in young leaves might protect PSI against photoinhibition under fluctuating light. We found that, upon a sudden increase in illumination, PSI was over-reduced in extreme young leaves but was oxidized in mature leaves. After fluctuating light treatment, such PSI over-reduction aggravated PSI photoinhibition in young leaves. Furthermore, the leaf angle was tightly correlated to the extent of PSI photoinhibition induced by fluctuating light. Therefore, vertical young leaves are more susceptible to PSI photoinhibition than horizontal mature leaves when exposed to the same fluctuating light. In young leaves, the vertical leaf angle decreased the light absorption and thus lowered the amplitude of low/high light intensity. Therefore, the regulation of the leaf angle was found for the first time as an important strategy used by young leaves to protect PSI against photoinhibition under fluctuating light. To our knowledge, we show here new insight into the photoprotection for PSI under fluctuating light in nature.
Collapse
Affiliation(s)
- Zhi-Lan Zeng
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiao-Qian Wang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Z.-L.Z.); (H.S.); (X.-Q.W.); (S.-B.Z.)
| |
Collapse
|
17
|
Shi Q, Sun H, Timm S, Zhang S, Huang W. Photorespiration Alleviates Photoinhibition of Photosystem I under Fluctuating Light in Tomato. PLANTS 2022; 11:plants11020195. [PMID: 35050082 PMCID: PMC8780929 DOI: 10.3390/plants11020195] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/12/2022]
Abstract
Fluctuating light (FL) is a typical natural light stress that can cause photodamage to photosystem I (PSI). However, the effect of growth light on FL-induced PSI photoinhibition remains controversial. Plants grown under high light enhance photorespiration to sustain photosynthesis, but the contribution of photorespiration to PSI photoprotection under FL is largely unknown. In this study, we examined the photosynthetic performance under FL in tomato (Lycopersicon esculentum) plants grown under high light (HL-plants) and moderate light (ML-plants). After an abrupt increase in illumination, the over-reduction of PSI was lowered in HL-plants, resulting in a lower FL-induced PSI photoinhibition. HL-plants displayed higher capacities for CO2 fixation and photorespiration than ML-plants. Within the first 60 s after transition from low to high light, PSII electron transport was much higher in HL-plants, but the gross CO2 assimilation rate showed no significant difference between them. Therefore, upon a sudden increase in illumination, the difference in PSII electron transport between HL- and ML-plants was not attributed to the Calvin–Benson cycle but was caused by the change in photorespiration. These results indicated that the higher photorespiration in HL-plants enhanced the PSI electron sink downstream under FL, which mitigated the over-reduction of PSI and thus alleviated PSI photoinhibition under FL. Taking together, we here for the first time propose that photorespiration acts as a safety valve for PSI photoprotection under FL.
Collapse
Affiliation(s)
- Qi Shi
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Q.S.); (H.S.); (S.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Q.S.); (H.S.); (S.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Stefan Timm
- Plant Physiology Department, University of Rostock, D-18051 Rostock, Germany;
| | - Shibao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Q.S.); (H.S.); (S.Z.)
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (Q.S.); (H.S.); (S.Z.)
- Correspondence:
| |
Collapse
|
18
|
Wang S, Zhao L, Fang F, Wang L, Zhang Z, Zhang S, Du L, Zhao QH. A mixed strategy to fabricate two bifunctional ligand-based Ag-complexes with high proton conductivity. NEW J CHEM 2022. [DOI: 10.1039/d2nj03890k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High proton conductivity materials BAg-1 and BAg-2 were obtained using a mixed strategy with the same main bifunctional ligand.
Collapse
Affiliation(s)
- Shuyu Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Lijia Zhao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Fang Fang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Lei Wang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Zhen Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Suoshu Zhang
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Lin Du
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Qi-Hua Zhao
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| |
Collapse
|
19
|
Kanazawa A, Chattopadhyay A, Kuhlgert S, Tuitupou H, Maiti T, Kramer DM. Light potentials of photosynthetic energy storage in the field: what limits the ability to use or dissipate rapidly increased light energy? ROYAL SOCIETY OPEN SCIENCE 2021; 8:211102. [PMID: 34925868 PMCID: PMC8672073 DOI: 10.1098/rsos.211102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
The responses of plant photosynthesis to rapid fluctuations in environmental conditions are critical for efficient conversion of light energy. These responses are not well-seen laboratory conditions and are difficult to probe in field environments. We demonstrate an open science approach to this problem that combines multifaceted measurements of photosynthesis and environmental conditions, and an unsupervised statistical clustering approach. In a selected set of data on mint (Mentha sp.), we show that 'light potentials' for linear electron flow and non-photochemical quenching (NPQ) upon rapid light increases are strongly suppressed in leaves previously exposed to low ambient photosynthetically active radiation (PAR) or low leaf temperatures, factors that can act both independently and cooperatively. Further analyses allowed us to test specific mechanisms. With decreasing leaf temperature or PAR, limitations to photosynthesis during high light fluctuations shifted from rapidly induced NPQ to photosynthetic control of electron flow at the cytochrome b6f complex. At low temperatures, high light induced lumen acidification, but did not induce NPQ, leading to accumulation of reduced electron transfer intermediates, probably inducing photodamage, revealing a potential target for improving the efficiency and robustness of photosynthesis. We discuss the implications of the approach for open science efforts to understand and improve crop productivity.
