1
|
Han J, Tang X, Wang L, Chen H, Liu R, Zhao M. GlSIRT1 deacetylates and activates pyruvate kinase to improve pyruvate content and enhance heat stress resistance in Ganoderma lucidum. Microbiol Res 2025; 293:128055. [PMID: 39808950 DOI: 10.1016/j.micres.2025.128055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/05/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Heat stress is a prevalent environmental stressor. Previous studies have shown that heat stress drives many cellular changes in Ganoderma lucidum. Interestingly, glycolysis is activated during heat stress, which could contribute to increased heat resistance. However, the molecular mechanisms underlying the enhanced heat resistance of G. lucidum following heat exposure are not yet fully understood. In this study, we explored the possibility that acetylation modification plays a significant role in responses to abiotic stress. After heat treatment, an enhanced interaction between the deacetylase GlSIRT1 and pyruvate kinase (PK) was observed, and the acetylation level of PK was decreased. Further studies revealed that GlSIRT1 increases PK activity through deacetylation, thereby increasing pyruvate content. Consistent with these findings, both PK activity and pyruvate content were reduced in GlSIRT1 knockdown strains, which exhibited greater sensitivity to heat stress compared to the wild-type (WT) strain. Collectively, our results reveal a novel molecular mechanism by which heat treatment increases pyruvate content.
Collapse
Affiliation(s)
- Jing Han
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, PR China; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Xin Tang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, PR China; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Lingshuai Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, PR China; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Huhui Chen
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, PR China; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Rui Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, PR China; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| | - Mingwen Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, PR China; Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, Jiangsu, PR China.
| |
Collapse
|
2
|
Yang M, Song C, He X, Wang L, He C, Yu H, Xiao W, Lin Y, Zhang Y, Wang Y, He W, Chen Q, Zhang Y, Wang X, Tang H, Li M, Luo Y. The new function of FaSRT2-1 protein in energy metabolism: Promoting strawberry fruit quality and ripening. Int J Biol Macromol 2024; 281:136199. [PMID: 39366613 DOI: 10.1016/j.ijbiomac.2024.136199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/29/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
Sirtuins (SRTs) are nicotinamide adenine dinucleotide (NAD+) dependent II histone deacetylases (HDACs) that have been understudied in horticultural crops. However, their functions in regulating mitochondrial energy metabolism and influencing fruit development and quality formation remain unclear. In this study, we found that FaSRT2-1 exhibits diverse subcellular localizations. Overexpression of FaSRT2-1 promoted strawberry fruit quality formation (soluble sugars, organic acids, anthocyanins) and accelerated ripening. Conversely, knockout of FaSRT2-1 yielded opposite results. During fruit ripening, ATP content and ATP/ADP ratio gradually increased, and FaSRT2-1 promoted ATP accumulation and decreased before and after the deep red stage, respectively, indicating its role in fruit ripening and senescence. FaSRT2-1 interacted with energy-related proteins (FaRPT4a, FaATPβ and FaATPγ) to increase ATP content and the ATP/ADP ratio. Additionally, FaSRT2-1 collaborated with FaGDH2 and FaWDR5B to increase the accumulation of soluble sugars, organic acids and anthocyanins. Meanwhile, FaRPT4a, FaATPγ, FaGDH2 and FaWDR5B were co-localized with FaSRT2-1, while FaATPβ was localized in both the cytoplasm and mitochondria. Transient overexpression experiments further highlight the roles of FaRPT4a and FaGDH2/FaWDR5B in modulating ATP accumulation and fruit ripening, respectively. In summary, FaSRT2-1 plays important roles in promoting strawberry fruit ripening, senescence and quality formation by regulating energy metabolism.
