1
|
Han Y, Ge L, Feng J, Zhang M, Zhang H, Shi L, Wu D, Zhang X, Guo L, Qi T, Tang H, Qiao X, Xing C, Wu J. The chimeric gene orf610a reduces cotton pollen fertility by impairing the assembly of ATP synthase. PLANT BIOTECHNOLOGY JOURNAL 2025. [PMID: 40333481 DOI: 10.1111/pbi.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 03/12/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
Cytoplasmic male sterility (CMS) serves as a pivotal tool for exploiting hybrid vigour and studying nuclear-cytoplasmic interactions. Despite its long-standing use in cotton breeding, the underlying mechanisms of the CMS-D2 system remain elusive. Our study unravelled the role of the mitochondrial chimeric gene orf610a in reducing fertility in cotton through its interaction with ATP synthase subunit D (atpQ). Using yeast two-hybrid, bimolecular luciferase complementation, and transgenic overexpression studies, we identified a unique interaction between orf610a and atpQ, which disturbs the assembly of ATP synthase. This interaction leads to a decrease in ATP levels, an increase in H2O2 production, and mitochondrial dysfunctions, which are associated with pollen abortion. Transcriptomic and biochemical analyses of three independent overexpression lines identified 1711 differentially expressed genes (DEGs), among which 10 were related to reactive oxygen species (ROS) and ATP production. Phenotypic analysis confirmed that orf610a expression causes abnormal anther development and reduced pollen viability, contributing to sterility. Notably, SEM and TEM analyses highlighted structural anomalies in the pollen of orf610a-overexpressing lines, supporting the detrimental impacts of altered ATP synthase function. Our findings suggest that orf610a's interaction with ATP synthase components disrupts normal mitochondrial function and energy production, leading to male sterility in cotton. Understanding the molecular interactions involved in CMS can aid in developing strategies to manipulate sterility for crop improvement, offering insights into mitochondrial-nuclear interactions that could impact future breeding programmes.
Collapse
Affiliation(s)
- Yang Han
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Lishuang Ge
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Juanjuan Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Meng Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Hexuan Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Lin Shi
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Di Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Xuexian Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Liping Guo
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Tingxiang Qi
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Huini Tang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Xiuqin Qiao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Chaozhu Xing
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| | - Jianyong Wu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Anyang, China
| |
Collapse
|
2
|
Huang Y, Gao J, Ji G, Li W, Wang J, Wang Q, Shen Y, Guo J, Gao F. COP9 SIGNALOSOME SUBUNIT 5A facilitates POLYAMINE OXIDASE 5 degradation to regulate strawberry plant growth and fruit ripening. THE PLANT CELL 2025; 37:koaf022. [PMID: 39899466 PMCID: PMC11845351 DOI: 10.1093/plcell/koaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/13/2024] [Accepted: 01/20/2025] [Indexed: 02/05/2025]
Abstract
Polyamines (PAs), such as putrescine, spermidine, and spermine, are essential for plant growth and development. However, the post-translational regulation of PA metabolism remains unknown. Here, we report the COP9 SIGNALOSOME SUBUNIT 5A (FvCSN5A) mediates the degradation of the POLYAMINE OXIDASE 5 (FvPAO5), which catalyzes the conversion of spermidine/spermine to produce H2O2 in strawberry (Fragaria vesca). FvCSN5A is localized in the cytoplasm and nucleus, is ubiquitously expressed in strawberry plants, and is rapidly induced during fruit ripening. FvCSN5A RNA interference (RNAi) transgenic strawberry lines exhibit pleiotropic effects on plant development, fertility, and fruit ripening due to altered PA and H2O2 homeostasis, similar to FvPAO5 transgenic overexpression lines. Moreover, FvCSN5A interacts with FvPAO5 in vitro and in vivo, and the ubiquitination and degradation of FvPAO5 are impaired in FvCSN5A RNAi lines. Additionally, FvCSN5A interacts with cullin 1 (FvCUL1), a core component of the E3 ubiquitin-protein ligase complex. Transient genetic analysis in cultivated strawberry (Fragaria × ananassa) fruits showed that inhibiting FaPAO5 expression could partially rescue the ripening phenotype of FaCSN5A RNAi fruits. Taken together, our results suggest that the CSN5A-CUL1-PAO5 signaling pathway responsible for PA and H2O2 homeostasis is crucial for strawberry vegetative and reproductive growth in particular fruit ripening. Our findings present a promising strategy for improving crop yield and quality.
Collapse
Affiliation(s)
- Yun Huang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jiahui Gao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Guiming Ji
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Wenjing Li
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Jiaxue Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Qinghua Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Yuanyue Shen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China
| | - Jiaxuan Guo
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Fan Gao
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, College of Bioscience and Resources Environment, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|
3
|
Liu X, Zhou J, Zeeshan Ul Haq M, Fu Z, Gu G, Yu J, Liu Y, Yang D, Yang H, Wu Y. Functional analysis of the PcCDPK5 gene in response to allelopathic substances on p-hydroxybenzoic acid (p-HBA) stress in patchouli. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117807. [PMID: 39884012 DOI: 10.1016/j.ecoenv.2025.117807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/15/2025] [Accepted: 01/22/2025] [Indexed: 02/01/2025]
Abstract
Calcium-dependent protein kinase (CDPK) is an important mediator for Ca2 + signal recognition and transduction, playing a crucial role in plant stress response. Previous studies have shown that PcCDPK5 may be involved in the response of patchouli to p-hydroxybenzoic acid (p-HBA) stress. In this study, we further found that the subcellular localization of PcCDPK5 protein is in the cytoplasm, and its gene expression is closely related to continuous cropping (CC) and p-HBA stress. Under p-HBA stress, silencing the PcCDPK5 homologous gene in Nicotiana tabacum leads to decreased antioxidant enzyme activity and increased malondialdehyde (MDA) content, significantly accumulating reactive oxygen species (ROS) and affecting normal plant growth. On the contrary, overexpression of PcCDPK5 can effectively alleviate the damage caused by p-HBA stress to plant bodies. Through this research, the function of PcCDPK5 in response to p-HBA stress has been preliminarily analyzed, laying a theoretical foundation for alleviating CC obstacles in patchouli.