Collapse
Affiliation(s)
- Atsuko Kanazawa
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Abhijnan Chattopadhyay
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - Sebastian Kuhlgert
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Hainite Tuitupou
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
| | - Tapabrata Maiti
- Department of Statistics and Probability, Michigan State University, East Lansing, MI 48824, USA
| | - David M. Kramer
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI 48824, USA
- Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
20
|
Chovancek E, Zivcak M, Brestic M, Hussain S, Allakhverdiev SI. The different patterns of post-heat stress responses in wheat genotypes: the role of the transthylakoid proton gradient in efficient recovery of leaf photosynthetic capacity. PHOTOSYNTHESIS RESEARCH 2021; 150:179-193. [PMID: 33393064 DOI: 10.1007/s11120-020-00812-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/08/2020] [Indexed: 05/28/2023]
Abstract
The frequency and severity of heat waves are expected to increase in the near future, with a significant impact on physiological functions and yield of crop plants. In this study, we assessed the residual post-heat stress effects on photosynthetic responses of six diverse winter wheat (Triticum sp.) genotypes, differing in country of origin, taxonomy and ploidy (tetraploids vs. hexaploids). After 5 days of elevated temperatures (up to 38 °C), the photosynthetic parameters recorded on the first day of recovery (R1) as well as after the next 4-5 days of the recovery (R2) were compared to those of the control plants (C) grown under moderate temperatures. Based on the values of CO2 assimilation rate (A) and the maximum rates of carboxylation (VCmax) in R1, we identified that the hexaploid (HEX) and tetraploid (TET) species clearly differed in the strength of their response to heat stress. Next, the analyses of gas exchange, simultaneous measurements of PSI and PSII photochemistry and the measurements of electrochromic bandshift (ECS) have consistently shown that photosynthetic and photoprotective functions in leaves of TET genotypes were almost fully recovered in R2, whereas the recovery of photosynthetic and photoprotective functions in the HEX group in R2 was still rather low. A poor recovery was associated with an overly reduced acceptor side of photosystem I as well as high values of the electric membrane potential (Δψ component of the proton motive force, pmf) in the chloroplast. On the other hand, a good recovery of photosynthetic capacity and photoprotective functions was clearly associated with an enhanced ΔpH component of the pmf, thus demonstrating a key role of efficient regulation of proton transport to ensure buildup of the transthylakoid proton gradient needed for photosynthesis restoration after high-temperature episodes.
Collapse
Affiliation(s)
- Erik Chovancek
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic.
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Slovak Republic
| | - Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, Chengdu, People's Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Key Laboratory of Crop Ecophysiology and Farming System in Southwest China, Sichuan Agricultural University, Chengdu, People's Republic of China
| | | |
Collapse
|
21
|
Diurnal Response of Photosystem I to Fluctuating Light Is Affected by Stomatal Conductance. Cells 2021; 10:cells10113128. [PMID: 34831351 PMCID: PMC8621556 DOI: 10.3390/cells10113128] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/17/2022] Open
Abstract
Upon a sudden transition from low to high light, electrons transported from photosystem II (PSII) to PSI should be rapidly consumed by downstream sinks to avoid the over-reduction of PSI. However, the over-reduction of PSI under fluctuating light might be accelerated if primary metabolism is restricted by low stomatal conductance. To test this hypothesis, we measured the effect of diurnal changes in stomatal conductance on photosynthetic regulation under fluctuating light in tomato (Solanum lycopersicum) and common mulberry (Morus alba). Under conditions of high stomatal conductance, we observed PSI over-reduction within the first 10 s after transition from low to high light. Lower stomatal conductance limited the activity of the Calvin–Benson–Bassham cycle and aggravated PSI over-reduction within 10 s after the light transition. We also observed PSI over-reduction after transition from low to high light for 30 s at the low stomatal conductance typical of the late afternoon, indicating that low stomatal conductance extends the period of PSI over-reduction under fluctuating light. Therefore, diurnal changes in stomatal conductance significantly affect the PSI redox state under fluctuating light. Moreover, our analysis revealed an unexpected inhibition of cyclic electron flow by the severe over-reduction of PSI seen at low stomatal conductance. In conclusion, stomatal conductance can have a large effect on thylakoid reactions under fluctuating light.
Collapse
|
22
|
Zhao L, Zhu RR, Wang S, He L, Du L, Zhao QH. Multiple Strategies to Fabricate a Highly Stable 2D Cu IICu I-Organic Framework with High Proton Conductivity. Inorg Chem 2021; 60:16474-16483. [PMID: 34657429 DOI: 10.1021/acs.inorgchem.1c02312] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Using multifunctional organic ligands with multiple acidic groups (carboxylate and sulfonate groups) to synthesize metal-organic frameworks (MOFs) bearing effective H-bond networks is a promising strategy to obtain highly proton conductive materials. In this work, a highly stable two-dimensional MOF, [CuII5CuI2(μ3-OH)4(H2O)6(L)2(H2L)2]·3H2O (denoted as YCu161; H3L = 6-sulfonaphthalene-1,4-dicarboxylic acid) containing mixed-valence [CuII5CuI2(μ3-OH)4]8+ subunits, was successfully prepared. It exhibited excellent stability and temperature- and humidity-dependent proton conduction properties. Its optimal proton conductivity reached 1.84 × 10-3 S cm-1 at 90 °C and 98% relative humidity. On the basis of a crystal structure analysis, water vapor adsorption test results, and activation energy calculations, we deduced the proton conduction pathway and mechanism. Apparently, uncoordinated sulfonic and carboxyl groups and a network of abundant H-bonds inside the framework were responsible for the efficient proton transfer. Therefore, the strategy of selecting suitable bifunctional ligands to construct two-dimensional Cu-cluster-based MOFs with excellent proton conductivity is feasible.