Collapse
Affiliation(s)
- Min Yang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Chenghui Song
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinrong He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Liangxin Wang
- Wawushan Town Forestry Station, Hongya Country, Meishan 620365, China.
| | - Caixia He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Hong Yu
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310000, China
| | - Wenfei Xiao
- Hangzhou Academy of Agricultural Sciences, Hangzhou 310000, China
| | - Yuanxiu Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yunting Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yan Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Wen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qing Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yong Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiaorong Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Haoru Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Mengyao Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| | - Ya Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Huang F, He Y. Epigenetic control of gene expression by cellular metabolisms in plants. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102572. [PMID: 38875845 DOI: 10.1016/j.pbi.2024.102572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 06/16/2024]
Abstract
Covalent modifications on DNA and histones can regulate eukaryotic gene expression and are often referred to as epigenetic modifications. These chemical reactions require various metabolites as donors or co-substrates, such as acetyl coenzyme A, S-adenosyl-l-methionine, and α-ketoglutarate. Metabolic processes that take place in the cytoplasm, nucleus, or other cellular compartments may impact epigenetic modifications in the nucleus. Here, we review recent advances on metabolic control of chromatin modifications and thus gene expression in plants, with a focus on the functions of nuclear compartmentalization of metabolic processes and enzymes in DNA and histone modifications. Furthermore, we discuss the functions of cellular metabolisms in fine-tuning gene expression to facilitate the responses or adaptation to environmental changes in plants.
Collapse
Affiliation(s)
- Fei Huang
- Peking-Tsinghua Center for Life Sciences & National Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China
| | - Yuehui He
- Peking-Tsinghua Center for Life Sciences & National Key Laboratory of Wheat Improvement, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences in Weifang, Shandong 261325, China.
| |
Collapse
|
4
|
Wang Y, Zeng Q, Tian Y, Deng Q, Xiao R, Luo X, Zeng T, Zhang F, Zhang L, Jiang B, Liu Q. The histone deacetylase SRT2 enhances the tolerance of chrysanthemum to low temperatures through the ROS scavenging system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108405. [PMID: 38354529 DOI: 10.1016/j.plaphy.2024.108405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
Low temperatures can severely affect plant growth and reduce their ornamental value. A family of plant histone deacetylases allows plants to cope with both biotic and abiotic stresses. In this study, we screened and cloned the cDNA of DgSRT2 obtained from transcriptome sequencing of chrysanthemum leaves under low-temperature stress. Sequence analysis showed that DgSRT2 belongs to the sirtuin family of histone deacetylases. We obtained the stable transgenic chrysanthemum lines OE-2 and OE-12. DgSRT2 showed tissue specificity in wild-type chrysanthemum and was most highly expressed in leaves. Under low-temperature stress, the OE lines showed higher survival rates, proline content, solute content, and antioxidant enzyme activities, and lower relative electrolyte leakage, malondialdehyde, hydrogen peroxide, and superoxide ion accumulation than the wild-type lines. This work suggests that DgSRT2 can serve as an essential gene for enhancing cold resistance in plants. In addition, a series of cold-responsive genes in the OE line were compared with WT. The results showed that DgSRT2 exerted a positive regulatory effect by up-regulating the transcript levels of cold-responsive genes. The above genes help to increase antioxidant activity, maintain membrane stability and improve osmoregulation, thereby enhancing survival under cold stress. It can be concluded from the above work that DgSRT2 enhances chrysanthemum tolerance to low temperatures by scavenging the ROS system.
Collapse
Affiliation(s)
- Yongyan Wang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, China.
| | - Qinhan Zeng
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, China.
| | - Yuchen Tian
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, China.
| | - Qingwu Deng
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, China.
| | - Runsi Xiao
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, China.
| | - Xuanling Luo
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, China.
| | - Tao Zeng
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, China.
| | - Fan Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, China.
| | - Lei Zhang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, China.
| | - Beibei Jiang
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, China.
