1
|
Wang Y, Xun H, Lv J, Ju W, Jiang Y, Wang M, Guo R, Zhang M, Ding X, Liu B, Xu C. A modulatory role of CG methylation on gene expression in soybean implicates its potential utility in breeding. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1585-1600. [PMID: 39887912 PMCID: PMC12018828 DOI: 10.1111/pbi.14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/01/2025]
Abstract
Cytosine methylation (mCG) is an important heritable epigenetic modification, yet its functions remain to be fully defined in important crops. This study investigates mCG in soybean following the loss-of-function mutation of two GmMET1 genes. We generated knockout mutants of GmMET1s by CRISPR-Cas9 and conducted comprehensive methylome and transcriptome analyses. Our findings unravel the functional redundancy of the two GmMET1s, with GmMET1b being more critically involved in maintaining mCG levels, and complete knockout of both copies is lethal. We establish that genome-wide mCG levels scale with aggregated expression of GmMET1s. We identify a set of mCG-regulated genes whose expression levels were quantitatively modulated by upstream, body, or downstream mCG. Moreover, we find genes that were negatively regulated by upstream or body mCG are enriched in specific biological processes such as that of jasmonic acid metabolism. Notably, >80% of the differentially methylated genes (DMGs) in the mutants also exist as DMGs in natural soybean populations. Phenotypically, mutants that are heterozygous for GmMET1a and homozygous for GmMET1b knockouts (GmMET1a+/-GmMET1b-/-) exhibited early flowering, which was inherited by their selfed progeny (GmMET1a+/+GmMET1b-/-) with otherwise normal growth and development. Moreover, mutation of either GmMET1s, with slight reduction of mCG levels and similar phenotypes compared to the wild type under normal conditions, showed enhanced tolerance to cold and drought stresses. Together, our results underscore highly orchestrated regulatory effects of mCG on gene expression in soybean, which dictates growth, development and stress responses, implicating its utility in the improvement of soybean for better adaptability and higher yield.
Collapse
Affiliation(s)
- Ying Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Jiameng Lv
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Wanting Ju
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Yuhui Jiang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Meng Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Ruihong Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Mengru Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Xiaoyang Ding
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China)ChangchunChina
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| | - Chunming Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE)Northeast Normal UniversityChangchunChina
| |
Collapse
|
2
|
Liu C, Chen X, Han W, Hao X, Qin L, Luo W, Zhao L, Li N, Sun L, Zhang J, Xing G, He J, Wang W, Gai J. A wild-allele GsPP2C-51-a1 enhances tolerance to drought stress in soybean and Arabidopsis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:51. [PMID: 39994030 DOI: 10.1007/s00122-025-04835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025]
Abstract
KEY MESSAGE A wild-allele GsPP2C-51-a1 of Glyma.14g162100 was identified in SojaCSSLP5, back to wild soybean, conferring drought tolerance. Its functions were verified in transgenic hairy root soybeans and Arabidopsis under water deficit and ABA treatment. A population of wild soybean chromosome segment substitution lines (CSSLs), SojaCSSLP5, with NN1138-2 as the cultivated recurrent parent and N24852 as the wild donor parent, was used to identify drought-tolerant loci/segments from the donor. Relative shoot dry weight, a tolerance indicator, varied significantly among the parents and CSSLs. Six drought tolerance loci/segments were detected in SojaCSSLP5, including Gm14_LDB_21 with GsPP2C-51 (Glyma.14g162100) as one of the four possible genes. This gene belongs to the F1 clade of protein phosphatase 2C based on gene ontology annotation, qPCR, and previous research results. Glyma.14g162100 was traced back to the Chinese germplasm population, in which four alleles existed on the locus, with soja holding all four, and max holding only two without any new alleles emerging. N24852 and NN1138-2 hold a1 and a2, respectively. The GsPP2C-51 protein was located inside the nucleus. In transgenic hairy root composite soybean, the GsPP2C-51-a1 overexpressed plants maintained a higher leaf fresh weight (tolerance) under 15% PEG stress compared to the empty vector plants. This was strongly supported by improved tolerance, chlorophyll content, and a series of physiological responses in GsPP2C-51-a1 overexpressed Arabidopsis plants under water deficit and abscisic acid treatments. Thus, the wild-type allele GsPP2C-51-a1 (Glyma.14g162100a1) from N24852 positively regulates plant drought tolerance.
Collapse
Affiliation(s)
- Cheng Liu
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xianlian Chen
- Anhui Science & Technology University, Fengyang, 233100, China
| | - Wei Han
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xiaoshuai Hao
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liang Qin
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wei Luo
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lizhi Zhao
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ning Li
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Lei Sun
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiaoping Zhang
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Guangnan Xing
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jianbo He
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wubin Wang
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Junyi Gai
- Sanya Institute of Nanjing Agricultural University & Soybean Research Institute & National Center for Soybean Improvement & Ministry of Agriculture Key Laboratory of Biology and Genetic Improvement of Soybean (General) & National Key Laboratory for Crop Genetics and Germplasm Enhancement, & State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding & Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Ren A, Wen T, Xu X, Wu J, Zhao G. Cotton HD-Zip I transcription factor GhHB4-like regulates the plant response to salt stress. Int J Biol Macromol 2024; 278:134857. [PMID: 39168205 DOI: 10.1016/j.ijbiomac.2024.134857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 08/23/2024]
Abstract
Soil salinity is a major environmental constraint to plant production. The homeodomain-leucine zipper I (HD-Zip I) transcription factors play a crucial role in growth, development and defence responses of plants. However, the function and underlying mechanism of HD-Zip I in cotton remain unexplored. This study investigated the role of GhHB4-like, a cotton HD-Zip I gene, in plant tolerance to salt stress. Ectopic expression of GhHB4-like gene enhanced, while its silencing impaired the salt tolerance in Arabidopsis. Y1H and effector-reporter assays revealed that GhHB4-like activated the expression of GhNAC007, which is essential for salt resistance. Knock-down of GhNAC007 also impaired salt resistance of cotton plants. In addition, GhHB4-like-GhNAC007 might have positively regulated the expression of GhMYB96 and ABA signalling-related genes, thereby leading to enhanced salt resistance. Interestingly, deleting motifs 3 and 5 near the 3'-end of GhHB4-like significantly enhanced GhNAC007 activation, indicating that both motifs acted as transcriptional activation inhibitory domains. The results suggest that GhHB4-like-GhNAC007 regulated plant response to salt stress, potentially by modulating GhMYB96 and ABA signalling-related genes.
Collapse
Affiliation(s)
- Aiping Ren
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Tianyang Wen
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiao Xu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Jiahe Wu
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Plant Genomics, Institute of Microbiology Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ge Zhao
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
4
|
Aleem M, Razzaq MK, Aleem M, Yan W, Sharif I, Siddiqui MH, Aleem S, Iftikhar MS, Karikari B, Ali Z, Begum N, Zhao T. Genome-wide association study provides new insight into the underlying mechanism of drought tolerance during seed germination stage in soybean. Sci Rep 2024; 14:20765. [PMID: 39237583 PMCID: PMC11377444 DOI: 10.1038/s41598-024-71357-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Drought is one of the major environmental issues that reduce crop yield. Seed germination is a crucial stage of plant development in all crop plants, including soybean. In soybean breeding, information about genetic mechanism of drought tolerance has great importance. However, at germination stage, there is relatively little knowledge on the genetic basis of soybean drought resistance. The objective of this work was to find the quantitative trait nucleotides (QTNs) linked to drought tolerance related three traits using a genome-wide association study (GWAS), viz., germination rate (GR), root length (RL), and whole seedling length (WSL), using germplasm population of 240 soybean PIs with 34,817 SNPs genotype data having MAF > 0.05. It was observed that heritability (H2) for GR, WSL, and RL across both environments (2020, and 2019) were high in the range of 0.76-0.99, showing that genetic factors play a vital role in drought tolerance as compared to environmental factors. A number of 23 and 27 QTNs were found to be linked to three traits using MLM and mrMLM, respectively. Three significant QTNs, qGR8-1, qWSL13-1, and qRL-8, were identified using both MLM and mrMLM methods among these QTNs. QTN8, located on chromosome 8 was consistently linked to two traits (GR and RL). The area (± 100 Kb) associated with this QTN was screened for drought tolerance based on gene annotation. Fifteen candidate genes were found by this screening. Based on the expression data, four candidate genes i.e. Glyma08g156800, Glyma08g160000, Glyma08g162700, and Glyma13g249600 were found to be linked to drought tolerance regulation in soybean. Hence, the current study provides evidence to understand the genetic constitution of drought tolerance during the germination stage and identified QTNs or genes could be utilized in molecular breeding to enhance the yield under drought stress.