Collapse
Affiliation(s)
- Lijia Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Rong-Rong Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Shuyu Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Liancheng He
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Lin Du
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Qi-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| |
Collapse
|
23
|
Yang YJ, Sun H, Zhang SB, Huang W. Roles of alternative electron flows in response to excess light in Ginkgo biloba. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 312:111030. [PMID: 34620434 DOI: 10.1016/j.plantsci.2021.111030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Ginkgo biloba L., the only surviving species of Ginkgoopsida, is a famous relict gymnosperm, it may provide new insight into the evolution of photosynthetic mechanisms. Flavodiiron proteins (FDPs) are conserved in nonflowering plants, but the role of FDPs in gymnosperms has not yet been clarified. In particular, how gymnosperms integrate FDPs and cyclic electron transport (CET) to better adapt to excess light is poorly understood. To elucidate these questions, we measured the P700 signal, chlorophyll fluorescence and electrochromic shift signal under fluctuating and constant light in G. biloba. Within the first seconds after light increased, G. biloba could not build up a sufficient proton gradient (ΔpH). Concomitantly, photo-reduction of O2 mediated by FDPs contributed to the rapid oxidation of P700 and protected PSI under fluctuating light. Therefore, in G. biloba, FDPs mainly protect PSI under fluctuating light at acceptor side. Under constant high light, the oxidation of PSI and the induction of non-photochemical quenching were attributed to the increase in ΔpH formation, which was mainly caused by the increase in CET rather than linear electron transport. Therefore, under constant light, CET finely regulates the PSI redox state and non-photochemical quenching through ΔpH formation, protecting PSI and PSII against excess light. We conclude that, in G. biloba, FDPs are particularly important under fluctuating light while CET is essential under constant high light. The coordination of FDPs and CET fine-tune photosynthetic apparatus under excess light.
Collapse
Affiliation(s)
- Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
24
|
Shahzadi AK, Bano H, Ogbaga CC, Ayyaz A, Parveen R, Zafar ZU, Athar HUR, Ashraf M. Coordinated impact of ion exclusion, antioxidants and photosynthetic potential on salt tolerance of ridge gourd [Luffa acutangula (L.) Roxb.]. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:517-528. [PMID: 34425396 DOI: 10.1016/j.plaphy.2021.08.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/31/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
The contribution of one major or a combination of several physiological processes in salt tolerance was assessed in three local varieties (Blacklong, Advanta-1103, and Dilpasand) of ridge gourd [Luffa acutangula (L.) Roxb.] at varying salt levels (0, 75, and 150 mM NaCl). Based on growth attributes, var. Dilpasand as salt-tolerant and var. Blacklong as moderately salt-tolerant, while var. Advanta-1103 as salt-sensitive. Inter-varietal differences for photosynthetic pigments and relative water content (RWC) was not observed. The salt-sensitive variety Advanta 1103 had greater Na+ accumulation (73.72%) in the leaves than those in the moderately tolerant and tolerant varieties. Total soluble proteins were relatively lower (58.25%) in the salt-sensitive variety but maximal increase (69.34%) in total free amino acids was observed. However, accumulation of proline was maximal in the salt-tolerant variety (Dilpasand). Salt-tolerant variety exhibited minimal oxidative stress (relative low levels of H2O2) and membrane damage (low content of MDA and electrolytic leakage) and higher activities of antioxidant enzymes (catalase and peroxidase). Although all ridge gourd varieties down-regulated the electron transport through PSII by increasing the safe dissipation of heat Y(NPQ) to lower the ROS generation, this was maximal in the salt-tolerant variety Dilpasand. Relatively greater reduction in Y(ND) and enhancement in Y(NA) indicated PSI-photoinhibition in salt-sensitive variety. The greater salt tolerance in var. Dilpasand was due to the coordinated impact of ion exclusion, higher accumulation of proline, better capacity to manage electron transport from PSII to PSI with higher Y(NPQ) and antioxidant capacity.