| | - Qinglin Liu
- Department of Ornamental Horticulture, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
5
|
Bhatt V, Tiwari AK. Sirtuins, a key regulator of ageing and age-related neurodegenerative diseases. Int J Neurosci 2023; 133:1167-1192. [PMID: 35549800 DOI: 10.1080/00207454.2022.2057849] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/15/2022] [Indexed: 10/18/2022]
Abstract
Sirtuins are Nicotinamide Adenine Dinucleotide (NAD+) dependent class ІΙΙ histone deacetylases enzymes (HDACs) present from lower to higher organisms such as bacteria (Sulfolobus solfataricus L. major), yeasts (Saccharomyces cerevisiae), nematodes (Caenorhabditis elegans), fruit flies (Drosophila melanogaster), humans (Homo sapiens sapiens), even in plants such as rice (Oryza sativa), thale cress (Arabidopsis thaliana), vine (Vitis vinifera L.) tomato (Solanum lycopersicum). Sirtuins play an important role in the regulation of various vital cellular functions during metabolism and ageing. It also plays a neuroprotective role by modulating several biological pathways such as apoptosis, DNA repair, protein aggregation, and inflammatory processes associated with ageing and neurodegenerative diseases. In this review, we have presented an updated Sirtuins and its role in ageing and age-related neurodegenerative diseases (NDDs). Further, this review also describes the therapeutic potential of Sirtuins and the use of Sirtuins inhibitor/activator for altering the NDDs disease pathology.
Collapse
Affiliation(s)
- Vidhi Bhatt
- Department of Biological Sciences & Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Department of Biological Sciences & Biotechnology, Institute of Advanced Research, Koba, Gandhinagar, Gujarat, India
| |
Collapse
|
6
|
Lu Y, Bu Q, Chuan M, Cui X, Zhao Y, Zhou DX. Metabolic regulation of the plant epigenome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1001-1013. [PMID: 36705504 DOI: 10.1111/tpj.16122] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 05/31/2023]
Abstract
Chromatin modifications shape the epigenome and are essential for gene expression reprogramming during plant development and adaptation to the changing environment. Chromatin modification enzymes require primary metabolic intermediates such as S-adenosyl-methionine, acetyl-CoA, alpha-ketoglutarate, and NAD+ as substrates or cofactors. The availability of the metabolites depends on cellular nutrients, energy and reduction/oxidation (redox) states, and affects the activity of chromatin regulators and the epigenomic landscape. The changes in the plant epigenome and the activity of epigenetic regulators in turn control cellular metabolism through transcriptional and post-translational regulation of metabolic enzymes. The interplay between metabolism and the epigenome constitutes a basis for metabolic control of plant growth and response to environmental changes. This review summarizes recent advances regarding the metabolic control of plant chromatin regulators and epigenomes, which are involved in plant adaption to environmental stresses.
Collapse
Affiliation(s)
- Yue Lu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Qing Bu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Mingli Chuan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou, 225009, China
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province/Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Xiaoyun Cui
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dao-Xiu Zhou
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
7
|
Zeng J, Huang Y, Zhou L, Liang X, Yang C, Wang H, Yuan L, Wang Y, Li Y. Histone Deacetylase GiSRT2 Negatively Regulates Flavonoid Biosynthesis in Glycyrrhiza inflata. Cells 2023; 12:1501. [PMID: 37296622 PMCID: PMC10252568 DOI: 10.3390/cells12111501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Glycyrrhiza inflata Batalin is a medicinal licorice species that has been widely used by humans for centuries. Licochalcone A (LCA) is a characteristic flavonoid that accumulates in G. inflata roots with high economical value. However, the biosynthetic pathway and regulatory network of its accumulation remain largely unknown. Here we found that a histone deacetylase (HDAC) inhibitor nicotinamide (NIC) could enhance the accumulation of LCA and total flavonoids in G. inflata seedlings. GiSRT2, a NIC-targeted HDAC was functionally analyzed and its RNAi transgenic hairy roots accumulated much more LCA and total flavonoids than its OE lines and the controls, indicating a negative regulatory role of GiSRT2 in the accumulation of LCA and total flavonoids. Co-analysis of transcriptome and metabolome of RNAi-GiSRT2 lines revealed potential mechanisms in this process. An O-methyltransferase gene, GiLMT1 was up-regulated in RNAi-GiSRT2 lines and the encoded enzyme catalyzed an intermediate step in LCA biosynthesis pathway. Transgenic hairy roots of GiLMT1 proved that GiLMT1 is required for LCA accumulation. Together, this work highlights the critical role of GiSRT2 in the regulation of flavonoid biosynthesis and identifies GiLMT1 as a candidate gene for the biosynthesis of LCA with synthetic biology approaches.