Collapse
Affiliation(s)
- Muqadas Aleem
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationCollege of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
- Center for Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | | | - Maida Aleem
- Department of Botany, University of Agriculture, Faisalabad, Pakistan
| | - Wenliang Yan
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationCollege of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Iram Sharif
- Cotton Research Station, Faisalabad, Pakistan
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saba Aleem
- Barani Agricultural Research Station, Fatehjang, Pakistan
| | - Muhammad Sarmad Iftikhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Benjamin Karikari
- Department of Crop Science, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, PO Box TL 1882, Tamale, Ghana
| | - Zulfiqar Ali
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Naheeda Begum
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationCollege of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tuanjie Zhao
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and UtilizationCollege of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Sharma V, Sharma DP, Salwan R. Surviving the stress: Understanding the molecular basis of plant adaptations and uncovering the role of mycorrhizal association in plant abiotic stresses. Microb Pathog 2024; 193:106772. [PMID: 38969183 DOI: 10.1016/j.micpath.2024.106772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/28/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Environmental stresses severely impair plant growth, resulting in significant crop yield and quality loss. Among various abiotic factors, salt and drought stresses are one of the major factors that affect the nutrients and water uptake by the plants, hence ultimately various physiological aspects of the plants that compromises crop yield. Continuous efforts have been made to investigate, dissect and improve plant adaptations at the molecular level in response to drought and salinity stresses. In this context, the plant beneficial microbiome presents in the rhizosphere, endosphere, and phyllosphere, also referred as second genomes of the plant is well known for its roles in plant adaptations. Exploration of beneficial interaction of fungi with host plants known as mycorrhizal association is one such special interaction that can facilitates the host plants adaptations. Mycorrhiza assist in alleviating the salinity and drought stresses of plants via redistributing the ion imbalance through translocation to different parts of the plants, as well as triggering oxidative machinery. Mycorrhiza association also regulates the level of various plant growth regulators, osmolytes and assists in acquiring minerals that are helpful in plant's adaptation against extreme environmental stresses. The current review examines the role of various plant growth regulators and plants' antioxidative systems, followed by mycorrhizal association during drought and salt stresses.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali PB 140413, India.
| | - D P Sharma
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India
| | - Richa Salwan
- College of Horticulture and Forestry (Dr. YS Parmar University of Horticulture and Forestry), Neri, Hamirpur, H.P 177 001, India.
| |
Collapse
|
6
|
Wang D, Du M, Lyu P, Li J, Meng H, Liu X, Shi M, Gong Y, Sha Q, Men Q, Li X, Sun Y, Guo S. Functional Characterization of the Soybean Glycine max Actin Depolymerization Factor GmADF13 for Plant Resistance to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1651. [PMID: 38931083 PMCID: PMC11207668 DOI: 10.3390/plants13121651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024]
Abstract
Abiotic stress significantly affects plant growth and has devastating effects on crop production. Drought stress is one of the main abiotic stressors. Actin is a major component of the cytoskeleton, and actin-depolymerizing factors (ADFs) are conserved actin-binding proteins in eukaryotes that play critical roles in plant responses to various stresses. In this study, we found that GmADF13, an ADF gene from the soybean Glycine max, showed drastic upregulation under drought stress. Subcellular localization experiments in tobacco epidermal cells and tobacco protoplasts showed that GmADF13 was localized in the nucleus and cytoplasm. We characterized its biological function in transgenic Arabidopsis and hairy root composite soybean plants. Arabidopsis plants transformed with GmADF13 displayed a more robust drought tolerance than wild-type plants, including having a higher seed germination rate, longer roots, and healthy leaves under drought conditions. Similarly, GmADF13-overexpressing (OE) soybean plants generated via the Agrobacterium rhizogenes-mediated transformation of the hairy roots showed an improved drought tolerance. Leaves from OE plants showed higher relative water, chlorophyll, and proline contents, had a higher antioxidant enzyme activity, and had decreased malondialdehyde, hydrogen peroxide, and superoxide anion levels compared to those of control plants. Furthermore, under drought stress, GmADF13 OE activated the transcription of several drought-stress-related genes, such as GmbZIP1, GmDREB1A, GmDREB2, GmWRKY13, and GmANK114. Thus, GmADF13 is a positive regulator of the drought stress response, and it may play an essential role in plant growth under drought stress conditions. These results provide new insights into the functional elucidation of soybean ADFs. They may be helpful for breeding new soybean cultivars with a strong drought tolerance and further understanding how ADFs help plants adapt to abiotic stress.
Collapse
Affiliation(s)
- Deying Wang
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Mengxue Du
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Peng Lyu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Jingyu Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Huiran Meng
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Xinxin Liu
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Mengmeng Shi
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Yujie Gong
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Qi Sha
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Qingmei Men
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Xiaofei Li
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Yongwang Sun
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
| | - Shangjing Guo
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng 252059, China; (D.W.); (M.D.); (P.L.); (J.L.); (H.M.); (X.L.); (M.S.); (Y.G.); (Q.S.); (Q.M.); (X.L.)
- College of Life Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
7
|
Huang Y, Wu J, Lin J, Liu Z, Mao Z, Qian C, Zhong X. CcNAC6 Acts as a Positive Regulator of Secondary Cell Wall Synthesis in Sudan Grass ( Sorghum sudanense S.). PLANTS (BASEL, SWITZERLAND) 2024; 13:1352. [PMID: 38794423 PMCID: PMC11125125 DOI: 10.3390/plants13101352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/26/2024]
Abstract
The degree of forage lignification is a key factor affecting its digestibility by ruminants such as cattle and sheep. Sudan grass (Sorghum sudanense S.) is a high-quality sorghum forage, and its lignocellulose is mostly stored in the secondary cell wall. However, the secondary cell wall synthesis mechanism of Sudan grass has not yet been studied in depth. To further study the secondary cell wall synthesis mechanism of Sudan grass using established transcriptome data, this study found that CcNAC6, a homologous gene of Arabidopsis AtSND2, is related to the secondary cell wall synthesis of Sudan grass. Accordingly, we constructed a CcNAC6-overexpressing line of Arabidopsis to investigate the function of the CcNAC6 gene in secondary cell wall synthesis. The results showed that the overexpression of the CcNAC6 gene could significantly increase the lignin content of Arabidopsis. Based on subcellular localization analysis, CcNAC6 is found in the nucleus. In addition, yeast two-hybridization screening showed that CcCP1, associated with secondary cell wall synthesis, can interact with CcNAC6. Therefore, the above results indicate that CcNAC6 has a positive regulatory effect on the secondary cell wall synthesis of Sudan grass, and it is speculated that CcNAC6 may be the main regulator of the secondary cell wall synthesis of Sudan grass through its interaction with another regulatory protein, CcCP1. This study provides a theoretical basis and new genetic resources for the creation of new Sudan grass germplasm with a low lignin content.