Collapse
Affiliation(s)
| | - Hussan Bano
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan; Department of Botany, The Women University, Multan, Pakistan.
| | - Chukwuma C Ogbaga
- Department of Biological Sciences, Nile University of Nigeria, Airport Road, Abuja, Nigeria
| | - Ahsan Ayyaz
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Rabia Parveen
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Habib-Ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | | |
Collapse
|
25
|
Lei YB, Xia HX, Chen K, Plenković-Moraj A, Huang W, Sun G. Photosynthetic regulation in response to fluctuating light conditions under temperature stress in three mosses with different light requirements. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:111020. [PMID: 34482921 DOI: 10.1016/j.plantsci.2021.111020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 06/13/2023]
Abstract
Under natural field conditions, mosses experience fluctuating light intensities combined with temperature stress. Alternative electron flow mediated by flavodiiron proteins (FLVs) and cyclic electron flow (CEF) around photosystem I (PSI) allow mosses to growth under fluctuating light conditions. However, little is known about the roles of FLVs and CEF in the regulation of photosynthesis under temperature stress combined with fluctuating light. Here, we measured chlorophyll fluorescence and P700 redox state under fluctuating light conditions at 4 °C, 20 °C, and 35 °C in three mosses with different light requirements. Upon a sudden increase in light intensity, electron flow from photosystem II initially increased and then gradually decreased at 20 °C and 35 °C, indicating that the operation of FLV-dependent flow lasted much longer than previously thought. Furthermore, the absolute rates of FLV-dependent flow and CEF were enhanced under fluctuating light at 35 °C, pointing to their important roles in photoprotection when exposed to fluctuating light at moderate high temperature. Furthermore, the downregulation of FLV activity at 4 °C was partially compensated for by enhanced CEF activity. These results suggested the subtle coordination between FLV activity and CEF under fluctuating light and temperature stress. Racomitrium japonicum and Hypnum plumaeforme, which usually grow under relatively high light levels, exhibited higher FLV activity and CEF than the shade-grown moss Plagiomnium ellipticum. Based on our results, we conclude that photosynthetic acclimation to fluctuating light and temperature stress in different mosses is largely linked to the adjustment of FLV activity and CEF.
Collapse
Affiliation(s)
- Yan-Bao Lei
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Hong-Xia Xia
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China; School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Anđelka Plenković-Moraj
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Geng Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
26
|
Chadee A, Alber NA, Dahal K, Vanlerberghe GC. The Complementary Roles of Chloroplast Cyclic Electron Transport and Mitochondrial Alternative Oxidase to Ensure Photosynthetic Performance. FRONTIERS IN PLANT SCIENCE 2021; 12:748204. [PMID: 34650584 PMCID: PMC8505746 DOI: 10.3389/fpls.2021.748204] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/30/2021] [Indexed: 05/29/2023]
Abstract
Chloroplasts use light energy and a linear electron transport (LET) pathway for the coupled generation of NADPH and ATP. It is widely accepted that the production ratio of ATP to NADPH is usually less than required to fulfill the energetic needs of the chloroplast. Left uncorrected, this would quickly result in an over-reduction of the stromal pyridine nucleotide pool (i.e., high NADPH/NADP+ ratio) and under-energization of the stromal adenine nucleotide pool (i.e., low ATP/ADP ratio). These imbalances could cause metabolic bottlenecks, as well as increased generation of damaging reactive oxygen species. Chloroplast cyclic electron transport (CET) and the chloroplast malate valve could each act to prevent stromal over-reduction, albeit in distinct ways. CET avoids the NADPH production associated with LET, while the malate valve consumes the NADPH associated with LET. CET could operate by one of two different pathways, depending upon the chloroplast ATP demand. The NADH dehydrogenase-like pathway yields a higher ATP return per electron flux than the pathway involving PROTON GRADIENT REGULATION5 (PGR5) and PGR5-LIKE PHOTOSYNTHETIC PHENOTYPE1 (PGRL1). Similarly, the malate valve could couple with one of two different mitochondrial electron transport pathways, depending upon the cytosolic ATP demand. The cytochrome pathway yields a higher ATP return per electron flux than the alternative oxidase (AOX) pathway. In both Arabidopsis thaliana and Chlamydomonas reinhardtii, PGR5/PGRL1 pathway mutants have increased amounts of AOX, suggesting complementary roles for these two lesser-ATP yielding mechanisms of preventing stromal over-reduction. These two pathways may become most relevant under environmental stress conditions that lower the ATP demands for carbon fixation and carbohydrate export.
Collapse
Affiliation(s)
- Avesh Chadee
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Nicole A. Alber
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| | - Keshav Dahal
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Greg C. Vanlerberghe
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, Toronto, ON, Canada
| |
Collapse
|
27
|
Tan SL, Huang X, Li WQ, Zhang SB, Huang W. Elevated CO 2 Concentration Alters Photosynthetic Performances under Fluctuating Light in Arabidopsis thaliana. Cells 2021; 10:cells10092329. [PMID: 34571978 PMCID: PMC8471415 DOI: 10.3390/cells10092329] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 01/16/2023] Open
Abstract
In view of the current and expected future rise in atmospheric CO2 concentrations, we examined the effect of elevated CO2 on photoinhibition of photosystem I (PSI) under fluctuating light in Arabidopsis thaliana. At 400 ppm CO2, PSI showed a transient over-reduction within the first 30 s after transition from dark to actinic light. Under the same CO2 conditions, PSI was highly reduced after a transition from low to high light for 20 s. However, such PSI over-reduction greatly decreased when measured in 800 ppm CO2, indicating that elevated atmospheric CO2 facilitates the rapid oxidation of PSI under fluctuating light. Furthermore, after fluctuating light treatment, residual PSI activity was significantly higher in 800 ppm CO2 than in 400 ppm CO2, suggesting that elevated atmospheric CO2 mitigates PSI photoinhibition under fluctuating light. We further demonstrate that elevated CO2 does not affect PSI activity under fluctuating light via changes in non-photochemical quenching or cyclic electron transport, but rather from a rapid electron sink driven by CO2 fixation. Therefore, elevated CO2 mitigates PSI photoinhibition under fluctuating light at the acceptor rather than the donor side. Taken together, these observations indicate that elevated atmospheric CO2 can have large effects on thylakoid reactions under fluctuating light.