Collapse
Affiliation(s)
- Xiaofeng Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Jingru Zhou
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Muhammad Zeeshan Ul Haq
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Zhineng Fu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Guangtao Gu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Jing Yu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Ya Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Dongmei Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Huageng Yang
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China
| | - Yougen Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China.
| |
Collapse
|
4
|
Zu H, Zhang J, Bai W, Kuai P, Cheng J, Lu J, Lou Y, Li R. Jasmonate-mediated polyamine oxidase 6 drives herbivore-induced polyamine catabolism in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2000-2013. [PMID: 39432737 DOI: 10.1111/tpj.17094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/16/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024]
Abstract
Polyamines (PAs) along with their conjugated forms, are important mediators of plant defense mechanisms against both biotic and abiotic stresses. Flavin-containing polyamine oxidases (PAOs) regulate PA levels through terminal oxidation. To date, the role of PAOs in plant-herbivore interaction remains poorly understood. We discovered that infestation by the brown planthopper (BPH) disrupts PA homeostasis within the leaf sheaths of rice plants, which co-occurs with the upregulation of OsPAO6, a tissue-specific inducible, apoplast-localized enzyme that regulates the terminal catabolism of spermidine (Spd) and spermine. Functional analysis using CRISPR-Cas9 genome-edited plants revealed that pao6 mutants accumulated significantly higher levels of Spd and phenylpropanoid-conjugated Spd in response to BPH infestation compared to wild-type controls. In addition, BPH feeding on pao6 mutants led to increased honeydew excretion and plant damage by female adults, consistent with in vitro experiments in which Spd enhanced BPH feeding. Furthermore, OsPAO6 transcription is regulated by jasmonate (JA) signaling, and it is dependent on MYC2, which directly binds to the G-box-like motif in the OsPAO6 promoter. Our findings reveal an important role of OsPAO6 in regulating polyamine catabolism in JA-induced responses triggered by herbivore attacks in rice.
Collapse
Affiliation(s)
- Hongyue Zu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, 310057, China
| | - Weiwei Bai
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Peng Kuai
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jingli Cheng
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Jing Lu
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yonggen Lou
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ran Li
- State Key Laboratory of Rice Biology and Breeding, Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
5
|
Gupta S, Kant K, Kaur N, Jindal P, Naeem M, Khan MN, Ali A. Polyamines: Rising stars against metal and metalloid toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109030. [PMID: 39137683 DOI: 10.1016/j.plaphy.2024.109030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Globally, metal/metalloid(s) soil contamination is a persistent issue that affects the atmosphere, soil, water and plant health in today's industrialised world. However, an overabundance of these transition ions promotes the excessive buildup of reactive oxygen species (ROS) and ion imbalance, which harms agricultural productivity. Plants employ several strategies to overcome their negative effects, including hyperaccumulation, tolerance, exclusion, and chelation with organic molecules. Polyamines (PAs) are the organic compounds that act as chelating agents and modulate various physiological, biochemical, and molecular processes under metal/metalloid(s) stress. Their catabolic products, including H2O2 and gamma amino butyric acid (GABA), are also crucial signalling molecules in abiotic stress situations, particularly under metal/metalloid(s) stress. In this review, we explained how PAs regulate genes and enzymes, particularly under metal/metalloid(s) stress with a specific focus on arsenic (As), boron (B), cadmium (Cd), chromium (Cr), and zinc (Zn). The PAs regulate various plant stress responses by crosstalking with other plant hormones, upregulating phytochelatin, and metallothionein synthesis, modulating stomatal closure and antioxidant capacity. This review presents valuable insights into how PAs use a variety of tactics to reduce the harmful effects of metal/metalloid(s) through multifaceted strategies.
Collapse
Affiliation(s)
- Shalu Gupta
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Krishan Kant
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Navneet Kaur
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - Parnika Jindal
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India
| | - M Naeem
- Department of Botany, Aligarh Muslim University, Aligarh, 2020002, UP, India
| | - M Nasir Khan
- Renewable Energy and Environmental Technology Center, University of Tabuk, Tabuk, 71491, Saudi Arabia; Department of Science and Basic Studies, Applied College, University of Tabuk, Tabuk-71491, Saudi Arabia
| | - Akbar Ali
- Plant Physiology and Biochemistry Lab, Department of Botany, Dayalbagh Educational Institute (Deemed to be University), Agra, 282005, India.
| |
Collapse
|
6
|
Blázquez MA. Polyamines: Their Role in Plant Development and Stress. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:95-117. [PMID: 38382905 DOI: 10.1146/annurev-arplant-070623-110056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
This review focuses on the intricate relationship between plant polyamines and the genetic circuits and signaling pathways that regulate various developmental programs and the defense responses of plants when faced with biotic and abiotic aggressions. Particular emphasis is placed on genetic evidence supporting the involvement of polyamines in specific processes, such as the pivotal role of thermospermine in regulating xylem cell differentiation and the significant contribution of polyamine metabolism in enhancing plant resilience to drought. Based on the numerous studies describing effects of the manipulation of plant polyamine levels, two conceptually different mechanisms for polyamine activity are discussed: direct participation of polyamines in translational regulation and the indirect production of hydrogen peroxide as a defensive mechanism against pathogens. By describing the multifaceted functions of polyamines, this review underscores the profound significance of these compounds in enabling plants to adapt and thrive in challenging environments.