Collapse
Affiliation(s)
- Jiangyi Zeng
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- College of Life Science, Gannan Normal University, Ganzhou 341000, China
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Yun Huang
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Lijun Zhou
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Xiaoju Liang
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Chao Yang
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Hongxia Wang
- University of Chinese Academy of Sciences, Beijing 100049, China;
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40506, USA;
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- College of Life Science, Gannan Normal University, Ganzhou 341000, China
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Yongqing Li
- Guangdong Provincial Key Laboratory of Applied Botany & Guangdong Provincial Key Laboratory of Digital Botanical Garden, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (J.Z.); (Y.H.); (L.Z.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| |
Collapse
|
8
|
Bruscalupi G, Di Micco P, Failla CM, Pascarella G, Morea V, Saliola M, De Paolis A, Venditti S, Mauro ML. Arabidopsis thaliana sirtuins control proliferation and glutamate dehydrogenase activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:236-245. [PMID: 36436414 DOI: 10.1016/j.plaphy.2022.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/04/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Sirtuins are part of a gene family of NAD-dependent deacylases that act on histone and non-histone proteins and control a variety of activities in all living organisms. Their roles are mainly related to energy metabolism and include lifetime regulation, DNA repair, stress resistance, and proliferation. A large amount of knowledge concerning animal sirtuins is available, but data about their plant counterparts are scarce. Plants possess few sirtuins that have, like in animals, a recognized role in stress defense and metabolism regulation. However, engagement in proliferation control, which has been demonstrated for mammalian sirtuins, has not been reported for plant sirtuins so far. In this work, srt1 and srt2 Arabidopsis mutant seedlings have been used to evaluate in vivo the role of sirtuins in cell proliferation and regulation of glutamate dehydrogenase, an enzyme demonstrated to be involved in the control of cell cycle in SIRT4-defective human cells. Moreover, bioinformatic analyses have been performed to elucidate sequence, structure, and function relationships between Arabidopsis sirtuins and between each of them and the closest mammalian homolog. We found that cell proliferation and GDH activity are higher in mutant seedlings, suggesting that both sirtuins exert a physiological inhibitory role in these processes. In addition, mutant seedlings show plant growth and root system improvement, in line with metabolic data. Our data also indicate that utilization of an easy to manipulate organism, such as Arabidopsis plant, can help to shed light on the molecular mechanisms underlying the function of genes present in interkingdom species.
Collapse
Affiliation(s)
- Giovannella Bruscalupi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Patrizio Di Micco
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Cristina Maria Failla
- IDI-IRCCS, Laboratory of Experimental Immunology, Via dei Monti di Creta 104, 00167, Rome, Italy.
| | - Gianmarco Pascarella
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy; National Research Council of Italy, Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Veronica Morea
- National Research Council of Italy, Institute of Molecular Biology and Pathology, Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Michele Saliola
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Angelo De Paolis
- Institute of Sciences of Food Production (ISPA-CNR), Via Monteroni, Lecce, 73100, Italy.
| | - Sabrina Venditti
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| | - Maria Luisa Mauro
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Piazzale A. Moro 5, 00185, Rome, Italy.
| |
Collapse
|
9
|
Alves S, Braga Â, Parreira D, Alhinho AT, Silva H, Ramos MJN, Costa MMR, Morais‐Cecílio L. Genome-wide identification, phylogeny, and gene duplication of the epigenetic regulators in Fagaceae. PHYSIOLOGIA PLANTARUM 2022; 174:e13788. [PMID: 36169620 PMCID: PMC9828519 DOI: 10.1111/ppl.13788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 05/04/2023]
Abstract
Epigenetic regulators are proteins involved in controlling gene expression. Information about the epigenetic regulators within the Fagaceae, a relevant family of trees and shrubs of the northern hemisphere ecosystems, is scarce. With the intent to characterize these proteins in Fagaceae, we searched for orthologs of DNA methyltransferases (DNMTs) and demethylases (DDMEs) and Histone modifiers involved in acetylation (HATs), deacetylation (HDACs), methylation (HMTs), and demethylation (HDMTs) in Fagus, Quercus, and Castanea genera. Blast searches were performed in the available genomes, and freely available RNA-seq data were used to de novo assemble transcriptomes. We identified homologs of seven DNMTs, three DDMEs, six HATs, 11 HDACs, 32 HMTs, and 21 HDMTs proteins. Protein analysis showed that most of them have the putative characteristic domains found in these protein families, which suggests their conserved function. Additionally, to elucidate the evolutionary history of these genes within Fagaceae, paralogs were identified, and phylogenetic analyses were performed with DNA and histone modifiers. We detected duplication events in all species analyzed with higher frequency in Quercus and Castanea and discuss the evidence of transposable elements adjacent to paralogs and their involvement in gene duplication. The knowledge gathered from this work is a steppingstone to upcoming studies concerning epigenetic regulation in this economically important family of Fagaceae.