Collapse
Affiliation(s)
- Shun-Ling Tan
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.-L.T.); (X.H.); (W.-Q.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xing Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.-L.T.); (X.H.); (W.-Q.L.)
| | - Wei-Qi Li
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.-L.T.); (X.H.); (W.-Q.L.)
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.-L.T.); (X.H.); (W.-Q.L.)
- Correspondence: (S.-B.Z.); (W.H.)
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (S.-L.T.); (X.H.); (W.-Q.L.)
- Correspondence: (S.-B.Z.); (W.H.)
| |
Collapse
|
28
|
Different Strategies for Photosynthetic Regulation under Fluctuating Light in Two Sympatric Paphiopedilum Species. Cells 2021; 10:cells10061451. [PMID: 34200524 PMCID: PMC8229141 DOI: 10.3390/cells10061451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 01/10/2023] Open
Abstract
Fluctuating light can cause selective photoinhibition of photosystem I (PSI) in angiosperms. Cyclic electron flow (CEF) around PSI and electron flux from water via the electron transport chain to oxygen (the water-water cycle) play important roles in coping with fluctuating light in angiosperms. However, it is unclear whether plant species in the same genus employ the same strategy to cope with fluctuating light. To answer this question, we measured P700 redox kinetics and chlorophyll fluorescence under fluctuating light in two Paphiopedilum (P.) Pftzer (Orchidaceae) species, P. dianthum and P. micranthum. After transition from dark to high light, P. dianthum displayed a rapid re-oxidation of P700, while P. micranthum displayed an over-reduction of P700. Furthermore, the rapid re-oxidation of P700 in P. dianthum was not observed when measured under anaerobic conditions. These results indicated that photo-reduction of O2 mediated by the water-water cycle was functional in P. dianthum but not in P. micranthum. Within the first few seconds after an abrupt transition from low to high light, PSI was highly oxidized in P. dianthum but was highly reduced in P. micranthum, indicating that the different responses of PSI to fluctuating light between P. micranthum and P. dianthum was attributed to the water-water cycle. In P. micranthum, the lack of the water-water cycle was partially compensated for by an enhancement of CEF. Taken together, P. dianthum and P. micranthum employed different strategies to cope with the abrupt change of light intensity, indicating the diversity of strategies for photosynthetic acclimation to fluctuating light in these two closely related orchid species.
Collapse
|
29
|
Photosynthetic regulation under fluctuating light at chilling temperature in evergreen and deciduous tree species. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2021; 219:112203. [PMID: 33957467 DOI: 10.1016/j.jphotobiol.2021.112203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 11/20/2022]
Abstract
Plants usually experience fluctuating light conditions at chilling temperatures during the autumn season. We hypothesized that photosystem I (PSI) and PSII are more susceptible to photoinhibition under fluctuating light at chilling temperatures in deciduous species relative to evergreen species. We measured the photosynthetic performances under fluctuating light at 6 °C in two evergreen and two deciduous broadleaf tree species. Within the first 10 s after light increased at 6 °C, none of these species could generate an enough trans-thylakoid proton gradient. Meanwhile, PSI was highly oxidised in evergreen species but was highly reduced in deciduous species. This transient over-reduction of PSI in deciduous species was mainly caused by the higher electron flow from PSII. Furthermore, the deciduous species showed a significantly smaller violaxanthin pool and lower non-photochemical quenching under high light conditions at 6 °C, leading to more excess light energy could not be dissipated in PSII. Hence, we propose that fluctuating light combined with chilling temperature cause the over-reduction of photosynthetic electron chain in deciduous species.
Collapse
|
30
|
A biological agent modulates the physiology of barley infected with Drechslera teres. Sci Rep 2021; 11:8330. [PMID: 33859319 PMCID: PMC8050242 DOI: 10.1038/s41598-021-87853-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Recognized as the causal agent of net blotch, Drechslera teres is responsible for major losses of barley crop yield. The consequences of this leaf disease are due to the impact of the infection on the photosynthetic performance of barley leaves. To limit the symptoms of this ascomycete, the use of beneficial bacteria known as "Plant Growth Promoting Rhizobacteria" constitutes an innovative and environmentally friendly strategy. A bacterium named as strain B25 belonging to the genus Burkholderia showed a strong antifungal activity against D. teres. The bacterium was able to limit the development of the fungus by 95% in detached leaves of bacterized plants compared to the non-bacterized control. In this study, in-depth analyses of the photosynthetic performance of young barley leaves infected with D. teres and/or in the presence of the strain B25 were carried out both in and close to the necrotic area. In addition, gas exchange measurements were performed only near the necrotic area. Our results showed that the presence of the beneficial bacterium reduced the negative impact of the fungus on the photosynthetic performance and modified only the net carbon assimilation rate close to the necrotic area. Indeed, the presence of the strain B25 decreased the quantum yield of regulated non-photochemical energy loss in PSII noted as Y(NPQ) and allowed to maintain the values stable of maximum quantum yield of PSII photochemistry known as Fv/Fm and close to those of the control in the presence of D. teres. To the best of our knowledge, these data constitute the first study focusing on the impact of net blotch fungus and a beneficial bacterium on photosynthesis and respiratory parameters in barley leaves.