Collapse
Affiliation(s)
- Miguel A Blázquez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, Valencia, Spain;
| |
Collapse
|
7
|
Zhao X, Wang S, Guo F, Xia P. Genome-wide identification of polyamine metabolism and ethylene synthesis genes in Chenopodium quinoa Willd. and their responses to low-temperature stress. BMC Genomics 2024; 25:370. [PMID: 38627628 PMCID: PMC11020822 DOI: 10.1186/s12864-024-10265-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Quinoa (Chenopodium quinoa Willd.) is valued for its nutritional richness. However, pre-harvest sprouting poses a significant threat to yield and grain quality. This study aims to enhance our understanding of pre-harvest sprouting mitigation strategies, specifically through delayed sowing and avoiding rainy seasons during quinoa maturation. The overarching goal is to identify cold-resistant varieties and unravel the molecular mechanisms behind the low-temperature response of quinoa. We employed bioinformatics and genomics tools for a comprehensive genome-wide analysis of polyamines (PAs) and ethylene synthesis gene families in quinoa under low-temperature stress. RESULTS This involved the identification of 37 PA biosynthesis and 30 PA catabolism genes, alongside 227 ethylene synthesis. Structural and phylogenetic analyses showcased conserved patterns, and subcellular localization predictions indicated diverse cellular distributions. The results indicate that the PA metabolism of quinoa is closely linked to ethylene synthesis, with multiple genes showing an upregulation in response to cold stress. However, differential expression within gene families suggests a nuanced regulatory network. CONCLUSIONS Overall, this study contributes valuable insights for the functional characterization of the PA metabolism and ethylene synthesis of quinoa, which emphasize their roles in plant low-temperature tolerance and providing a foundation for future research in this domain.
Collapse
Affiliation(s)
- Xiaoxue Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, 650201, Kunming, China
| | - Shiyu Wang
- College of Horticulture and Landscape, Yunnan Agricultural University, 650201, Kunming, China
| | - Fenggen Guo
- College of Agronomy and Biotechnology, Yunnan Agricultural University, 650201, Kunming, China.
| | - Pan Xia
- College of Agronomy and Biotechnology, Yunnan Agricultural University, 650201, Kunming, China
| |
Collapse
|
8
|
Huang G, Yin X, Lu J, Zhang L, Lin D, Xie Y, Liu H, Liu C, Zuo J, Zhang X. Dynamic QTL mapping revealed primarily the genetic structure of photosynthetic traits in castor (Ricinus communis L.). Sci Rep 2023; 13:14071. [PMID: 37640794 PMCID: PMC10462610 DOI: 10.1038/s41598-023-41241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
High photosynthetic efficiency is the basis of high biomass and high harvest index in castor (Ricinus communis L.). Understanding the genetic law of photosynthetic traits will facilitate the breeding for high photosynthetic efficiency. In this study, the dynamic QTL mapping was performed with the populations F2 and BC1 derived from 2 parents with significant difference in net photosynthetic rate (Pn) at 3 stages, in order to reveal the genetic structure of photosynthetic traits. In F2 population, 26 single-locus QTLs were identified, including 3/3/1 (the QTL number at stage I/II/III, the same below), 1/2/0, 1/2/2, 1/3/1, 0/1/1, and 1/1/2 QTLs conferring Pn, water use efficiency (Wue), transpiration rate (Tr), stomatal conductance (Gs), intercellular CO2 concentration (Ci) and chlorophyll content (Cc), with a phenotypic variation explained (PVE) of 8.40%/8.91%/6.17%, 5.36%/31.74%/0, 7.31%/12.80%/15.15%, 1.60%/6.44%/0.02%, 0/1.10%/0.70% and 2.77%/3.96%/6.50% respectively. And 53 epistatic QTLs (31 pairs) were identified, including 2/2/5, 5/6/3, 4/4/2, 6/3/2, 3/2/0 and 4/0/0 ones conferring the above 6 traits, with a PVE of 6.52%/6.47%/19.04%, 16.72%/15.67%/14.12%, 18.57%/15.58%/7.34%, 21.72%/8.52%/7.13%, 13.33%/4.94%/0 and 7.84%/0/0 respectively. The QTL mapping results in BC1 population were consistent with those in F2 population, except fewer QTLs detected. Most QTLs identified were minor-effect ones, only a few were main-effect ones (PVE > 10%), focused on 2 traits, Wue and Tr, such as qWue1.1, qWue1.2, FqTr1.1, FqTr6, BqWue1.1 and BqTr3; The epistatic effects, especially those related to the dominance effects were the main genetic component of photosynthetic traits, and all the epistatic QTLs had no single-locus effects except qPn1.2, FqGs1.2, FqCi1.2 and qCc3.2; The detected QTLs underlying each trait varied at different stages except stable QTLs qGs1.1, detected at 3 stages, qWue2, qTr1.2 and qCc3.2, detected at 2 stages; 6 co-located QTLs were identified, each of which conferring 2-5 different traits, demonstrated the gene pleiotropy between photosynthetic traits; 2 QTL clusters, located within the marker intervals RCM1842-RCM1335 and RCM523-RCM83, contained 15/5 (F2/BC1) and 4/4 (F2/BC1) QTLs conferring multiple traits, including co-located QTLs and main-effect QTLs. The above results provided new insights into the genetic structure of photosynthetic traits and important references for the high photosynthetic efficiency breeding in castor plant.