Collapse
Affiliation(s)
- Yanzhong Huang
- National Forage Breeding Innovation Base (JAAS), Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Key Laboratory for Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China; (Y.H.); (J.W.); (Z.L.)
| | - Juanzi Wu
- National Forage Breeding Innovation Base (JAAS), Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Key Laboratory for Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China; (Y.H.); (J.W.); (Z.L.)
| | - Jianyu Lin
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China;
| | - Zhiwei Liu
- National Forage Breeding Innovation Base (JAAS), Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Key Laboratory for Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China; (Y.H.); (J.W.); (Z.L.)
| | - Zhengfeng Mao
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing 210095, China;
| | - Chen Qian
- National Forage Breeding Innovation Base (JAAS), Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Key Laboratory for Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China; (Y.H.); (J.W.); (Z.L.)
| | - Xiaoxian Zhong
- National Forage Breeding Innovation Base (JAAS), Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Key Laboratory for Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Nanjing 210014, China; (Y.H.); (J.W.); (Z.L.)
| |
Collapse
|
8
|
Wei H, Wang X, Wang K, Tang X, Zhang N, Si H. Transcription factors as molecular switches regulating plant responses to drought stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14366. [PMID: 38812034 DOI: 10.1111/ppl.14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024]
Abstract
Plants often experience abiotic stress, which severely affects their growth. With the advent of global warming, drought stress has become a pivotal factor affecting crop yield and quality. Increasing numbers of studies have focused on elucidating the molecular mechanisms underlying plant responses to drought stress. As molecular switches, transcription factors (TFs) are key participants in drought-resistance regulatory networks in crops. TFs regulate the transcription of downstream genes and are regulated by various upstream regulatory factors. Therefore, understanding the mechanisms of action of TFs in regulating drought stress can help enhance the adaptive capacity of crops under drought conditions. In this review, we summarize the structural characteristics of several common TFs, their multiple drought-response pathways, and recently employed research strategies. We describe the application of new technologies such as analysis of stress granule dynamics and function, multi-omics data, gene editing, and molecular crosstalk between TFs in drought resistance. This review aims to familiarize readers with the regulatory network of TFs in drought resistance and to provide a reference for examining the molecular mechanisms of drought resistance in plants and improving agronomic traits.
Collapse
Affiliation(s)
- Han Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xiao Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Kaitong Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Agronomy, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Xun Tang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, People's Republic of China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, People's Republic of China
| |
Collapse
|
9
|
Cui X, Tang M, Li L, Chang J, Yang X, Chang H, Zhou J, Liu M, Wang Y, Zhou Y, Sun F, Chen Z. Expression Patterns and Molecular Mechanisms Regulating Drought Tolerance of Soybean [ Glycine max (L.) Merr.] Conferred by Transcription Factor Gene GmNAC19. Int J Mol Sci 2024; 25:2396. [PMID: 38397076 PMCID: PMC10889163 DOI: 10.3390/ijms25042396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
NAC transcription factors are commonly involved in the plant response to drought stress. A transcriptome analysis of root samples of the soybean variety 'Jiyu47' under drought stress revealed the evidently up-regulated expression of GmNAC19, consistent with the expression pattern revealed by quantitative real-time PCR analysis. The overexpression of GmNAC19 enhanced drought tolerance in Saccharomyces cerevisiae INVSc1. The seed germination percentage and root growth of transgenic Arabidopsis thaliana were improved in comparison with those of the wild type, while the transgenic soybean composite line showed improved chlorophyll content. The altered contents of physiological and biochemical indices (i.e., soluble protein, soluble sugar, proline, and malondialdehyde) related to drought stress and the activities of three antioxidant enzymes (i.e., superoxide dismutase, peroxidase, and catalase) revealed enhanced drought tolerance in both transgenic Arabidopsis and soybean. The expressions of three genes (i.e., P5CS, OAT, and P5CR) involved in proline synthesis were decreased in the transgenic soybean hairy roots, while the expression of ProDH involved in the breakdown of proline was increased. This study revealed the molecular mechanisms underlying drought tolerance enhanced by GmNAC19 via regulation of the contents of soluble protein and soluble sugar and the activities of antioxidant enzymes, providing a candidate gene for the molecular breeding of drought-tolerant crop plants.
Collapse
Affiliation(s)
- Xiyan Cui
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Minghao Tang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Lei Li
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Jiageng Chang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Xiaoqin Yang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Hongli Chang
- Shaanxi Key Laboratory for Animal Conservation, School of Life Sciences, Northwest University, Xi’an 710069, China
| | - Jiayu Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Miao Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Yan Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Ying Zhou
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
| | - Fengjie Sun
- Department of Biological Sciences, School of Science and Technology, Georgia Gwinnett College, Lawrenceville, GA 30043, USA
| | - Zhanyu Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.C.); (Y.W.); (Y.Z.)
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
10
|
Ma B, Zhang J, Guo S, Xie X, Yan L, Chen H, Zhang H, Bu X, Zheng L, Wang Y. RtNAC055 promotes drought tolerance via a stomatal closure pathway linked to methyl jasmonate/hydrogen peroxide signaling in Reaumuria trigyna. HORTICULTURE RESEARCH 2024; 11:uhae001. [PMID: 38419969 PMCID: PMC10901477 DOI: 10.1093/hr/uhae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 12/30/2023] [Indexed: 03/02/2024]
Abstract
The stomata regulate CO2 uptake and efficient water usage, thereby promoting drought stress tolerance. NAC proteins (NAM, ATAF1/2, and CUC2) participate in plant reactions following drought stress, but the molecular mechanisms underlying NAC-mediated regulation of stomatal movement are unclear. In this study, a novel NAC gene from Reaumuria trigyna, RtNAC055, was found to enhance drought tolerance via a stomatal closure pathway. It was regulated by RtMYC2 and integrated with jasmonic acid signaling and was predominantly expressed in stomata and root. The suppression of RtNAC055 could improve jasmonic acid and H2O2 production and increase the drought tolerance of transgenic R. trigyna callus. Ectopic expression of RtNAC055 in the Arabidopsis atnac055 mutant rescued its drought-sensitive phenotype by decreasing stomatal aperture. Under drought stress, overexpression of RtNAC055 in poplar promoted ROS (H2O2) accumulation in stomata, which accelerated stomatal closure and maintained a high photosynthetic rate. Drought upregulated the expression of PtRbohD/F, PtP5CS2, and PtDREB1.1, as well as antioxidant enzyme activities in heterologous expression poplars. RtNAC055 promoted H2O2 production in guard cells by directly binding to the promoter of RtRbohE, thus regulating stomatal closure. The stress-related genes RtDREB1.1/P5CS1 were directly regulated by RtNAC055. These results indicate that RtNAC055 regulates stomatal closure by maintaining the balance between the antioxidant system and H2O2 level, reducing the transpiration rate and water loss, and improving photosynthetic efficiency and drought resistance.
Collapse
Affiliation(s)
- Binjie Ma
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan Province, China
| | - Jie Zhang
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Shuyu Guo
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xinlei Xie
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Lang Yan
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan Province, China
| | - Huijing Chen
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, Hainan Province, China
| | - Hongyi Zhang
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xiangqi Bu
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Linlin Zheng
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yingchun Wang
- Key Laboratory of Herbage and Endemic Crop Biology, and College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
11
|
Wu R, Kong L, Wu X, Gao J, Niu T, Li J, Li Z, Dai L. GsNAC2 gene enhances saline-alkali stress tolerance by promoting plant growth and regulating glutathione metabolism in Sorghum bicolor. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:677-690. [PMID: 37423605 DOI: 10.1071/fp23015] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023]
Abstract
The quality and yields of Sorghum bicolo r plants are seriously affected by saline-alkali conditions. NAC (NAM, ATAF, and CUC) transcription factors are plant specific and have various functions in plant development and response to various stresses. To investigate how GsNAC2 functions in sorghum responses to saline-alkali treatment, the characteristics of GsNAC2 were analysed by bioinformatics methods, and NaHCO3 :Na2 CO3 (5:1, 75mM, pH 9.63) saline-alkali stress solution was applied when sorghum plants were 2weeks old. The research results show that GsNAC2 belongs to the NAC gene family. GsNAC2 was significantly induced by saline-alkali treatment and strongly expressed in sorghum leaves. GsNAC2 -overexpressing sorghum plants had increased plant height, dry weight, moisture content, root activity, leaf length, chlorophyll content, stomatal conductance, relative root activity, relative chlorophyll content, relative stomatal conductance, and relative transpiration rate after saline-alkali treatment. Lower H2 O2 and O2 - levels, relative permeability of the plasma membrane, and malondialdehyde (MDA) content were found in GsNAC2 -overexpressing sorghum. In transcriptome analysis, clusters of orthologous groups (COG) analysis showed that a high proportion of differentially-expressed genes (DEGs) participated in defence mechanisms at each processing time, and 18 DEGs related to synthetic glutathione were obtained. Gene expression analysis revealed that key genes in glutathione biosynthesis pathways were upregulated. GR and GSH-Px activities were increased, and GSH accumulated more with the overexpression of GsNAC2 after saline-alkali treatment. Furthermore, these results suggest that GsNAC2 acts as a potentially important regulator in response to saline-alkali stress and may be used in molecular breeding to improve crop yields under adverse environmental conditions.