Collapse
|
31
|
Huang W, Sun H, Tan SL, Zhang SB. The water-water cycle is not a major alternative sink in fluctuating light at chilling temperature. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110828. [PMID: 33691962 DOI: 10.1016/j.plantsci.2021.110828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/30/2020] [Accepted: 01/12/2021] [Indexed: 05/13/2023]
Abstract
The water-water cycle (WWC) has the potential to alleviate photoinhibition of photosystem I (PSI) in fluctuating light (FL) at room temperature and moderate heat stress. However, it is unclear whether WWC can function as a safety valve for PSI in FL at chilling temperature. In this study, we measured P700 redox state and chlorophyll fluorescence in FL at 25 °C and 4 °C in the high WWC activity plant Dendrobium officinale. At 25 °C, the operation of WWC contributed to the rapid re-oxidation of P700 upon dark-to-light transition. However, such rapid re-oxidation of P700 was not observed at 4 °C. Upon a sudden increase in light intensity, WWC rapidly consumed excess electrons in PSI and thus avoided an over-reduction of PSI at 25 °C. On the contrary, PSI was highly reduced within the first seconds after transition from low to high light at 4 °C. Therefore, in opposite to 25 °C, the WWC is not a major alternative sink in FL at chilling temperature. Upon transition from low to high light, cyclic electron transport was highly stimulated at 4 °C when compared with 25 °C. These results indicate that D. officinale enhances cyclic electron transport to partially compensate for the inactivation of WWC in FL at 4 °C.
Collapse
Affiliation(s)
- Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shun-Ling Tan
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
32
|
Coordination of Cyclic Electron Flow and Water-Water Cycle Facilitates Photoprotection under Fluctuating Light and Temperature Stress in the Epiphytic Orchid Dendrobium officinale. PLANTS 2021; 10:plants10030606. [PMID: 33806869 PMCID: PMC8004707 DOI: 10.3390/plants10030606] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 02/08/2023]
Abstract
Photosystem I (PSI) is the primary target of photoinhibition under fluctuating light (FL). Photosynthetic organisms employ alternative electron flows to protect PSI under FL. However, the understanding of the coordination of alternative electron flows under FL at temperature stresses is limited. To address this question, we measured the chlorophyll fluorescence, P700 redox state, and electrochromic shift signal in leaves of Dendrobium officinale exposed to FL at 42 °C, 25 °C, and 4 °C. Upon a sudden increase in illumination at 42 °C and 25 °C, the water-water cycle (WWC) consumed a significant fraction of the extra reducing power, and thus avoided an over-reduction of PSI. However, WWC was inactivated at 4 °C, leading to an over-reduction of PSI within the first seconds after light increased. Therefore, the role of WWC under FL is largely dependent on temperature conditions. After an abrupt increase in light intensity, cyclic electron flow (CEF) around PSI was stimulated at any temperature. Therefore, CEF and WWC showed different temperature responses under FL. Furthermore, the enhancement of CEF and WWC at 42 °C quickly generated a sufficient trans-thylakoid proton gradient (ΔpH). The inactivation of WWC at 4 °C was partially compensated for by an increased CEF activity. These findings indicate that CEF and WWC coordinate to protect PSI under FL at temperature stresses.
Collapse
|
33
|
Tomaz de Oliveira MM, Lu S, Zurgil U, Raveh E, Tel-Zur N. Grafting in Hylocereus (Cactaceae) as a tool for strengthening tolerance to high temperature stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 160:94-105. [PMID: 33485151 DOI: 10.1016/j.plaphy.2021.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/12/2021] [Indexed: 05/20/2023]
Abstract
The Hylocereus species that are grown as exotic fruit crops are very often farmed under marginal agronomic conditions, which may include exposure to high temperatures. Here we present a pioneering investigation of grafting as an agro-technique to improve heat tolerance in Hylocereus. To this end, we studied the diploid species H. undatus, the tetraploid H. megalanthus and its di-haploid gamete-derived line 2719, and the interspecific-interploid tetraploid Z-10, all grafted onto H. undatus as the rootstock. Self-grafted, grafted and non-grafted plants were acclimated for one week (to obtain baseline values) and then exposed to heat stress (45/35 °C day/night) for three days, followed by a one-week recovery period under optimal temperatures (30/22 °C). A comparison of the physiological, biochemical and molecular performances of the grafted and self-grafted plants under heat stress and during the recovery period vs those of non-stressed plants (control; 30/22 °C) showed that the grafted and self-grafted plants performed better in most of the assessments: grafted and self-grafted plants recovered more rapidly from the heat stress and suffered far less stem damage. An unexpected - but important - finding that may have implications for other crop was that the self-grafted plants showed better performance than non-grafted plants throughout the trial. Our findings provide support for grafting as a strategy for coping with the stress induced by extremely high temperatures. This study thus paves the way for further investigations of grafting in Hylocereus as a valuable technique that will maintain crop productivity in the face of increasing worldwide temperatures.