Collapse
Affiliation(s)
- Guanrong Huang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xuegui Yin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jiannong Lu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Liuqin Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Dantong Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yu Xie
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Haiyan Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chaoyu Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Jinying Zuo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Xiaoxiao Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, 524088, China
| |
Collapse
|
9
|
Wen Z, Chen Z, Liu X, Sun J, Zhang F, Zhang M, Dong C. 24-Epibrassinolide Facilitates Adventitious Root Formation by Coordinating Cell-Wall Polyamine Oxidase- and Plasma Membrane Respiratory Burst Oxidase Homologue-Derived Reactive Oxygen Species in Capsicum annuum L. Antioxidants (Basel) 2023; 12:1451. [PMID: 37507989 PMCID: PMC10376213 DOI: 10.3390/antiox12071451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Adventitious root (AR) formation is a critical process in cutting propagation of horticultural plants. Brassinosteroids (BRs) have been shown to regulate AR formation in several plant species; however, little is known about their exact effects on pepper AR formation, and the downstream signaling of BRs also remains elusive. In this study, we showed that treatment of 24-Epibrassinolide (EBL, an active BR) at the concentrations of 20-100 nM promoted AR formation in pepper (Capsicum annuum). Furthermore, we investigated the roles of apoplastic reactive oxygen species (ROS), including hydrogen peroxide (H2O2) and superoxide radical (O2•-), in EBL-promoted AR formation, by using physiological, histochemical, bioinformatic, and biochemical approaches. EBL promoted AR formation by modulating cell-wall-located polyamine oxidase (PAO)-dependent H2O2 production and respiratory burst oxidase homologue (RBOH)-dependent O2•- production, respectively. Screening of CaPAO and CaRBOH gene families combined with gene expression analysis suggested that EBL-promoted AR formation correlated with the upregulation of CaPAO1, CaRBOH2, CaRBOH5, and CaRBOH6 in the AR zone. Transient expression analysis confirmed that CaPAO1 was able to produce H2O2, and CaRBOH2, CaRBOH5, and CaRBOH6 were capable of producing O2•-. The silencing of CaPAO1, CaRBOH2, CaRBOH5, and CaRBOH6 in pepper decreased the ROS accumulation and abolished the EBL-induced AR formation. Overall, these results uncover one of the regulatory pathways for BR-regulated AR formation, and extend our knowledge of the functions of BRs and of the BRs-ROS crosstalk in plant development.
Collapse
Affiliation(s)
- Zhengyang Wen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhifeng Chen
- College of Biology and Agricultural Technology, Zunyi Normal College, Zunyi 563006, China
| | - Xinyan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingbo Sun
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Feng Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengxia Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunjuan Dong
- College of Biology and Agricultural Technology, Zunyi Normal College, Zunyi 563006, China
| |
Collapse
|
10
|
Wang W, Chen K, Chen N, Gao J, Zhang W, Gong J, Tong S, Chen Y, Li Y, Feng Y, Jiang Y, Ma T. Chromatin accessibility dynamics insight into crosstalk between regulatory landscapes in poplar responses to multiple treatments. TREE PHYSIOLOGY 2023; 43:1023-1041. [PMID: 36851850 DOI: 10.1093/treephys/tpad023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/22/2023] [Indexed: 06/11/2023]
Abstract
Perennial trees develop and coordinate endogenous response signaling pathways, including their crosstalk and convergence, to cope with various environmental stresses which occur simultaneously in most cases. These processes are involved in gene transcriptional regulations that depend on dynamic interactions between regulatory proteins and corresponding chromatin regions, but the mechanisms remain poorly understood in trees. In this study, we detected chromatin regulatory landscapes of poplar under abscisic acid, methyl jasmonate, salicylic acid and sodium chloride (NaCl) treatment, through integrating ATAC-seq and RNA-seq data. Our results showed that the degree of chromatin accessibility for a given gene is closely related to its expression level. However, unlike the gene expression that shows treatment-specific response patterns, changes in chromatin accessibility exhibit high similarities under these treatments. We further proposed and experimentally validated that a homologous gene copy of RESPONSIVE TO DESICCATION 26 mediates the crosstalk between jasmonic acid and NaCl signaling pathways by directly regulating the stress-responsive genes and that circadian clock-related transcription factors like REVEILLE8 play a central role in response of poplar to these treatments. Overall, our study provides a chromatin insight into the molecular mechanism of transcription regulatory networks in response to different environmental stresses and raises the key roles of the circadian clock of poplar to adapt to adverse environments.
Collapse
Affiliation(s)
- Weiwei Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Kai Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ningning Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jinwen Gao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wenyan Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jue Gong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Shaofei Tong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yang Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yiling Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yanlin Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yuanzhong Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Szechyńska-Hebda M, Ghalami RZ, Kamran M, Van Breusegem F, Karpiński S. To Be or Not to Be? Are Reactive Oxygen Species, Antioxidants, and Stress Signalling Universal Determinants of Life or Death? Cells 2022; 11:cells11244105. [PMID: 36552869 PMCID: PMC9777155 DOI: 10.3390/cells11244105] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
In the environmental and organism context, oxidative stress is complex and unavoidable. Organisms simultaneously cope with a various combination of stress factors in natural conditions. For example, excess light stress is accompanied by UV stress, heat shock stress, and/or water stress. Reactive oxygen species (ROS) and antioxidant molecules, coordinated by electrical signalling (ES), are an integral part of the stress signalling network in cells and organisms. They together regulate gene expression to redirect energy to growth, acclimation, or defence, and thereby, determine cellular stress memory and stress crosstalk. In plants, both abiotic and biotic stress increase energy quenching, photorespiration, stomatal closure, and leaf temperature, while toning down photosynthesis and transpiration. Locally applied stress induces ES, ROS, retrograde signalling, cell death, and cellular light memory, then acclimation and defence responses in the local organs, whole plant, or even plant community (systemic acquired acclimation, systemic acquired resistance, network acquired acclimation). A simplified analogy can be found in animals where diseases vs. fitness and prolonged lifespan vs. faster aging, are dependent on mitochondrial ROS production and ES, and body temperature is regulated by sweating, temperature-dependent respiration, and gene regulation. In this review, we discuss the universal features of stress factors, ES, the cellular production of ROS molecules, ROS scavengers, hormones, and other regulators that coordinate life and death.