Collapse
Affiliation(s)
- Sofia Alves
- LEAF—Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, University of LisbonLisboaPortugal
| | - Ângelo Braga
- Instituto Superior de Agronomia, University of LisbonLisboaPortugal
| | - Denise Parreira
- Instituto Superior de Agronomia, University of LisbonLisboaPortugal
| | - Ana Teresa Alhinho
- Centre of Molecular and Environmental Biology (CBMA)University of MinhoBragaPortugal
| | - Helena Silva
- Centre of Molecular and Environmental Biology (CBMA)University of MinhoBragaPortugal
| | - Miguel Jesus Nunes Ramos
- LEAF—Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, University of LisbonLisboaPortugal
- Present address:
GenoMed, Diagnósticos de Medicina MolecularLisboaPortugal
| | | | - Leonor Morais‐Cecílio
- LEAF—Linking Landscape, Environment, Agriculture and FoodInstituto Superior de Agronomia, University of LisbonLisboaPortugal
| |
Collapse
|
10
|
Tang WS, Zhong L, Ding QQ, Dou YN, Li WW, Xu ZS, Zhou YB, Chen J, Chen M, Ma YZ. Histone deacetylase AtSRT2 regulates salt tolerance during seed germination via repression of vesicle-associated membrane protein 714 (VAMP714) in Arabidopsis. THE NEW PHYTOLOGIST 2022; 234:1278-1293. [PMID: 35224735 DOI: 10.1111/nph.18060] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/07/2022] [Indexed: 05/26/2023]
Abstract
Salt tolerance during seed germination is essential for seedling establishment under salt stress. Sirtuin-like proteins, NAD+ -dependent histone deacetylases, are involved in plant responses to abiotic stresses; however, the regulatory mechanism remains unknown. We elucidated the mechanism underlying AtSRT2 (a sirtuin-like protein)-mediated regulation of salt tolerance during seed germination in Arabidopsis. The AtSRT2 mutant srt2 exhibited significantly reduced seed germination percentages under salt stress; its targets were identified via chromatin immunoprecipitation coupled with ultra-high-throughput parallel DNA sequencing (ChIP-Seq) assay. Epistasis analysis was performed to identify AtSRT2-related pathways. Overexpression of SRT2.7, an AtSRT2 splice variant, rescued the salt-sensitive phenotype of mutant srt2. AtSRT2 histone deacetylation activity was important for salt tolerance during seed germination. The acetylation level of histone H4K8 locus in srt2-1 increased significantly under salt treatment. Vesicle-associated membrane protein 714 (VAMP714), a negative regulator of hydrogen peroxide (H2 O2 )-containing vesicle trafficking in cells, was identified as a target of AtSRT2. AtSRT2 regulated histone acetylation in the promoter region of VAMP714 and inhibited VAMP714 transcription under salt treatment. Seed germination percentage of double-mutant srt2-1vamp714 was close to that of single-mutant vamp714, and higher than that of single-mutant srt2 under salt stress. Hydrogen peroxide content and DNA damage increased after salt treatment in srt2 during seed germination. AtSRT2 regulates salt tolerance during seed germination through VAMP714 in Arabidopsis.