Collapse
Affiliation(s)
- Rong Wu
- College of Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Lingxin Kong
- College of Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Xiao Wu
- College of Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Jing Gao
- College of Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Tingli Niu
- College of Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Jianying Li
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing, Heilongjiang Province 163319, China
| | - Zhijiang Li
- College of Food, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| | - Lingyan Dai
- College of Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang Province 163319, China
| |
Collapse
|
12
|
Mazarei M, Routray P, Piya S, Stewart CN, Hewezi T. Overexpression of soybean GmNAC19 and GmGRAB1 enhances root growth and water-deficit stress tolerance in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1186292. [PMID: 37324708 PMCID: PMC10264791 DOI: 10.3389/fpls.2023.1186292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/18/2023] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is an important crop in agricultural production where water shortage limits yields in soybean. Root system plays important roles in water-limited environments, but the underlying mechanisms are largely unknown. In our previous study, we produced a RNA-seq dataset generated from roots of soybean at three different growth stages (20-, 30-, and 44-day-old plants). In the present study, we performed a transcriptome analysis of the RNA-seq data to select candidate genes with probable association with root growth and development. Candidate genes were functionally examined in soybean by overexpression of individual genes using intact soybean composite plants with transgenic hairy roots. Root growth and biomass in the transgenic composite plants were significantly increased by overexpression of the GmNAC19 and GmGRAB1 transcriptional factors, showing up to 1.8-fold increase in root length and/or 1.7-fold increase in root fresh/dry weight. Furthermore, greenhouse-grown transgenic composite plants had significantly higher seed yield by about 2-fold than control plants. Expression profiling in different developmental stages and tissues showed that GmNAC19 and GmGRAB1 were most highly expressed in roots, displaying a distinct root-preferential expression. Moreover, we found that under water-deficit conditions, overexpression of GmNAC19 enhanced water stress tolerance in transgenic composite plants. Taken together, these results provide further insights into the agricultural potential of these genes for development of soybean cultivars with improved root growth and enhanced tolerance to water-deficit conditions.
Collapse
Affiliation(s)
- Mitra Mazarei
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| | - Pratyush Routray
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| | - C. Neal Stewart
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
- Center for Agricultural Synthetic Biology, University of Tennessee, Knoxville, TN, United States
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
13
|
Gajardo HA, Gómez-Espinoza O, Boscariol Ferreira P, Carrer H, Bravo LA. The Potential of CRISPR/Cas Technology to Enhance Crop Performance on Adverse Soil Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091892. [PMID: 37176948 PMCID: PMC10181257 DOI: 10.3390/plants12091892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Worldwide food security is under threat in the actual scenery of global climate change because the major staple food crops are not adapted to hostile climatic and soil conditions. Significant efforts have been performed to maintain the actual yield of crops, using traditional breeding and innovative molecular techniques to assist them. However, additional strategies are necessary to achieve the future food demand. Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) technology, as well as its variants, have emerged as alternatives to transgenic plant breeding. This novelty has helped to accelerate the necessary modifications in major crops to confront the impact of abiotic stress on agriculture systems. This review summarizes the current advances in CRISPR/Cas applications in crops to deal with the main hostile soil conditions, such as drought, flooding and waterlogging, salinity, heavy metals, and nutrient deficiencies. In addition, the potential of extremophytes as a reservoir of new molecular mechanisms for abiotic stress tolerance, as well as their orthologue identification and edition in crops, is shown. Moreover, the future challenges and prospects related to CRISPR/Cas technology issues, legal regulations, and customer acceptance will be discussed.
Collapse
Affiliation(s)
- Humberto A Gajardo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| | - Olman Gómez-Espinoza
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Pedro Boscariol Ferreira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| |
Collapse
|
14
|
Xiong E, Qu X, Li J, Liu H, Ma H, Zhang D, Chu S, Jiao Y. The soybean ubiquitin-proteasome system: Current knowledge and future perspective. THE PLANT GENOME 2023; 16:e20281. [PMID: 36345561 DOI: 10.1002/tpg2.20281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Increasing soybean [Glycine max (L.) Merr.] yield has become a worldwide scientific problem in the world. Many studies have shown that ubiquitination plays a key role in stress response and yield formation. In the UniProtKB database, 2,429 ubiquitin-related proteins were predicted in soybean, however, <20 were studied. One key way to address this lack of progress in increasing soybean yield will be a deeper understanding of the ubiquitin-proteasome system (UPS) in soybean. In this review, we summarized the current knowledge about soybean ubiquitin-related proteins and discussed the method of combining phenotype, mutant library, transgenic system, genomics, and proteomics approaches to facilitate the exploration of the soybean UPS. We also proposed the strategy of applying the UPS in soybean improvement based on related studies in model plants. Our review will be helpful for soybean scientists to learn current research progress of the soybean UPS and further lay a theoretical reference for the molecular improvement of soybean in future research by use of this knowledge.
Collapse
Affiliation(s)
- Erhui Xiong
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Xuelian Qu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Junfeng Li
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Hongli Liu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Hui Ma
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Shanshan Chu
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| | - Yongqing Jiao
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural Univ., Zhengzhou, Henan, 450002, China
| |
Collapse
|
15
|
Rahman SU, McCoy E, Raza G, Ali Z, Mansoor S, Amin I. Improvement of Soybean; A Way Forward Transition from Genetic Engineering to New Plant Breeding Technologies. Mol Biotechnol 2023; 65:162-180. [PMID: 35119645 DOI: 10.1007/s12033-022-00456-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 01/21/2022] [Indexed: 01/18/2023]
Abstract
Soybean is considered one of the important crops among legumes. Due to high nutritional contents in seed (proteins, sugars, oil, fatty acids, and amino acids), soybean is used globally for food, feed, and fuel. The primary consumption of soybean is vegetable oil and feed for chickens and livestock. Apart from this, soybean benefits soil fertility by fixing atmospheric nitrogen through root nodular bacteria. While conventional breeding is practiced for soybean improvement, with the advent of new biotechnological methods scientists have also engineered soybean to improve different traits (herbicide, insect, and disease resistance) to fulfill consumer requirements and to meet the global food deficiency. Genetic engineering (GE) techniques such as transgenesis and gene silencing help to minimize the risks and increase the adaptability of soybean. Recently, new plant breeding technologies (NPBTs) emerged such as zinc-finger nucleases, transcription activator-like effector nucleases, and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR/Cas9), which paved the way for enhanced genetic modification of soybean. These NPBTs have the potential to improve soybean via gene functional characterization precision genome engineering for trait improvement. Importantly, these NPBTs address the ethical and public acceptance issues related to genetic modifications and transgenesis in soybean. In the present review, we summarized the improvement of soybean through GE and NPBTs. The valuable traits that have been improved through GE for different constraints have been discussed. Moreover, the traits that have been improved through NPBTs and potential targets for soybean improvements via NPBTs and solutions for ethical and public acceptance are also presented.
Collapse
Affiliation(s)
- Saleem Ur Rahman
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Evan McCoy
- Center for Applied Genetic Technologies (CAGT), University of Georgia, Athens, USA
| | - Ghulam Raza
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Zahir Ali
- Laboratory for Genome Engineering, Center for Desert Agriculture and Division of Biological Sciences, 4700 King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
- Constituent College Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, Pakistan.
| |
Collapse
|
16
|
Nascimento FDS, Rocha ADJ, Soares JMDS, Mascarenhas MS, Ferreira MDS, Morais Lino LS, Ramos APDS, Diniz LEC, Mendes TADO, Ferreira CF, dos Santos-Serejo JA, Amorim EP. Gene Editing for Plant Resistance to Abiotic Factors: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:305. [PMID: 36679018 PMCID: PMC9860801 DOI: 10.3390/plants12020305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 05/22/2023]
Abstract
Agricultural crops are exposed to various abiotic stresses, such as salinity, water deficits, temperature extremes, floods, radiation, and metal toxicity. To overcome these challenges, breeding programs seek to improve methods and techniques. Gene editing by Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR/Cas-is a versatile tool for editing in all layers of the central dogma with focus on the development of cultivars of plants resistant or tolerant to multiple biotic or abiotic stresses. This systematic review (SR) brings new contributions to the study of the use of CRISPR/Cas in gene editing for tolerance to abiotic stress in plants. Articles deposited in different electronic databases, using a search string and predefined inclusion and exclusion criteria, were evaluated. This SR demonstrates that the CRISPR/Cas system has been applied to several plant species to promote tolerance to the main abiotic stresses. Among the most studied crops are rice and Arabidopsis thaliana, an important staple food for the population, and a model plant in genetics/biotechnology, respectively, and more recently tomato, whose number of studies has increased since 2021. Most studies were conducted in Asia, specifically in China. The Cas9 enzyme is used in most articles, and only Cas12a is used as an additional gene editing tool in plants. Ribonucleoproteins (RNPs) have emerged as a DNA-free strategy for genome editing without exogenous DNA. This SR also identifies several genes edited by CRISPR/Cas, and it also shows that plant responses to stress factors are mediated by many complex-signaling pathways. In addition, the quality of the articles included in this SR was validated by a risk of bias analysis. The information gathered in this SR helps to understand the current state of CRISPR/Cas in the editing of genes and noncoding sequences, which plays a key role in the regulation of various biological processes and the tolerance to multiple abiotic stresses, with potential for use in plant genetic improvement programs.