Collapse
Affiliation(s)
- Milena Maria Tomaz de Oliveira
- Jacob Blaustein Center for Scientific Cooperation, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Shuhua Lu
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, 8499000, Israel; Guangxi Institute of Botany, Chinese Academy of Science, Guilin, 541006, China
| | - Udi Zurgil
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, 8499000, Israel
| | - Eran Raveh
- Department of Horticultural Sciences, Institute of Plant Sciences, ARO Gilat Research Station, Israel
| | - Noemi Tel-Zur
- The French Associates Institute for Agriculture and Biotechnology of Drylands, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, 8499000, Israel.
| |
Collapse
|
34
|
Yang YJ, Tan SL, Sun H, Huang JL, Huang W, Zhang SB. Photosystem I is tolerant to fluctuating light under moderate heat stress in two orchids Dendrobium officinale and Bletilla striata. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110795. [PMID: 33487367 DOI: 10.1016/j.plantsci.2020.110795] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 06/12/2023]
Abstract
Under natural field conditions, plants usually experience fluctuating light (FL) under moderate heat stress in summer. However, responses of photosystems I and II (PSI and PSII) to such combined stresses are not well known. Furthermore, the role of water-water cycle (WWC) in photoprotection in FL under moderate heat stress is poorly understood. In this study, we examined chlorophyll fluorescence and P700 redox state in FL at 42 °C in two orchids, Dendrobium officinale (with high WWC activity) and Bletilla striata (with low WWC activity). After FL treatment at 42 °C, PSI activity maintained stable while PSII activity decreased significantly in these two orchids. In D. officinale, the WWC could rapidly consume the excess excitation energy in PSI and thus avoided an over-reduction of PSI upon any increase in illumination. Therefore, in D. officinale, WWC likely protected PSI in FL at 42 °C. In B. striata, heat-induced PSII photoinhibition down-regulated electron flow from PSII and thus prevented an over-reduction of PSI after transition from low to high light. Consequently, in B. striata moderate PSII photoinhibition could protected PSI in FL at 42 °C. We conclude that, in addition to cyclic electron flow, WWC and PSII photoinhibition-repair cycle are two important strategies for preventing PSI photoinhibition in FL under moderate heat stress.
Collapse
Affiliation(s)
- Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shun-Ling Tan
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hu Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Lin Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Shi-Bao Zhang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
35
|
Moreau S, van Aubel G, Janky R, Van Cutsem P. Chloroplast Electron Chain, ROS Production, and Redox Homeostasis Are Modulated by COS-OGA Elicitation in Tomato ( Solanum lycopersicum) Leaves. FRONTIERS IN PLANT SCIENCE 2020; 11:597589. [PMID: 33381134 PMCID: PMC7768011 DOI: 10.3389/fpls.2020.597589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
The stimulation of plant innate immunity by elicitors is an emerging technique in agriculture that contributes more and more to residue-free crop protection. Here, we used RNA-sequencing to study gene transcription in tomato leaves treated three times with the chitooligosaccharides-oligogalacturonides (COS-OGA) elicitor FytoSave® that induces plants to fend off against biotrophic pathogens. Results showed a clear upregulation of sequences that code for chloroplast proteins of the electron transport chain, especially Photosystem I (PSI) and ferredoxin. Concomitantly, stomatal conductance decreased by half, reduced nicotinamide adenine dinucleotide phosphate [NAD(P)H] content and reactive oxygen species production doubled, but fresh and dry weights were unaffected. Chlorophyll, β-carotene, violaxanthin, and neoxanthin contents decreased consistently upon repeated elicitations. Fluorescence measurements indicated a transient decrease of the effective PSII quantum yield and a non-photochemical quenching increase but only after the first spraying. Taken together, this suggests that plant defense induction by COS-OGA induces a long-term acclimation mechanism and increases the role of the electron transport chain of the chloroplast to supply electrons needed to mount defenses targeted to the apoplast without compromising biomass accumulation.