Collapse
Affiliation(s)
- Magdalena Szechyńska-Hebda
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- W. Szafer Institute of Botany of the Polish Academy of Sciences, Lubicz 46, 31-512 Kraków, Poland
- Correspondence: or (M.S.-H.); (S.K.)
| | - Roshanak Zarrin Ghalami
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Muhammad Kamran
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Frank Van Breusegem
- UGent Department of Plant Biotechnology and Bioinformatics, VIB-UGent Center for Plant Systems Biology Ghent University, Technologiepark-Zwijnaarde 71, 9052 Ghent, Belgium
| | - Stanisław Karpiński
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
- Correspondence: or (M.S.-H.); (S.K.)
| |
Collapse
|
12
|
Polyamine Oxidase-Generated Reactive Oxygen Species in Plant Development and Adaptation: The Polyamine Oxidase-NADPH Oxidase Nexus. Antioxidants (Basel) 2022; 11:antiox11122488. [PMID: 36552696 PMCID: PMC9774701 DOI: 10.3390/antiox11122488] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Metabolism and regulation of cellular polyamine levels are crucial for living cells to maintain their homeostasis and function. Polyamine oxidases (PAOs) terminally catabolize polyamines or catalyse the back-conversion reactions when spermine is converted to spermidine and Spd to putrescine. Hydrogen peroxide (H2O2) is a by-product of both the catabolic and back-conversion processes. Pharmacological and genetic approaches have started to uncover the roles of PAO-generated H2O2 in various plant developmental and adaptation processes such as cell differentiation, senescence, programmed cell death, and abiotic and biotic stress responses. Many of these studies have revealed that the superoxide-generating Respiratory Burst Oxidase Homolog (RBOH) NADPH oxidases control the same processes either upstream or downstream of PAO action. Therefore, it is reasonable to suppose that the two enzymes co-ordinately control the cellular homeostasis of reactive oxygen species. The intricate relationship between PAOs and RBOHs is also discussed, posing the hypothesis that these enzymes indirectly control each other's abundance/function via H2O2.
Collapse
|
13
|
Vogelsang L, Dietz KJ. Plant thiol peroxidases as redox sensors and signal transducers in abiotic stress acclimation. Free Radic Biol Med 2022; 193:764-778. [PMID: 36403735 DOI: 10.1016/j.freeradbiomed.2022.11.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
The temporal and spatial patterns of reactive oxygen species (ROS) in cells and tissues decisively determine the plant acclimation response to diverse abiotic and biotic stresses. Recent progress in developing dynamic cell imaging probes provides kinetic information on changes in parameters like H2O2, glutathione (GSH/GSSG) and NAD(P)H/NAD(P)+, that play a crucial role in tuning the cellular redox state. Central to redox-based regulation is the thiol-redox regulatory network of the cell that integrates reductive information from metabolism and oxidative ROS signals. Sensitive proteomics allow for monitoring changes in redox-related posttranslational modifications. Thiol peroxidases act as sensitive peroxide and redox sensors and play a central role in this signal transduction process. Peroxiredoxins (PRX) and glutathione peroxidases (GPX) are the two main thiol peroxidases and their function in ROS sensing and redox signaling in plants is emerging at present and summarized in this review. Depending on their redox state, PRXs and GPXs act as redox-dependent binding partners, direct oxidants of target proteins and oxidants of thiol redox transmitters that in turn oxidize target proteins. With their versatile functions, the multiple isoforms of plant thiol peroxidases play a central role in plant stress acclimation, e.g. to high light or osmotic stress, but also in ROS-mediated immunity and development.
Collapse
Affiliation(s)
- Lara Vogelsang
- Biochemistry and Physiology of Plants, W5-134, Bielefeld University, 33615, Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, W5-134, Bielefeld University, 33615, Bielefeld, Germany.
| |
Collapse
|
14
|
Zhang J, Liang L, Xiao J, Xie Y, Zhu L, Xue X, Xu L, Zhou P, Ran J, Huang Z, Sun G, Lai Y, Sun B, Tang Y, Li H. Genome-Wide Identification of Polyamine Oxidase (PAO) Family Genes: Roles of CaPAO2 and CaPAO4 in the Cold Tolerance of Pepper ( Capsicum annuum L.). Int J Mol Sci 2022; 23:ijms23179999. [PMID: 36077395 PMCID: PMC9456136 DOI: 10.3390/ijms23179999] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Polyamine oxidases (PAOs), which are flavin adenine dinucleotide-dependent enzymes, catalyze polyamine (PA) catabolism, producing hydrogen peroxide (H2O2). Several PAO family members have been identified in plants, but their expression in pepper plants remains unclear. Here, six PAO genes were identified in the ‘Zunla-1’ pepper genome (named CaPAO1–CaPAO6 according to their chromosomal positions). The PAO proteins were divided into four subfamilies according to phylogenetics: CaPAO1 belongs to subfamily I; CaPAO3 and CaPAO5 belong to subfamily III; and CaPAO2, CaPAO4, and CaPAO6 belong to subfamily IV (none belong to subfamily II). CaPAO2, CaPAO4, and CaPAO6 were ubiquitously and highly expressed in all tissues, CaPAO1 was mainly expressed in flowers, whereas CaPAO3 and CaPAO5 were expressed at very low levels in all tissues. RNA-seq analysis revealed that CaPAO2 and CaPAO4 were notably upregulated by cold stress. CaPAO2 and CaPAO4 were localized in the peroxisome, and spermine was the preferred substrate for PA catabolism. CaPAO2 and CaPAO4 overexpression in Arabidopsis thaliana significantly enhanced freezing-stress tolerance by increasing antioxidant enzyme activity and decreasing malondialdehyde, H2O2, and superoxide accumulation, accompanied by the upregulation of cold-responsive genes (AtCOR15A, AtRD29A, AtCOR47, and AtKIN1). Thus, we identified candidate PAO genes for breeding cold-stress-tolerant transgenic pepper cultivars.