Collapse
Affiliation(s)
| | - Anelita de Jesus Rocha
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | - Mileide dos Santos Ferreira
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Zhao X, Zhao J, Yang Q, Huang M, Song Y, Li M, Sui S, Liu D. Functional Characterization of the CpNAC1 Promoter and Gene from Chimonanthus praecox in Arabidopsis. Int J Mol Sci 2022; 24:ijms24010542. [PMID: 36613984 PMCID: PMC9820485 DOI: 10.3390/ijms24010542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
The NAC (NAM, ATAF, and CUC) gene family is one of the largest plant-specific transcription factor families. Its members have various biological functions that play important roles in regulating plant growth and development and in responding to biotic and abiotic stresses. However, their functions in woody plants are not fully understood. In this study, we isolated an NAC family member, the CpNAC1 promoter and gene, from wintersweet. CpNAC1 was localized to the nucleus and showed transcriptional activation activity. qRT-PCR analyses revealed that the gene was expressed in almost all tissues tested, with the highest levels found in mature leaves and flower buds. Moreover, its expression was induced by various abiotic stresses and ABA treatment. Its expression patterns were further confirmed in CpNAC1pro:GUS (β-glucuronidase) plants. Among all the transgenic lines, CpNAC1pro-D2 showed high GUS histochemical staining and activity in different tissues of Arabidopsis. Furthermore, its GUS activity significantly increased in response to various abiotic stresses and ABA treatment. This may be related to the stress-related cis-elements, such as ABRE and MYB, which clustered in the CpNAC1pro-D2 segment, suggesting that CpNAC1pro-D2 is the core segment that responds to abiotic stresses and ABA. In addition, CpNAC1-overexpressed Arabidopsis plants had weaker osmosis tolerance than the wild-type plants, demonstrating that CpNAC1 may negatively regulate the drought stress response in transgenic Arabidopsis. Our results provide a foundation for further analyses of NAC family genes in wintersweet, and they broaden our knowledge of the roles that NAC family genes may play in woody plants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shunzhao Sui
- Correspondence: (S.S.); (D.L.); Tel.: +86-23-6825-0086 (S.S.); +86-23-6825-0086 (D.L.)
| | - Daofeng Liu
- Correspondence: (S.S.); (D.L.); Tel.: +86-23-6825-0086 (S.S.); +86-23-6825-0086 (D.L.)
| |
Collapse
|
18
|
Molecular Characterization and Drought Resistance of GmNAC3 Transcription Factor in Glycine max (L.) Merr. Int J Mol Sci 2022; 23:ijms232012378. [PMID: 36293235 PMCID: PMC9604218 DOI: 10.3390/ijms232012378] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Soybean transcription factor GmNAC plays important roles in plant resistance to environmental stresses. In this study, GmNAC3 was cloned in the drought tolerant soybean variety “Jiyu47”, with the molecular properties of GmNAC3 characterized to establish its candidacy as a NAC transcription factor. The yeast self-activation experiments revealed the transcriptional activation activity of GmNAC3, which was localized in the nucleus by the subcellular localization analysis. The highest expression of GmNAC3 was detected in roots in the podding stage of soybean, and in roots of soybean seedlings treated with 20% PEG6000 for 12 h, which was 16 times higher compared with the control. In the transgenic soybean hairy roots obtained by the Agrobacterium-mediated method treated with 20% PEG6000 for 12 h, the activities of superoxide dismutase, peroxidase, and catalase and the content of proline were increased, the malondialdehyde content was decreased, and the expressions of stress resistance-related genes (i.e., APX2, LEA14, 6PGDH, and P5CS) were up-regulated. These expression patterns were confirmed by transgenic Arabidopsis thaliana with the overexpression of GmNAC3. This study provided strong scientific evidence to support further investigation of the regulatory function of GmNAC3 in plant drought resistance and the molecular mechanisms regulating the plant response to environmental stresses.
Collapse
|
19
|
Yang C, Huang Y, Lv P, Antwi-Boasiako A, Begum N, Zhao T, Zhao J. NAC Transcription Factor GmNAC12 Improved Drought Stress Tolerance in Soybean. Int J Mol Sci 2022; 23:ijms231912029. [PMID: 36233329 PMCID: PMC9570484 DOI: 10.3390/ijms231912029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/28/2022] [Accepted: 10/08/2022] [Indexed: 11/24/2022] Open
Abstract
NAC transcription factors (TFs) could regulate drought stresses in plants; however, the function of NAC TFs in soybeans remains unclear. To unravel NAC TF function, we established that GmNAC12, a NAC TF from soybean (Glycine max), was involved in the manipulation of stress tolerance. The expression of GmNAC12 was significantly upregulated more than 10-fold under drought stress and more than threefold under abscisic acid (ABA) and ethylene (ETH) treatment. In order to determine the function of GmNAC12 under drought stress conditions, we generated GmNAC12 overexpression and knockout lines. The present findings showed that under drought stress, the survival rate of GmNAC12 overexpression lines increased by more than 57% compared with wild-type plants, while the survival rate of GmNAC12 knockout lines decreased by at least 46%. Furthermore, a subcellular localisation analysis showed that the GmNAC12 protein is concentrated in the nucleus of the tobacco cell. In addition, we used a yeast two-hybrid assay to identify 185 proteins that interact with GmNAC12. Gene ontology (GO) and KEGG analysis showed that GmNAC12 interaction proteins are related to chitin, chlorophyll, ubiquitin–protein transferase, and peroxidase activity. Hence, we have inferred that GmNAC12, as a key gene, could positively regulate soybean tolerance to drought stress.
Collapse
Affiliation(s)
- Chengfeng Yang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yanzhong Huang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- National Forage Breeding Innovation Base (JAAS), Key Laboratory for Saline-Alkali Soil Improvement and Utilization (Coastal Saline-Alkali Lands), Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Peiyun Lv
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Augustine Antwi-Boasiako
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Crops Research Institute, Council for Scientific and Industrial Research, Kumasi AK420, Ghana
| | - Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (T.Z.); (J.Z.)
| | - Jinming Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence: (T.Z.); (J.Z.)
| |
Collapse
|
20
|
Li Z, Zhang Y, Liu C, Gao Y, Han L, Chu H. Arbuscular mycorrhizal fungi contribute to reactive oxygen species homeostasis of Bombax ceiba L. under drought stress. Front Microbiol 2022; 13:991781. [PMID: 36204632 PMCID: PMC9530913 DOI: 10.3389/fmicb.2022.991781] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Drought stress is one of the major abiotic factors limiting plant growth and causing ecological degradation. The regulation of reactive oxygen species (ROS) generation and ROS scavenging is essential to plant growth under drought stress. To investigate the role of arbuscular mycorrhizal fungi (AMF) on ROS generation and ROS scavenging ability under drought stress in Bombax ceiba, the ROS content, the expression levels of respiratory burst oxidase homologue (Rbohs), and the antioxidant response were evaluated in AMF and NMF (non-inoculated AMF) plants under drought stress. 14 BcRboh genes were identified in the B. ceiba genome and divided into five subgroups based on phylogenetic analysis. The effect of AMF on the expression profiles of BcRbohs were different under our conditions. AMF mainly downregulated the expression of Rbohs (BcRbohA, BcRbohD, BcRbohDX2, BcRbohE, BcRbohFX1, and BcRbohI) in drought-stressed seedlings. For well-water (WW) treatment, AMF slightly upregulated Rbohs in seedlings. AMF inoculation decreased the malondialdehyde (MDA) content by 19.11 and 20.85%, decreased the O2⋅– production rate by 39.69 and 65.20% and decreased H2O2 content by 20.06 and 43.21% compared with non-mycorrhizal (NMF) plants under drought stress in root and shoot, respectively. In addition, AMF inoculation increased the non-enzymatic antioxidants glutathione (GSH) and ascorbic acid (AsA) content in roots by 153.52 and 28.18% under drought stress, respectively. The activities of antioxidant enzymes (SOD, PX, CAT, APX, GPX, GR, MDAR, and DHAR) all increased ranging from 19.47 - 131.54% due to AMF inoculation under drought stress. In conclusion, these results reveal that AMF inoculation can maintain ROS homeostasis by mitigating drought-induced ROS burst, via decreasing ROS generation and enhancing ROS scavenging ability of B. ceiba seedlings.