Collapse
Affiliation(s)
- Wen-Si Tang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Li Zhong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
- Guizhou Institute of Prataculture, Guizhou Academy of Agricultural Sciences, Guiyang, Guizhou, 550006, China
| | - Qing-Qian Ding
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Yi-Ning Dou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Wei-Wei Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Zhao-Shi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Yong-Bin Zhou
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Jun Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - Ming Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| | - You-Zhi Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, 100081, China
| |
Collapse
|
11
|
Guddimalli R, Somanaboina AK, Palle SR, Edupuganti S, Kummari D, Palakolanu SR, Naravula J, Gandra J, Qureshi IA, Marka N, Polavarapu R, Kavi Kishor PB. Overexpression of RNA-binding bacterial chaperones in rice leads to stay-green phenotype, improved yield and tolerance to salt and drought stresses. PHYSIOLOGIA PLANTARUM 2021; 173:1351-1368. [PMID: 33583030 DOI: 10.1111/ppl.13369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/18/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Genes encoding bacterial cold shock proteins A (CspA, 213 bp) and B (CspB, 216 bp) were isolated from Escherichia coli strain K12, which showed 100% homology with gene sequences isolated from other bacterial species. In silico domain, analysis showed eukaryotic conserved cold shock domain (CSD) and ribonuclease-binding domain (RBD) indicating that they bind to RNA and are involved in temperature stress tolerance. Overexpression of these two genes in E. coli resulted in higher growth in presence of 200 mM NaCl and 300 mM mannitol. Western blot confirmed the translational products of the two genes. Seedlings of indica rice were transformed with Agrobacterium tumefaciens containing pCAMBIA1301 CspA and CspB genes. Transgene integration was confirmed by β-glucuronidase (GUS) histochemical assay, polymerase chain reaction (PCR) amplification, and gene copy number by Southern blotting. Chlorophyll, proline, Na+ , and K+ contents were higher in transgenics exposed to 150 mM NaCl and drought (imposed by withholding water) stresses during floral initiation stage. Catalase (CAT), superoxide dismutase (SOD), and guaiacol peroxidase (GPX) activities increased, while malondialdehyde (MDA) content was low in transgenics. Transgenics displayed increased root, shoot, and panicle lengths, root dry mass, and a distinct stay-green (SGR) phenotype. Higher transcript levels of CspA, CspB, SGR, chlorophyllase, isopentenyl adenine transferase 1 (IPT1), 9-cis-epoxycarotenoid dioxygenase (NCED), SOD, and sirtuin 1 (SIRT1) genes were observed in transgenics compared to wild type plants (WT) under multiple stresses. Present work indicates that bacterial chaperone proteins are capable of imparting SGR phenotype, salt and drought stress tolerance alongside grain improvement.
Collapse
Affiliation(s)
| | - Anil Kumar Somanaboina
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Guntur, India
| | | | | | - Divya Kummari
- Cell, Molecular & Genetic Engineering Lab, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Sudhakar Reddy Palakolanu
- Cell, Molecular & Genetic Engineering Lab, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, India
| | - Jalaja Naravula
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Guntur, India
| | - Jawahar Gandra
- Department of Life Sciences, School of Sciences B-II, Jain University, Bengaluru, India
| | - Insaf A Qureshi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Nagaraju Marka
- Biochemistry Division, ICMR-National Institute of Nutrition, Hyderabad, India
| | | | | |
Collapse
|
12
|
Ahmad Z, Bashir K, Matsui A, Tanaka M, Sasaki R, Oikawa A, Hirai MY, Zu Y, Kawai-Yamada M, Rashid B, Husnain T, Seki M. Overexpression of nicotinamidase 3 (NIC3) gene and the exogenous application of nicotinic acid (NA) enhance drought tolerance and increase biomass in Arabidopsis. PLANT MOLECULAR BIOLOGY 2021; 107:63-84. [PMID: 34460049 DOI: 10.1007/s11103-021-01179-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/02/2021] [Indexed: 05/27/2023]
Abstract
Overexpressing Nicotinamidase 3 gene, and the exogenous application of its metabolite nicotinic acid (NA), enhance drought stress tolerance and increase biomass in Arabidopsis thaliana. With progressive global climatic changes, plant productivity is threatened severely by drought stress. Deciphering the molecular mechanisms regarding genes responsible for balancing plant growth and stress amelioration could imply multiple possibilities for future sustainable goals. Nicotinamide adenine dinucleotide (NAD) biosynthesis and recycling/ distribution is a crucial feature for plant growth. The current study focuses on the functional characterization of nicotinamidase 3 (NIC3) gene, which is involved in the biochemical conversion of nicotinamide (NAM) to nicotinic acid (NA) in the salvage pathway of NAD biosynthesis. Our data show that overexpression of NIC3 gene enhances drought stress tolerance and increases plant growth. NIC3-OX plants accumulated more NA as compared to WT plants. Moreover, the upregulation of several genes related to plant growth/stress tolerance indicates that regulating the NAD salvage pathway could significantly enhance plant growth and drought stress tolerance. The exogenous application of nicotinic acid (NA) showed a similar phenotype as the effect of overexpressing NIC3 gene. In short, we contemplated the role of NIC3 gene and NA application in drought stress tolerance and plant growth. Our results would be helpful in engineering plants with enhanced drought stress tolerance and increased growth potential.