Collapse
Affiliation(s)
- Jianwei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Le Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiachang Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongdong Xie
- Institute for Processing and Storage of Agricultural Products, Chengdu Academy of Agricultural and Forest Sciences, Chengdu 611130, China
| | - Li Zhu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinru Xue
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyu Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Peihan Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianzhao Ran
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunsong Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
15
|
Hadizadeh I, Peivastegan B, Wang J, Sipari N, Nielsen KL, Pirhonen M. Gene expression and phytohormone levels in the asymptomatic and symptomatic phases of infection in potato tubers inoculated with Dickeya solani. PLoS One 2022; 17:e0273481. [PMID: 36037153 PMCID: PMC9423618 DOI: 10.1371/journal.pone.0273481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 08/10/2022] [Indexed: 11/28/2022] Open
Abstract
Dickeya solani is a soft rot bacterium with high virulence. In potato, D. solani, like the other potato-infecting soft rot bacteria, causes rotting and wilting of the stems and rotting of tubers in the field and in storage. Latent, asymptomatic infections of potato tubers are common in harvested tubers, and if the storage conditions are not optimal, the latent infection turns into active rotting. We characterized potato gene expression in artificially inoculated tubers in nonsymptomatic, early infections 1 and 24 hours post-inoculation (hpi) and compared the results to the response in symptomatic tuber tissue 1 week (168 hpi) later with RNA-Seq. In the beginning of the infection, potato tubers expressed genes involved in the detection of the bacterium through pathogen-associated molecular patterns (PAMPs), which induced genes involved in PAMPs-triggered immunity, resistance, production of pathogenesis-related proteins, ROS, secondary metabolites and salicylic acid (SA) and jasmonic acid (JA) biosynthesis and signaling genes. In the symptomatic tuber tissue one week later, the PAMPs-triggered gene expression was downregulated, whereas primary metabolism was affected, most likely leading to free sugars fueling plant defense but possibly also aiding the growth of the pathogen. In the symptomatic tubers, pectic enzymes and cell wall-based defenses were activated. Measurement of hormone production revealed increased SA concentration and almost no JA in the asymptomatic tubers at the beginning of the infection and high level of JA and reduced SA in the symptomatic tubers one week later. These findings suggest that potato tubers rely on different defense strategies in the different phases of D. solani infection even when the infection takes place in fully susceptible plants incubated in conditions leading to rotting. These results support the idea that D. solani is a biotroph rather than a true necrotroph.
Collapse
Affiliation(s)
- Iman Hadizadeh
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Bahram Peivastegan
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | - Jinhui Wang
- College of Plant Protection, Hebei Agricultural University, Hebei, China
| | - Nina Sipari
- Viikki Metabolomics Unit, Faculty of Biological and Environmental sciences, University of Helsinki, Helsinki, Finland
| | | | - Minna Pirhonen
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
16
|
Xi Y, Hu W, Zhou Y, Liu X, Qian Y. Genome-Wide Identification and Functional Analysis of Polyamine Oxidase Genes in Maize Reveal Essential Roles in Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:950064. [PMID: 35991458 PMCID: PMC9386529 DOI: 10.3389/fpls.2022.950064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Polyamines (PAs) play a critical role in growth and developmental processes and stress responses in plants. Polyamine oxidase (PAO) is a flavin adenine dinucleotide (FAD)-dependent enzyme that plays a major role in PA catabolism. Here, for the first time, PAO genes in maize were screened for the whole genome-wide and nine ZmPAO genes were identified in this study, named as ZmPAO1-9. Based on structural characteristics and a comparison of phylogenetic relationships of PAO gene families from seven representative species, all nine PAO proteins in maize were categorized into three distinct subfamilies. Further, chromosome location and schematic structure revealed an unevenly distribution on chromosomes and evolutionarily conserved structure features of ZmPAO genes in maize, respectively. Furthermore, transcriptome analysis demonstrated that ZmPAO genes showed differential expression patterns at diverse developmental stages of maize, suggesting that these genes may play functional developmental roles in multiple tissues. Further, through qRT-PCR validation, these genes were confirmed to be responsive to heat, drought and salinity stress treatments in three various tissues, indicating their potential roles in abiotic stress responses. Eventually, to verify the biological function of ZmPAO genes, the transgenic Arabidopsis plants overexpressing ZmPAO6 gene were constructed as a typical representative to explore functional roles in plants. The results demonstrated that overexpression of ZmPAO6 can confer enhanced heat tolerance through mediating polyamine catabolism in transgenic Arabidopsis, which might result in reduced H2O2 and MDA accumulation and alleviated chlorophyll degradation under heat stress treatment, indicating that ZmPAO6 may play a crucial role in enhancing heat tolerance of transgenic Arabidopsis through the involvement in various physiological processes. Further, the expression analysis of related genes of antioxidant enzymes including glutathione peroxidase (GPX) and ascorbate peroxidase (APX) demonstrated that ZmPAO6 can enhance heat resistance in transgenic Arabidopsis through modulating heat-induced H2O2 accumulation in polyamine catabolism. Taken together, our results are the first to report the ZmPAO6 gene response to heat stress in plants and will serve to present an important theoretical basis for further unraveling the function and regulatory mechanism of ZmPAO genes in growth, development and adaptation to abiotic stresses in maize.
Collapse
|
17
|
Přerovská T, Jindřichová B, Henke S, Yvin JC, Ferrieres V, Burketová L, Lipovová P, Nguema-Ona E. Arabinogalactan Protein-Like Proteins From Ulva lactuca Activate Immune Responses and Plant Resistance in an Oilseed Crop. FRONTIERS IN PLANT SCIENCE 2022; 13:893858. [PMID: 35668790 PMCID: PMC9164130 DOI: 10.3389/fpls.2022.893858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Natural compounds isolated from macroalgae are promising, ecofriendly, and multifunctional bioinoculants, which have been tested and used in agriculture. Ulvans, for instance, one of the major polysaccharides present in Ulva spp. cell walls, have been tested for their plant growth-promoting properties as well as their ability to activate plant immune defense, on a large variety of crops. Recently, we have characterized for the first time an arabinogalactan protein-like (AGP-like) from Ulva lactuca, which exhibits several features associated to land plant AGPs. In land plant, AGPs were shown to play a role in several plant biological functions, including cell morphogenesis, reproduction, and plant-microbe interactions. Thus, isolated AGP-like proteins may be good candidates for either the plant growth-promoting properties or the activation of plant immune defense. Here, we have isolated an AGP-like enriched fraction from Ulva lactuca and we have evaluated its ability to (i) protect oilseed rape (Brassica napus) cotyledons against Leptosphaeria maculans, and (ii) its ability to activate immune responses. Preventive application of the Ulva AGP-like enriched fraction on oilseed rape, followed by cotyledon inoculation with the fungal hemibiotroph L. maculans, resulted in a major reduction of infection propagation. The noticed reduction correlated with an accumulation of H2O2 in treated cotyledons and with the activation of SA and ET signaling pathways in oilseed rape cotyledons. In parallel, an ulvan was also isolated from Ulva lactuca. Preventive application of ulvan also enhanced plant resistance against L. maculans. Surprisingly, reduction of infection severity was only observed at high concentration of ulvan. Here, no such significant changes in gene expression and H2O2 production were observed. Together, this study indicates that U. lactuca AGP-like glycoproteins exhibit promising elicitor activity and that plant eliciting properties of Ulva extract, might result not only from an ulvan-originated eliciting activities, but also AGP-like originated.