Collapse
|
21
|
Mehari TG, Hou Y, Xu Y, Umer MJ, Shiraku ML, Wang Y, Wang H, Peng R, Wei Y, Cai X, Zhou Z, Liu F. Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis. BMC Genomics 2022; 23:648. [PMID: 36096725 PMCID: PMC9469605 DOI: 10.1186/s12864-022-08876-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Crops face several environmental stresses (biotic and abiotic), thus resulting in severe yield losses. Around the globe abiotic stresses are the main contributors of plant damages, primarily drought and salinity. Many genes and transcription factors are involved in abiotic and biotic stress responses. NAC TF (Transcription Factors) improves tolerance to stresses by controlling the physiological and enzyme activities of crops. RESULTS In current research, GhNAC072 a highly upregulated TF in RNA-Seq was identified as a hub gene in the co-expression network analysis (WGCNA). This gene was transformed to Arabidopsis thaliana to confirm its potential role in drought and salt stress tolerance. Significant variations were observed in the morpho-physiological traits with high relative leaf water contents, chlorophyll contents, higher germination and longer root lengths of the overexpressed lines and low excised leaf loss and ion leakage as compared to the wildtype plants. Besides, overexpressed lines have higher amounts of antioxidants and low oxidant enzyme activities than the wildtype during the period of stress exposure. CONCLUSIONS In summary, the above analysis showed that GhNAC072 might be the true candidate involved in boosting tolerance mechanisms under drought and salinity stress.
Collapse
Affiliation(s)
- Teame Gereziher Mehari
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China.,School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Margaret Linyerera Shiraku
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yuhong Wang
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Heng Wang
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China
| | - Renhai Peng
- Anyang Institute of Technology, Anyang, Henan, China
| | - Yangyang Wei
- Anyang Institute of Technology, Anyang, Henan, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China.
| | - Zhongli Zhou
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China.
| | - Fang Liu
- State Key Laboratory of Cotton Biology, Cotton Institute of the Chinese Academy of Agricultural Sciences, Anyang, China. .,School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
22
|
Hu Y, Chen X, Shen X. Regulatory network established by transcription factors transmits drought stress signals in plant. STRESS BIOLOGY 2022; 2:26. [PMID: 37676542 PMCID: PMC10442052 DOI: 10.1007/s44154-022-00048-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/20/2022] [Indexed: 09/08/2023]
Abstract
Plants are sessile organisms that evolve with a flexible signal transduction system in order to rapidly respond to environmental changes. Drought, a common abiotic stress, affects multiple plant developmental processes especially growth. In response to drought stress, an intricate hierarchical regulatory network is established in plant to survive from the extreme environment. The transcriptional regulation carried out by transcription factors (TFs) is the most important step for the establishment of the network. In this review, we summarized almost all the TFs that have been reported to participate in drought tolerance (DT) in plant. Totally 466 TFs from 86 plant species that mostly belong to 11 families are collected here. This demonstrates that TFs in these 11 families are the main transcriptional regulators of plant DT. The regulatory network is built by direct protein-protein interaction or mutual regulation of TFs. TFs receive upstream signals possibly via post-transcriptional regulation and output signals to downstream targets via direct binding to their promoters to regulate gene expression.
Collapse
Affiliation(s)
- Yongfeng Hu
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| | - Xiaoliang Chen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| | - Xiangling Shen
- Key Laboratory of Three Gorges Regional Plant Genetics and Germplasm Enhancement, Biotechnology Research Center, China Three Gorges University, Yichang, 443002 Hubei China
| |
Collapse
|
23
|
Wang H, Ni D, Shen J, Deng S, Xuan H, Wang C, Xu J, Zhou L, Guo N, Zhao J, Xing H. Genome-Wide Identification of the AP2/ERF Gene Family and Functional Analysis of GmAP2/ERF144 for Drought Tolerance in Soybean. FRONTIERS IN PLANT SCIENCE 2022; 13:848766. [PMID: 35419020 PMCID: PMC8996232 DOI: 10.3389/fpls.2022.848766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/08/2022] [Indexed: 05/31/2023]
Abstract
Drought is a major environmental constraint that causes substantial reductions in plant growth and yield. Expression of stress-related genes is largely regulated by transcription factors (TFs), including in soybean [Glycine max (L.) Merr.]. In this study, 301 GmAP2/ERF genes that encode TFs were identified in the soybean genome. The TFs were divided into five categories according to their homology. Results of previous studies were then used to select the target gene GmAP2/ERF144 from among those up-regulated by drought and salt stress in the transcriptome. According to respective tissue expression analysis and subcellular determination, the gene was highly expressed in leaves and encoded a nuclear-localized protein. To validate the function of GmAP2/ERF144, the gene was overexpressed in soybean using Agrobacterium-mediated transformation. Compared with wild-type soybean, drought resistance of overexpression lines increased significantly. Under drought treatment, leaf relative water content was significantly higher in overexpressed lines than in the wild-type genotype, whereas malondialdehyde content and electrical conductivity were significantly lower than those in the wild type. Thus, drought resistance of transgenic soybean increased with overexpression of GmAP2/ERF144. To understand overall function of the gene, network analysis was used to predict the genes that interacted with GmAP2/ERF144. Reverse-transcription quantitative PCR showed that expression of those interacting genes in two transgenic lines was 3 to 30 times higher than that in the wild type. Therefore, GmAP2/ERF144 likely interacted with those genes; however, that conclusion needs to be verified in further specific experiments.
Collapse
|
24
|
Xuan H, Huang Y, Zhou L, Deng S, Wang C, Xu J, Wang H, Zhao J, Guo N, Xing H. Key Soybean Seedlings Drought-Responsive Genes and Pathways Revealed by Comparative Transcriptome Analyses of Two Cultivars. Int J Mol Sci 2022; 23:2893. [PMID: 35270036 PMCID: PMC8911164 DOI: 10.3390/ijms23052893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 02/08/2023] Open
Abstract
Seedling drought stress is one of the most important constraints affecting soybean yield and quality. To unravel the molecular mechanisms under soybean drought tolerance, we conducted comprehensive comparative transcriptome analyses of drought-tolerant genotype Jindou 21 (JD) and drought-sensitive genotype Tianlong No.1 (N1) seedlings that had been exposed to drought treatment. A total of 6038 and 4112 differentially expressed genes (DEGs) were identified in drought-tolerant JD and drought-sensitive N1, respectively. Subsequent KEGG pathway analyses showed that numerous DEGs in JD are predominately involved in signal transduction pathways, including plant hormone signaling pathway, calcium signaling pathway, and MAPK signaling pathway. Interestingly, JA and BR plant hormone signal transduction pathways were found specifically participating in drought-tolerant JD. Meanwhile, the differentially expressed CPKs, CIPKs, MAPKs, and MAP3Ks of calcium and MAPK signaling pathway were only identified in JD. The number of DEGs involved in transcription factors (TFs) is larger in JD than that of in N1. Moreover, some differently expressed transcriptional factor genes were only identified in drought-tolerant JD, including FAR1, RAV, LSD1, EIL, and HB-PHD. In addition, this study suggested that JD could respond to drought stress by regulating the cell wall remodeling and stress-related protein genes such as EXPs, CALSs, CBPs, BBXs, and RD22s. JD is more drought tolerant than N1 owing to more DEGs being involved in multiple signal transduction pathways (JA, BR, calcium, MAPK signaling pathway), stress-related TFs, and proteins. The above valuable genes and pathways will deepen the understanding of the molecular mechanisms under drought stress in soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Na Guo
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (H.X.); (Y.H.); (L.Z.); (S.D.); (C.W.); (J.X.); (H.W.); (J.Z.)