Collapse
Affiliation(s)
- Zarnab Ahmad
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Plant Genomics Laboratory, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Khurram Bashir
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Laboratory of Plant Biotechnology, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences (LUMS), Lahore, Pakistan
| | - Akihiro Matsui
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Maho Tanaka
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan
| | - Ryosuke Sasaki
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
| | - Akira Oikawa
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Faculty of Agriculture, Yamagata University, Tsuruoka, 997-8555, Japan
| | - Masami Yokota Hirai
- Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Metabolic Systems Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, 464-8601, Japan
| | - Yanhui Zu
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Maki Kawai-Yamada
- Graduate School of Science and Engineering, Saitama University, 225 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Bushra Rashid
- Plant Genomics Laboratory, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Tayyab Husnain
- Plant Genomics Laboratory, Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science (CSRS), Yokohama, 230-0045, Japan.
- Plant Epigenome Regulation Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama, 351-0198, Japan.
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan.
| |
Collapse
|
13
|
Vall-Llaura N, Torres R, Lindo-García V, Muñoz P, Munné-Bosch S, Larrigaudière C, Teixidó N, Giné-Bordonaba J. PbSRT1 and PbSRT2 regulate pear growth and ripening yet displaying a species-specific regulation in comparison to other Rosaceae spp. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 308:110925. [PMID: 34034873 DOI: 10.1016/j.plantsci.2021.110925] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/15/2021] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Epigenetic regulation is crucial to ensure a coordinated control of the different events that occur during fruit development and ripening. Sirtuins are NAD+-dependent histone deacetylases involved in the regulation of gene expression of many biological processes. However, their implications in the Rosaceae family remains unexplored. Accordingly, in this work, we demonstrated the phylogenetic divergence of both sirtuins among Rosaceae species. We then characterized the expression pattern of both SRT1 and SRT2 in selected pome and stone fruit species. Both SRT1 and SRT2 significantly changed during the fruit development and ripening of apple, nectarine and pear fruit, displaying a different expression profile. Such differences could explain in part their different ripening behaviour. To further unravel the role of sirtuins on the fruit development and ripening processes, a deeper analysis was performed using pear as a fruit model. In pear, PbSRT1 gene expression levels were negatively correlated with specific hormones (i.e. abscisic acid, indole-3-acetic acid, gibberellin A1 and zeatin) during the first phases of fruit development. PbSRT2 seemed to directly mediate pear ripening in an ethylene-independent manner. This hypothesis was further reinforced by treating the fruit with the ethylene inhibitor 1-methylcyclopropene (1-MCP). Instead, enhanced PbSRT2 along pear growth/ripening positively correlated with the accumulation of major sugars (R2 > 0.94), reinforcing the idea that sugar metabolism may be a target of epigenetic modifications during fruit ripening. Overall, the results from this study point out, for the first time, the importance that sirtuins have in the regulation of fruit growth and ripening of pear fruit by likely regulating hormonal and sugar metabolism.
Collapse
Affiliation(s)
- Núria Vall-Llaura
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Rosario Torres
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Violeta Lindo-García
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), University of Barcelona, Barcelona, 08028, Spain.