Collapse
Affiliation(s)
- Tereza Přerovská
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, Rennes, France
| | - Barbora Jindřichová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Svatopluk Henke
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Jean-Claude Yvin
- Agro Innovation International TIMAC AGRO, Laboratoire de Nutrition Végétale, Pôle Stress Biotique, Saint Malo, France
| | - Vincent Ferrieres
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR-UMR 6226, Univ Rennes, Rennes, France
| | - Lenka Burketová
- Laboratory of Pathological Plant Physiology, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Petra Lipovová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czechia
| | - Eric Nguema-Ona
- Agro Innovation International TIMAC AGRO, Laboratoire de Nutrition Végétale, Pôle Stress Biotique, Saint Malo, France
| |
Collapse
|
18
|
The Stimulation of Superoxide Dismutase Enzyme Activity and Its Relation with the Pyrenophora teres f. teres Infection in Different Barley Genotypes. SUSTAINABILITY 2022. [DOI: 10.3390/su14052597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Changes in superoxide dismutase (SOD) enzyme activity were examined in infected barley seedlings of five cultivars with the goal to study the role of SOD in the defense mechanism induced by Pyrenophora teres f. teres (PTT) infection. Our results showed that although there were differences in the responses of the cultivars, all three PTT isolates (H-618, H-774, H-949) had significantly increased SOD activity in all examined barley varieties at the early stages of the infection. The lowest SOD activity was observed in the case of the most resistant cultivar. Our results did not show a clear connection between seedling resistance of genotypes and SOD enzyme activity; however, we were able to find strong significant correlations between the PTT infection scores on the Tekauz scale and the SOD activity. The measurement of the SOD activity could offer a novel perspective to detect the early stress responses induced by PTT. Our results suggest that the resistance of varieties cannot be estimated based on SOD enzyme activity alone, because many antioxidant enzymes play a role in fine-tuning the defense response, but SOD is an important member of this system.
Collapse
|
19
|
Sheng S, Wu C, Xiang Y, Pu W, Duan S, Huang P, Cheng X, Gong Y, Liang Y, Liu L. Polyamine: A Potent Ameliorator for Plant Growth Response and Adaption to Abiotic Stresses Particularly the Ammonium Stress Antagonized by Urea. FRONTIERS IN PLANT SCIENCE 2022; 13:783597. [PMID: 35401587 PMCID: PMC8988247 DOI: 10.3389/fpls.2022.783597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/10/2022] [Indexed: 05/14/2023]
Abstract
Polyamine(s) (PA, PAs), a sort of N-containing and polycationic compound synthesized in almost all organisms, has been recently paid considerable attention due to its multifarious actions in the potent modulation of plant growth, development, and response to abiotic/biotic stresses. PAs in cells/tissues occur mainly in free or (non- or) conjugated forms by binding to various molecules including DNA/RNA, proteins, and (membrane-)phospholipids, thus regulating diverse molecular and cellular processes as shown mostly in animals. Although many studies have reported that an increase in internal PA may be beneficial to plant growth under abiotic conditions, leading to a suggestion of improving plant stress adaption by the elevation of endogenous PA via supply or molecular engineering of its biosynthesis, such achievements focus mainly on PA homeostasis/metabolism rather than PA-mediated molecular/cellular signaling cascades. In this study, to advance our understanding of PA biological actions important for plant stress acclimation, we gathered some significant research data to succinctly describe and discuss, in general, PA synthesis/catabolism, as well as PA as an internal ameliorator to regulate stress adaptions. Particularly, for the recently uncovered phenomenon of urea-antagonized NH4 +-stress, from a molecular and physiological perspective, we rationally proposed the possibility of the existence of PA-facilitated signal transduction pathways in plant tolerance to NH4 +-stress. This may be a more interesting issue for in-depth understanding of PA-involved growth acclimation to miscellaneous stresses in future studies.
Collapse
Affiliation(s)
- Song Sheng
- Key Laboratory of Plant-Soil Interaction of MOE, Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Changzheng Wu
- Key Laboratory of Plant-Soil Interaction of MOE, Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Yucheng Xiang
- Key Laboratory of Plant-Soil Interaction of MOE, Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Wenxuan Pu
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Shuhui Duan
- Hunan Tobacco Science Institute, Changsha, China
| | - Pingjun Huang
- Tobacco Research Institute of Technology Centre, China Tobacco Hunan Industrial Corporation, Changsha, China
| | - Xiaoyuan Cheng
- College of Marine Resources and Environment, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yuanyong Gong
- College of Biological and Chemical Engineering, Panzhihua University, Panzhihua, China
| | - Yilong Liang
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
| | - Laihua Liu
- Key Laboratory of Plant-Soil Interaction of MOE, Department of Plant Nutrition, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
- Chongqing Key Laboratory of Big Data for Bio Intelligence, Chongqing University of Posts and Telecommunications, Chongqing, China
- *Correspondence: Laihua Liu,
| |
Collapse
|
20
|
Translational and post-translational regulation of polyamine metabolic enzymes in plants. J Biotechnol 2021; 344:1-10. [PMID: 34915092 DOI: 10.1016/j.jbiotec.2021.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/19/2021] [Accepted: 12/03/2021] [Indexed: 10/19/2022]
Abstract
Polyamines are small organic and basic polycations that perform essential regulatory functions in all living organisms. Fluctuations in polyamine content have been observed to occur during growth, development and under stress conditions, implying that polyamines play pivotal roles in diverse cellular and physiological processes. To achieve polyamine homeostasis, the entire metabolic pathway is subjected to a fine-tuned regulation of its biosynthetic and catabolic genes and enzymes. In this review, we describe and discuss the most important mechanisms implicated in the translational and post-translational regulation of polyamine metabolic enzymes in plants. At the translational level, we emphasize the role of polyamines in the modulation of upstream open reading frame (uORF) activities that control the translation of polyamine biosynthetic and catabolic mRNAs. At the post-translational level, different aspects of the regulation of polyamine metabolic proteins are depicted, such as the proteolytic activation of enzyme precursors, the importance of dimerization in protein stability as well as in protein intracellular localization.