| | - Han Xing
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory for Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; (H.X.); (Y.H.); (L.Z.); (S.D.); (C.W.); (J.X.); (H.W.); (J.Z.)
| |
Collapse
|
25
|
Zhang M, Liu S, Wang Z, Yuan Y, Zhang Z, Liang Q, Yang X, Duan Z, Liu Y, Kong F, Liu B, Ren B, Tian Z. Progress in soybean functional genomics over the past decade. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:256-282. [PMID: 34388296 PMCID: PMC8753368 DOI: 10.1111/pbi.13682] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 05/24/2023]
Abstract
Soybean is one of the most important oilseed and fodder crops. Benefiting from the efforts of soybean breeders and the development of breeding technology, large number of germplasm has been generated over the last 100 years. Nevertheless, soybean breeding needs to be accelerated to meet the needs of a growing world population, to promote sustainable agriculture and to address future environmental changes. The acceleration is highly reliant on the discoveries in gene functional studies. The release of the reference soybean genome in 2010 has significantly facilitated the advance in soybean functional genomics. Here, we review the research progress in soybean omics (genomics, transcriptomics, epigenomics and proteomics), germplasm development (germplasm resources and databases), gene discovery (genes that are responsible for important soybean traits including yield, flowering and maturity, seed quality, stress resistance, nodulation and domestication) and transformation technology during the past decade. At the end, we also briefly discuss current challenges and future directions.
Collapse
Affiliation(s)
- Min Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Zhao Wang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaqin Yuan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhifang Zhang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Qianjin Liang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xia Yang
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Baohui Liu
- Innovative Center of Molecular Genetics and EvolutionSchool of Life SciencesGuangzhou UniversityGuangzhouChina
| | - Bo Ren
- State Key Laboratory of Plant GenomicsInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome EngineeringInstitute of Genetics and Developmental BiologyInnovative Academy for Seed DesignChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
26
|
Xu H, Guo Y, Qiu L, Ran Y. Progress in Soybean Genetic Transformation Over the Last Decade. FRONTIERS IN PLANT SCIENCE 2022; 13:900318. [PMID: 35755694 PMCID: PMC9231586 DOI: 10.3389/fpls.2022.900318] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/11/2022] [Indexed: 05/13/2023]
Abstract
Soybean is one of the important food, feed, and biofuel crops in the world. Soybean genome modification by genetic transformation has been carried out for trait improvement for more than 4 decades. However, compared to other major crops such as rice, soybean is still recalcitrant to genetic transformation, and transgenic soybean production has been hampered by limitations such as low transformation efficiency and genotype specificity, and prolonged and tedious protocols. The primary goal in soybean transformation over the last decade is to achieve high efficiency and genotype flexibility. Soybean transformation has been improved by modifying tissue culture conditions such as selection of explant types, adjustment of culture medium components and choice of selection reagents, as well as better understanding the transformation mechanisms of specific approaches such as Agrobacterium infection. Transgenesis-based breeding of soybean varieties with new traits is now possible by development of improved protocols. In this review, we summarize the developments in soybean genetic transformation to date, especially focusing on the progress made using Agrobacterium-mediated methods and biolistic methods over the past decade. We also discuss current challenges and future directions.
Collapse
Affiliation(s)
- Hu Xu
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
| | - Yong Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijuan Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lijuan Qiu,
| | - Yidong Ran
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
- Yidong Ran,
| |
Collapse
|
27
|
Aleem M, Riaz A, Raza Q, Aleem M, Aslam M, Kong K, Atif RM, Kashif M, Bhat JA, Zhao T. Genome-wide characterization and functional analysis of class III peroxidase gene family in soybean reveal regulatory roles of GsPOD40 in drought tolerance. Genomics 2022; 114:45-60. [PMID: 34813918 DOI: 10.1016/j.ygeno.2021.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/18/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022]
Abstract
Class III peroxidases (PODs) are plant-specific glycoproteins, that play essential roles in various plant physiological processes and defence responses. To date, scarce information is available about the POD gene family in soybean. Hence, the present study is the first comprehensive report about the genome-wide characterization of GmPOD gene family in soybean (Glycine max L.). Here, we identified a total of 124 GmPOD genes in soybean, that are unevenly distributed across the genome. Phylogenetic analysis classified them into six distinct sub-groups (A-F), with one soybean specific subgroup. Exon-intron and motif analysis suggested the existence of structural and functional diversity among the sub-groups. Duplication analysis identified 58 paralogous gene pairs; segmental duplication and positive/Darwinian selection were observed as the major factors involved in the evolution of GmPODs. Furthermore, RNA-seq analysis revealed that 23 out of a total 124 GmPODs showed differential expression between drought-tolerant and drought-sensitive genotypes under stress conditions; however, two of them (GmPOD40 and GmPOD42) revealed the maximum deregulation in all contrasting genotypes. Overexpression (OE) lines of GsPOD40 showed considerably higher drought tolerance compared to wild type (WT) plants under stress treatment. Moreover, the OE lines showed enhanced photosynthesis and enzymatic antioxidant activities under drought stress, resulting in alleviation of ROS induced oxidative damage. Hence, the GsPOD40 enhanced drought tolerance in soybean by regulating the key physiological and biochemical pathways involved in the defence response. Lastly, the results of our study will greatly assist in further functional characterization of GsPODs in plant growth and stress tolerance in soybean.
Collapse
Affiliation(s)
- Muqadas Aleem
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Awais Riaz
- Molecular Breeding Laboratory, Rice Research Institute, Kala Shah Kaku, Sheikhupura, Punjab, Pakistan
| | - Qasim Raza
- Molecular Breeding Laboratory, Rice Research Institute, Kala Shah Kaku, Sheikhupura, Punjab, Pakistan
| | - Maida Aleem
- Government Post Graduate College Samanabad, Faisalabad, Pakistan
| | - Muhammad Aslam
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Keke Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Rana Muhammad Atif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Kashif
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
| | - Javaid Akhtar Bhat
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
28
|
Sun S, Wang B, Jiang Q, Li Z, Jia S, Wang Y, Guo H. Genome-wide analysis of BpDof genes and the tolerance to drought stress in birch ( Betula platyphylla). PeerJ 2021; 9:e11938. [PMID: 34513325 PMCID: PMC8395574 DOI: 10.7717/peerj.11938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 07/19/2021] [Indexed: 01/23/2023] Open
Abstract
Background DNA binding with one finger (Dof) proteins are plant-specific transcription factors playing vital roles in developmental processes and stress responses in plants. Nevertheless, the characterizations, expression patterns, and functions of the Dof family under drought stress (a key determinant of plant physiology and metabolic homeostasis) in woody plants remain unclear. Methods The birch (Betula platyphylla var. mandshuric) genome and plant TFDB database were used to identify Dof gene family members in birch plants. ClustalW2 of BioEdit v7.2.1, MEGA v7.0, ExPASy ProtParam tool, Subloc, TMHMM v2.0, GSDS v2.0, MEME, TBtools, KaKs Calculator v2.0, and PlantCARE were respectively used to align the BpDof sequences, build a phylogenetic tree, identify the physicochemical properties, analyze the chromosomal distribution and synteny, and identify the cis-elements in the promoter regions of the 26 BpDof genes. Additionally, the birch seedlings were exposed to PEG6000-simulated drought stress, and the expression patterns of the BpDof genes in different tissues were analyzed by qRT-PCR. The histochemical staining and the evaluation of physiological indexes were performed to assess the plant tolerance to drought with transient overexpression of BpDof4, BpDof11, and BpDof17 genes. SPSS software and ANOVA were used to conduct all statistical analyses and determine statistically significant differences between results. Results A total of 26 BpDof genes were identified in birch via whole-genome analysis. The conserved Dof domain with a C(x)2C(x)21C(x)2C zinc finger motif was present in all BpDof proteins. These birch BpDofs were classified into four groups (A to D) according to the phylogenetic analysis of Arabidopsis thaliana Dof genes. BpDof proteins within the same group mostly possessed similar motifs, as detected by conserved motif analysis. The exon–intron analysis revealed that the structures of BpDof genes differed, indicating probable gene gain and lose during the BpDof evolution. The chromosomal distribution and synteny analysis showed that the 26 BpDofs were unevenly distributed on 14 chromosomes, and seven duplication events among six chromosomes were found. Cis-acting elements were abundant in the promoter regions of the 26 BpDof genes. qRT-PCR revealed that the expression of the 26 BpDof genes was differentially regulated by drought stress among roots, stems, and leaves. Most BpDof genes responded to drought stress, and BpDof4, BpDof11, and BpDof17 were significantly up-regulated. Therefore, plants overexpressing these three genes were generated to investigate drought stress tolerance. The BpDof4-, BpDof11-, and BpDof17-overexpressing plants showed promoted reactive oxygen species (ROS) scavenging capabilities and less severe cell damage, suggesting that they conferred enhanced drought tolerance in birch. This study provided an in-depth insight into the structure, evolution, expression, and function of the Dof gene family in plants.