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Barcelona, 08028, Spain; Institut de Nutrició i Seguretat Alimentària (INSA), University of Barcelona, Barcelona, 08028, Spain.
| | - Christian Larrigaudière
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Neus Teixidó
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| | - Jordi Giné-Bordonaba
- IRTA, Postharvest Programme, Edifici Fruitcentre, Parc Científic i Tecnològic Agroalimentari de Lleida, Parc de Gardeny, Lleida, Catalonia, 25003, Spain.
| |
Collapse
|
14
|
Baránek M, Kováčová V, Gazdík F, Špetík M, Eichmeier A, Puławska J, Baránková K. Epigenetic Modulating Chemicals Significantly Affect the Virulence and Genetic Characteristics of the Bacterial Plant Pathogen Xanthomonas campestris pv. campestris. Genes (Basel) 2021; 12:genes12060804. [PMID: 34070403 PMCID: PMC8226645 DOI: 10.3390/genes12060804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Epigenetics is the study of heritable alterations in phenotypes that are not caused by changes in DNA sequence. In the present study, we characterized the genetic and phenotypic alterations of the bacterial plant pathogen Xanthomonas campestris pv. campestris (Xcc) under different treatments with several epigenetic modulating chemicals. The use of DNA demethylating chemicals unambiguously caused a durable decrease in Xcc bacterial virulence, even after its reisolation from infected plants. The first-time use of chemicals to modify the activity of sirtuins also showed some noticeable results in terms of increasing bacterial virulence, but this effect was not typically stable. Changes in treated strains were also confirmed by using methylation sensitive amplification (MSAP), but with respect to registered SNPs induction, it was necessary to consider their contribution to the observed polymorphism. The molecular basis of the altered virulence was deciphered by using dualRNA-seq analysis of treated Xcc strains infecting Brassica rapa plants. The results of the present study should promote more intensive research in the generally understudied field of bacterial epigenetics, where artificially induced modification by epigenetic modulating chemicals can significantly increase the diversity of bacterial properties and potentially contribute to the further development of the fields, such as bacterial ecology and adaptation.
Collapse
Affiliation(s)
- Miroslav Baránek
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, 69144 Lednice, Czech Republic; (F.G.); (M.Š.); (A.E.); (K.B.)
- Correspondence: ; Tel.: +420-519367311
| | - Viera Kováčová
- Institute for Biological Physics, University of Cologne, 50923 Köln, Germany;
| | - Filip Gazdík
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, 69144 Lednice, Czech Republic; (F.G.); (M.Š.); (A.E.); (K.B.)
| | - Milan Špetík
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, 69144 Lednice, Czech Republic; (F.G.); (M.Š.); (A.E.); (K.B.)
| | - Aleš Eichmeier
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, 69144 Lednice, Czech Republic; (F.G.); (M.Š.); (A.E.); (K.B.)
| | - Joanna Puławska
- Department of Phytopathology, Research Institute of Horticulture, 96-100 Skierniewice, Poland;
| | - Kateřina Baránková
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, 69144 Lednice, Czech Republic; (F.G.); (M.Š.); (A.E.); (K.B.)
| |
Collapse
|
15
|
Cardoso D, Muchir A. Need for NAD +: Focus on Striated Muscle Laminopathies. Cells 2020; 9:cells9102248. [PMID: 33036437 PMCID: PMC7599962 DOI: 10.3390/cells9102248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 11/23/2022] Open
Abstract
Laminopathies are a heterogeneous group of rare diseases caused by genetic mutations in the LMNA gene, encoding A-type lamins. A-type lamins are nuclear envelope proteins which associate with B-type lamins to form the nuclear lamina, a meshwork underlying the inner nuclear envelope of differentiated cells. The laminopathies include lipodystrophies, progeroid phenotypes and striated muscle diseases. Research on striated muscle laminopathies in the recent years has provided novel perspectives on the role of the nuclear lamina and has shed light on the pathological consequences of altered nuclear lamina. The role of altered nicotinamide adenine dinucleotide (NAD+) in the physiopathology of striated muscle laminopathies has been recently highlighted. Here, we have summarized these findings and reviewed the current knowledge about NAD+ alteration in striated muscle laminopathies, providing potential therapeutic approaches.
Collapse
|