Collapse
|
21
|
Zhang Y, Song R, Yuan H, Li T, Wang L, Lu K, Guo J, Liu W. Overexpressing the N-terminus of CATALASE2 enhances plant jasmonic acid biosynthesis and resistance to necrotrophic pathogen Botrytis cinerea B05.10. MOLECULAR PLANT PATHOLOGY 2021; 22:1226-1238. [PMID: 34247446 PMCID: PMC8435237 DOI: 10.1111/mpp.13106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/16/2021] [Accepted: 06/16/2021] [Indexed: 05/31/2023]
Abstract
Salicylic acid (SA) acts antagonistically to jasmonic acid (JA) in plant immunity. We previously reported that CATALASE2 (CAT2) promotes JA-biosynthetic acyl-CoA oxidase (ACX) activity to enhance plant resistance to necrotrophic Botrytis cinerea, and SA represses JA biosynthesis through inhibiting CAT2 activity, while the underlying mechanism remains to be further elucidated. Here, we report that the truncated CAT2 N-terminus (CAT2-N) interacts with and promotes ACX2/3, and CAT2-N-overexpressing plants have increased JA accumulation and enhanced resistance to B. cinerea B05.10, but compromised antagonism of SA on JA. Catalase inhibitor treatment or mutating CAT2 active amino acids abolished CAT2 H2 O2 -decomposing activity but did not affect its promotion of ACX2/3 activity via interaction. CAT2-N, a truncated protein with no catalase activity, interacted with and promoted ACX2/3. Overexpressing CAT2-N in Arabidopsis plants resulted in increased ACX activity, higher JA accumulation, and stronger resistance to B. cinerea B05.10 infection. Additionally, SA dramatically repressed JA biosynthesis and resistance to B. cinerea in the wild type but not in the CAT2-N-overexpressing plants. Together, our study reveals that CAT2-N can be utilized as an accelerator for JA biosynthesis during plant resistance to B. cinerea B05.10, and this truncated protein partly relieves SA repression of JA biosynthesis in plant defence responses.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Ru‐Feng Song
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Hong‐Mei Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical BioresourcesCollege of Tropical CropsHainan UniversityHaikouChina
| | - Ting‐Ting Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound ScreeningJiangsu Ocean UniversityLianyungangChina
| | - Lin‐Feng Wang
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Kai‐Kai Lu
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Jia‐Xing Guo
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| | - Wen‐Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and ImprovementSchool of Life SciencesHenan UniversityKaifengChina
| |
Collapse
|
22
|
Chávez-Martínez AI, Ortega-Amaro MA, Torres M, Serrano M, Jiménez-Bremont JF. Arabidopsis adc-silenced line exhibits differential defense responses to Botrytis cinerea and Pseudomonas syringae infection. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:494-503. [PMID: 33049445 DOI: 10.1016/j.plaphy.2020.09.035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 09/26/2020] [Indexed: 05/19/2023]
Abstract
During plant-microbe interactions, polyamines participate in the plant defense response. Previously, we reported that silencing of ADC genes in Arabidopsis thaliana causes a drastic reduction of polyamine levels as well as increments in reactive oxygen species content. In this study, we examined the response of the adc-silenced line to Botrytis cinerea and Pseudomonas syringae infection. The adc-silenced line was more susceptible to Botrytis cinerea, showing larger lesion length and a higher incidence of fungal infection. Pre-treatments with putrescine reestablished the response of the adc-silenced line to Botrytis cinerea, resulting in a similar phenotype to the parental plant. Expression levels of defense-related genes were analyzed during fungal infection showing that the salicylic acid-induced gene PR1 was up-regulated, while the jasmonic acid-related genes LOX3 and PDF1.2, as well as, the camalexin biosynthetic gene PAD3 were down-regulated in the adc-silenced line. Furthermore, methyl jasmonate pre-treatments reduced Botrytis cinerea infection in the adc-silenced line. On the other hand, the adc-silenced line showed an increased resistance to Pseudomonas syringae infection. SA-related genes such as PR1, ZAT1.2, WRKY54 and WRKY70 were highly expressed in the adc-silenced line upon bacterial interaction. Our data show that the adc-silenced line has altered the defense-response against Botrytis cinerea and Pseudomonas syringae, that is consistent with deregulation of SA- and JA-mediated response pathways.
Collapse
Affiliation(s)
- Ana Isabel Chávez-Martínez
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa de San José, 2055, Lomas 4 sección, A.C, 78216, San Luis Potosí, Mexico
| | - María Azucena Ortega-Amaro
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa de San José, 2055, Lomas 4 sección, A.C, 78216, San Luis Potosí, Mexico
| | - Martha Torres
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62209, Cuernavaca, Morelos, Mexico
| | - Mario Serrano
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, 62209, Cuernavaca, Morelos, Mexico
| | - Juan Francisco Jiménez-Bremont
- Laboratorio de Biotecnología Molecular de Plantas, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, Camino a La Presa de San José, 2055, Lomas 4 sección, A.C, 78216, San Luis Potosí, Mexico.
| |
Collapse
|