Collapse
Affiliation(s)
- Shilin Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Bo Wang
- Department of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, Heilongjiang, China
| | - Qi Jiang
- Department of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, Heilongjiang, China
| | - Zhuoran Li
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Site Jia
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Yucheng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Huiyan Guo
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,The Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
29
|
Zou YN, Wu QS, Kuča K. Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23 Suppl 1:50-57. [PMID: 32745347 DOI: 10.1111/plb.13161] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/22/2020] [Indexed: 05/21/2023]
Abstract
With continued climate changes, soil drought stress has become the main limiting factor for crop growth in arid and semi-arid regions. A typical characteristic of drought stress is the burst of reactive oxygen species (ROS), causing oxidative damage. Plant-associated microbes, such as arbuscular mycorrhizal fungi (AMF), can regulate physiological and molecular responses to tolerate drought stress, and they have a strong ability to cope with drought-induced oxidative damage via enhanced antioxidant defence systems. AMF produce a limited oxidative burst in the arbuscule-containing root cortical cells. Similar to plants, AMF modulate a fungal network in enzymatic (e.g. GmarCuZnSOD and GintSOD1) and non-enzymatic (e.g. GintMT1, GinPDX1 and GintGRX1) antioxidant defence systems to scavenge ROS. Plants also respond to mycorrhization to enhance stress tolerance via metabolites and the induction of genes. The present review provides an overview of the network of plant - arbuscular mycorrhizal fungus dialogue in mitigating oxidative stress. Future studies should involve identifying genes and transcription factors from both AMF and host plants in response to drought stress, and utilize transcriptomics, proteomics and metabolomics to clarify a clear dialogue mechanism between plants and AMF in mitigating oxidative burst.
Collapse
Affiliation(s)
- Y-N Zou
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Q-S Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - K Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
30
|
Arya H, Singh MB, Bhalla PL. Towards Developing Drought-smart Soybeans. FRONTIERS IN PLANT SCIENCE 2021; 12:750664. [PMID: 34691128 PMCID: PMC8526797 DOI: 10.3389/fpls.2021.750664] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/06/2021] [Indexed: 05/13/2023]
Abstract
Drought is one of the significant abiotic stresses threatening crop production worldwide. Soybean is a major legume crop with immense economic significance, but its production is highly dependent on optimum rainfall or abundant irrigation. Also, in dry periods, it may require supplemental irrigation for drought-susceptible soybean varieties. The effects of drought stress on soybean including osmotic adjustments, growth morphology and yield loss have been well studied. In addition, drought-resistant soybean cultivars have been investigated for revealing the mechanisms of tolerance and survival. Advanced high-throughput technologies have yielded remarkable phenotypic and genetic information for producing drought-tolerant soybean cultivars, either through molecular breeding or transgenic approaches. Further, transcriptomics and functional genomics have led to the characterisation of new genes or gene families controlling drought response. Interestingly, genetically modified drought-smart soybeans are just beginning to be released for field applications cultivation. In this review, we focus on breeding and genetic engineering approaches that have successfully led to the development of drought-tolerant soybeans for commercial use.
Collapse
|
31
|
Wang T, Xun H, Wang W, Ding X, Tian H, Hussain S, Dong Q, Li Y, Cheng Y, Wang C, Lin R, Li G, Qian X, Pang J, Feng X, Dong Y, Liu B, Wang S. Mutation of GmAITR Genes by CRISPR/Cas9 Genome Editing Results in Enhanced Salinity Stress Tolerance in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:779598. [PMID: 34899806 PMCID: PMC8660858 DOI: 10.3389/fpls.2021.779598] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 11/05/2021] [Indexed: 05/02/2023]
Abstract
Breeding of stress-tolerant plants is able to improve crop yield under stress conditions, whereas CRISPR/Cas9 genome editing has been shown to be an efficient way for molecular breeding to improve agronomic traits including stress tolerance in crops. However, genes can be targeted for genome editing to enhance crop abiotic stress tolerance remained largely unidentified. We have previously identified abscisic acid (ABA)-induced transcription repressors (AITRs) as a novel family of transcription factors that are involved in the regulation of ABA signaling, and we found that knockout of the entire family of AITR genes in Arabidopsis enhanced drought and salinity tolerance without fitness costs. Considering that AITRs are conserved in angiosperms, AITRs in crops may be targeted for genome editing to improve abiotic stress tolerance. We report here that mutation of GmAITR genes by CRISPR/Cas9 genome editing leads to enhanced salinity tolerance in soybean. By using quantitative RT-PCR analysis, we found that the expression levels of GmAITRs were increased in response to ABA and salt treatments. Transfection assays in soybean protoplasts show that GmAITRs are nucleus proteins, and have transcriptional repression activities. By using CRISPR/Cas9 to target the six GmAITRs simultaneously, we successfully generated Cas9-free gmaitr36 double and gmaitr23456 quintuple mutants. We found that ABA sensitivity in these mutants was increased. Consistent with this, ABA responses of some ABA signaling key regulator genes in the gmaitr mutants were altered. In both seed germination and seedling growth assays, the gmaitr mutants showed enhanced salt tolerance. Most importantly, enhanced salinity tolerance in the mutant plants was also observed in the field experiments. These results suggest that mutation of GmAITR genes by CRISPR/Cas9 is an efficient way to improve salinity tolerance in soybean.
Collapse
Affiliation(s)
- Tianya Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Hongwei Xun
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
- National Engineering Research Center for Soybean, Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Wei Wang
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
| | - Xiaoyang Ding
- National Engineering Research Center for Soybean, Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Hainan Tian
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Saddam Hussain
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Qianli Dong
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Yingying Li
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Yuxin Cheng
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Chen Wang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Rao Lin
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Guimin Li
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
| | - Xueyan Qian
- National Engineering Research Center for Soybean, Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Jinsong Pang
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yingshan Dong
- National Engineering Research Center for Soybean, Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of MOE, Northeast Normal University, Changchun, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics and Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, China
- *Correspondence: Shucai Wang,
| |
Collapse
|
32
|
Bian Z, Gao H, Wang C. NAC Transcription Factors as Positive or Negative Regulators during Ongoing Battle between Pathogens and Our Food Crops. Int J Mol Sci 2020; 22:E81. [PMID: 33374758 PMCID: PMC7795297 DOI: 10.3390/ijms22010081] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 01/13/2023] Open
Abstract
The NAC (NAM, ATAF1/2, and CUC2) family of proteins is one of the largest plant-specific transcription factor (TF) families and its members play varied roles in plant growth, development, and stress responses. In recent years, NAC TFs have been demonstrated to participate in crop-pathogen interactions, as positive or negative regulators of the downstream defense-related genes. NAC TFs link signaling pathways between plant hormones, including salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and abscisic acid (ABA), or other signals, such as reactive oxygen species (ROS), to regulate the resistance against pathogens. Remarkably, NAC TFs can also contribute to hypersensitive response and stomatal immunity or can be hijacked as virulence targets of pathogen effectors. Here, we review recent progress in understanding the structure, biological functions and signaling networks of NAC TFs in response to pathogens in several main food crops, such as rice, wheat, barley, and tomato, and explore the directions needed to further elucidate the function and mechanisms of these key signaling molecules.
Collapse
Affiliation(s)
| | | | - Chongying Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; (Z.B.); (H.G.)
| |
Collapse
|