Collapse
Affiliation(s)
- Sophie Moreau
- Research Unit in Plant Cellular and Molecular Biology, Biology Department, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
| | - Géraldine van Aubel
- Research Unit in Plant Cellular and Molecular Biology, Biology Department, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
- FytoFend S.A., Isnes, Belgium
| | | | - Pierre Van Cutsem
- Research Unit in Plant Cellular and Molecular Biology, Biology Department, Institute of Life, Earth and Environment, University of Namur, Namur, Belgium
- FytoFend S.A., Isnes, Belgium
| |
Collapse
|
36
|
Tan SL, Yang YJ, Huang W. Moderate heat stress accelerates photoinhibition of photosystem I under fluctuating light in tobacco young leaves. PHOTOSYNTHESIS RESEARCH 2020; 144:373-382. [PMID: 32333230 DOI: 10.1007/s11120-020-00754-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/19/2020] [Indexed: 06/11/2023]
Abstract
Moderate heat stress and fluctuating light are typical conditions in summer in tropical and subtropical regions. This type of stress can cause photodamage to photosystems I and II (PSI and PSII). However, photosynthetic responses to the combination of heat and fluctuating light in young leaves are little known. In this study, we investigated chlorophyll fluorescence and P700 redox state under fluctuating light at 25 °C and 42 °C in young leaves of tobacco. Our results indicated that fluctuating light caused selective photodamage to PSI in the young leaves at 25 °C and 42 °C. Furthermore, the moderate heat stress significantly accelerated photoinhibition of PSI under fluctuating light. Within the first 10 s after transition from low to high light, cyclic electron flow (CEF) around PSI was highly stimulated at 25 °C but was slightly activated at 42 °C. Such depression of CEF activation at moderate heat stress were unable to maintain energy balance under high light. As a result, electron flow from PSI to NADP+ was restricted, leading to the over-reduction of PSI electron carriers. These results indicated that moderate heat stress altered the CEF performance under fluctuating light and thus accelerated PSI photoinhibition in tobacco young leaves.
Collapse
Affiliation(s)
- Shun-Ling Tan
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying-Jie Yang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
37
|
Sun H, Yang YJ, Huang W. The water-water cycle is more effective in regulating redox state of photosystem I under fluctuating light than cyclic electron transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2020; 1861:148235. [PMID: 32485160 DOI: 10.1016/j.bbabio.2020.148235] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 11/28/2022]
Abstract
Photosynthetic electron flux from water via photosystem II (PSII) and PSI to oxygen (water-water cycle) may act as an alternative electron sink under fluctuating light in angiosperms. We measured the P700 redox kinetics and electrochromic shift signal under fluctuating light in 11 Camellia species and tobacco leaves. Upon dark-to-light transition, these Camellia species showed rapid re-oxidation of P700. However, this rapid re-oxidation of P700 was not observed when measured under anaerobic conditions, as was in experiment with tobacco performed under aerobic conditions. Therefore, photo-reduction of O2 mediated by water-water cycle was functional in these Camellia species but not in tobacco. Within the first 10 s after transition from low to high light, PSI was highly oxidized in these Camellia species but was over-reduced in tobacco leaves. Furthermore, such rapid oxidation of PSI in these Camellia species was independent of the formation of trans-thylakoid proton gradient (ΔpH). These results indicated that in addition to ΔpH-dependent photosynthetic control, the water-water cycle can protect PSI against photoinhibition under fluctuating light in these Camellia species. We here propose that the water-water cycle is an overlooked strategy for photosynthetic regulation under fluctuating light in angiosperms.
Collapse
Affiliation(s)
- Hu Sun
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying-Jie Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Huang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China.
| |
Collapse
|
38
|
Fang Y, Jiang Z, Zhao C, Li L, Ranvilage CIPM, Liu S, Wu Y, Huang X. Efficient Heat Dissipation and Cyclic Electron Flow Confer Daily Air Exposure Tolerance in the Intertidal Seagrass Halophila beccarii Asch. FRONTIERS IN PLANT SCIENCE 2020; 11:571627. [PMID: 33329629 PMCID: PMC7733926 DOI: 10.3389/fpls.2020.571627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/15/2020] [Indexed: 05/03/2023]
Abstract
Seagrasses inhabiting the intertidal zone experience periodically repeated cycles of air exposure and rehydration. However, little is known about the photoprotective mechanisms in photosystem (PS)II and PSI, as well as changes in carbon utilization upon air exposure. The photoprotective processes upon air exposure in Halophila beccarii Asch., an endangered seagrass species, were examined using the Dual-PAM-100 and non-invasive micro-test technology. The results showed that air exposure enhanced non-photochemical quenching (NPQ) in both PSII and PSI, with a maximum increase in NPQ and Y(ND) (which represents the fraction of overall P700 that is oxidized in a given state) of 23 and 57%, respectively, resulting in intensive thermal energy dissipation of excess optical energy. Moreover, cyclic electron transport driven by PSI (CEF) was upregulated, reflected by a 50 and 22% increase in CEF and maximum electron transport rate in PSI to compensate for the abolished linear electron transport with significant decreases in pmfLEF (the proton motive force [pmf]) attributable solely to proton translocation by linear electron flow [LEF]). Additionally, H+ fluxes in mesophyll cells decreased steadily with increased air exposure time, exhibiting a maximum decrease of six-fold, indicating air exposure modified carbon utilization by decreasing the proton pump influxes. These findings indicate that efficient heat dissipation and CEF confer daily air exposure tolerance to the intertidal seagrass H. beccarii and provide new insights into the photoprotective mechanisms of intertidal seagrasses. This study also helps explain the extensive distribution of H. beccarii in intertidal zones.
Collapse
Affiliation(s)
- Yang Fang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhijian Jiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- *Correspondence: Zhijian Jiang,
| | - Chunyu Zhao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- College of Resources Environment and Planning, Dezhou University, Dezhou, China
| | - Linglan Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chanaka Isuranga Premarathne Maha Ranvilage
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Yunchao Wu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoping Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Innovation Academy of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, China
- Xiaoping Huang,
| |
Collapse
|