1
|
Agarwal P, Chittora A, Verma A, Agarwal PK. Structural Dynamics, Evolutionary Significance, and Functions of Really Interesting New Gene Proteins in Ubiquitination and Plant Stress: A Review. DNA Cell Biol 2025. [PMID: 40208634 DOI: 10.1089/dna.2025.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
Abiotic stress causes major crop losses worldwide. Plants have evolved complex intricate signaling network involving transcriptional regulators and posttranslational modifications (PTMs). Ubiquitination-a key PTM-regulates protein degradation through the ubiquitin-proteasome system (UPS). The UPS plays a pivotal role in detecting and modulating plant responses to environmental fluctuations. The E3 ligase family in plants is extensive, offering high substrate specificity and playing a vital role in signaling and protein turnover. Really Interesting New Gene (RING) proteins primarily function as E3 ubiquitin ligases, their functional diversity facilitates the transfer of ubiquitin molecules to specific target proteins. Plants possess abscisic acid (ABA)-dependent and ABA-independent stress-signaling pathways. RING-type E3 ligases regulate ABA signaling either negatively or positively in response to stress by regulating protein degradation, modulating transcription factors, ABA biosynthesis, and degradation. This dynamic interaction between ABA and E3 ligase proteins helps plants to adapt to environmental stress. Negative regulators, such as AIP2 and OsDSG1, target ABI3 for degradation. Keep on going (KEG) ubiquitinates ABI5, ABF1, and ABF3, though KEG itself is subject to feedback regulation by ABA levels, leading to its degradation. Positive regulators include SDIR1, OsSDIR1, AIRP1, RHA2b/RHA2a, and XERICO, along with its maize orthologs ZmXerico1 and ZmXerico2. Additionally, SINAT5 and BOI regulate auxin and gibberellin signaling, integrating hormonal responses to stress. The functional diversity of RING-type E3 ligases offers promising targets for genetic engineering to enhance crop resilience under adverse environmental conditions. Understanding these molecular mechanisms could lead to the development of climate-resilient crops, crucial for sustaining global food security.
Collapse
Affiliation(s)
- Parinita Agarwal
- Halophytes Biology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, India
| | - Anjali Chittora
- Halophytes Biology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ayushi Verma
- Halophytes Biology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, India
| | - Pradeep K Agarwal
- Halophytes Biology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Cao J, Maitirouzi A, Feng Y, Zhang H, Heng Y, Zhang J, Wang Y. Heterologous expression of Halostachys caspica pathogenesis-related protein 10 increases salt and drought resistance in transgenic Arabidopsis thaliana. PLANT MOLECULAR BIOLOGY 2024; 115:5. [PMID: 39671054 DOI: 10.1007/s11103-024-01536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
Pathogenesis-related proteins (PR), whose expressions are induced by biotic and abiotic stress, play important roles in plant defense. Previous research identified the salt-induced HcPR10 gene in the halophyte Halostachys caspica as a regulator of plant growth and development through interactions with cytokinin. However, the mechanisms by which HcPR10 mediates resistance to abiotic stress remain poorly understood. In this study, we found that the heterologous expression of HcPR10 significantly enhanced salt and drought tolerance in Arabidopsis, likely by increasing the activity of antioxidant enzyme systems, allowing for effective scavenging of reactive oxygen species (ROS) and thus protecting plant cells from oxidative damage. Additionally, the overexpression of HcPR10 also activated the expression of stress-related genes in Arabidopsis. Furthermore, using yeast two-hybrid technology, five proteins (HcLTPG6, HcGPX6, HcUGT73B3, HcLHCB2.2, and HcMSA1) were identified as potential interacting partners for HcPR10, which could positively regulate the salt stress response mediated by HcPR10. Our findings lay the foundation for a better understanding of the molecular mechanisms of HcPR10 in response to abiotic stress and reveal additional candidate genes for improving crop salt tolerance through genetic engineering.
Collapse
Affiliation(s)
- Jing Cao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Ayixianmuguli Maitirouzi
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Yudan Feng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Hua Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Youqiang Heng
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Jinbo Zhang
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China.
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Urumqi, 830011, China.
| | - Yan Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
3
|
Suranjika S, Barla P, Sharma N, Dey N. A review on ubiquitin ligases: Orchestrators of plant resilience in adversity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 347:112180. [PMID: 38964613 DOI: 10.1016/j.plantsci.2024.112180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/19/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Ubiquitin- proteasome system (UPS) is universally present in plants and animals, mediating many cellular processes needed for growth and development. Plants constantly defend themselves against endogenous and exogenous stimuli such as hormonal signaling, biotic stresses such as viruses, fungi, nematodes, and abiotic stresses like drought, heat, and salinity by developing complex regulatory mechanisms. Ubiquitination is a regulatory mechanism involving selective elimination and stabilization of regulatory proteins through the UPS system where E3 ligases play a central role; they can bind to the targets in a substrate-specific manner, followed by poly-ubiquitylation, and subsequent protein degradation by 26 S proteasome. Increasing evidence suggests different types of E3 ligases play important roles in plant development and stress adaptation. Herein, we summarize recent advances in understanding the regulatory roles of different E3 ligases and primarily focus on protein ubiquitination in plant-environment interactions. It also highlights the diversity and complexity of these metabolic pathways that enable plant to survive under challenging conditions. This reader-friendly review provides a comprehensive overview of E3 ligases and their substrates associated with abiotic and biotic stresses that could be utilized for future crop improvement.
Collapse
Affiliation(s)
- Sandhya Suranjika
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India; Department of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), KIIT Road, Patia, Bhubaneswar, Odisha, India
| | - Preeti Barla
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Namisha Sharma
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India
| | - Nrisingha Dey
- Institute of Life Sciences (ILS), an autonomous institute under Department of Biotechnology Government of India, NALCO Square, Bhubaneswar, Odisha, India.
| |
Collapse
|
4
|
Karolak A, Urbaniak K, Monastyrskyi A, Duckett DR, Branciamore S, Stewart PA. Structure-independent machine-learning predictions of the CDK12 interactome. Biophys J 2024; 123:2910-2920. [PMID: 38762754 PMCID: PMC11393676 DOI: 10.1016/j.bpj.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/24/2024] [Accepted: 05/15/2024] [Indexed: 05/20/2024] Open
Abstract
Cyclin-dependent kinase 12 (CDK12) is a critical regulatory protein involved in transcription and DNA repair processes. Dysregulation of CDK12 has been implicated in various diseases, including cancer. Understanding the CDK12 interactome is pivotal for elucidating its functional roles and potential therapeutic targets. Traditional methods for interactome prediction often rely on protein structure information, limiting applicability to CDK12 characterized by partly disordered terminal C region. In this study, we present a structure-independent machine-learning model that utilizes proteins' sequence and functional data to predict the CDK12 interactome. This approach is motivated by the disordered character of the CDK12 C-terminal region mitigating a structure-driven search for binding partners. Our approach incorporates multiple data sources, including protein-protein interaction networks, functional annotations, and sequence-based features, to construct a comprehensive CDK12 interactome prediction model. The ability to predict CDK12 interactions without relying on structural information is a significant advancement, as many potential interaction partners may lack crystallographic data. In conclusion, our structure-independent machine-learning model presents a powerful tool for predicting the CDK12 interactome and holds promise in advancing our understanding of CDK12 biology, identifying potential therapeutic targets, and facilitating precision-medicine approaches for CDK12-associated diseases.
Collapse
Affiliation(s)
| | - Konstancja Urbaniak
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, California
| | | | - Derek R Duckett
- Department of Drug Discovery, Moffitt Cancer Center, Tampa, Florida
| | - Sergio Branciamore
- Department of Computational and Quantitative Medicine, City of Hope, Duarte, California
| | - Paul A Stewart
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
5
|
Chen T, Miao Y, Jing F, Gao W, Zhang Y, Zhang L, Zhang P, Guo L, Yang D. Genomic-wide analysis reveals seven in absentia genes regulating grain development in wheat (Triticum aestivum L.). THE PLANT GENOME 2024; 17:e20480. [PMID: 38840306 DOI: 10.1002/tpg2.20480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 06/07/2024]
Abstract
Seven in absentia proteins, which contain a conserved SINA domain, are involved in regulating various aspects of wheat (Triticum aestivum L.) growth and development, especially in response to environmental stresses. However, it is unclear whether TaSINA family members are involved in regulating grain development until now. In this study, the expression pattern, genomic polymorphism, and relationship with grain-related traits were analyzed for all TaSINA members. Most of the TaSINA genes identified showed higher expression levels in young wheat spikes or grains than other organs. The genomic polymorphism analysis revealed that at least 62 TaSINA genes had different haplotypes, where the haplotypes of five genes were significantly correlated with grain-related traits. Kompetitive allele-specific PCR markers were developed to confirm the single nucleotide polymorphisms in TaSINA101 and TaSINA109 among the five selected genes in a set of 292 wheat accessions. The TaSINA101-Hap II and TaSINA109-Hap II haplotypes had higher grain weight and width compared to TaSINA101-Hap I and TaSINA109-Hap I in at least three environments, respectively. The qRT-PCR assays revealed that TaSINA101 was highly expressed in the palea shell, seed coat, and embryo in young wheat grains. The TaSINA101 protein was unevenly distributed in the nucleus when transiently expressed in the protoplast of wheat. Three homozygous TaSINA101 transgenic lines in rice (Oryza sativa L.) showed higher grain weight and size compared to the wild type. These findings provide valuable insight into the biological function and elite haplotype of TaSINA family genes in wheat grain development at a genomic-wide level.
Collapse
Affiliation(s)
- Tao Chen
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongping Miao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Fanli Jing
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weidong Gao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yanyan Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Long Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Peipei Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Lijian Guo
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Kou H, Zhang X, Jia J, Xin M, Wang J, Mao L, Baltaevich AM, Song X. Research Progress in the Regulation of the ABA Signaling Pathway by E3 Ubiquitin Ligases in Plants. Int J Mol Sci 2024; 25:7120. [PMID: 39000226 PMCID: PMC11241352 DOI: 10.3390/ijms25137120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/16/2024] Open
Abstract
E3 ubiquitin ligases (UBLs), as enzymes capable of specifically recognizing target proteins in the process of protein ubiquitination, play crucial roles in regulating responses to abiotic stresses such as drought, salt, and temperature. Abscisic acid (ABA), a plant endogenous hormone, is essential to regulating plant growth, development, disease resistance, and defense against abiotic stresses, and acts through a complex ABA signaling pathway. Hormone signaling transduction relies on protein regulation, and E3 ubiquitin ligases play important parts in regulating the ABA pathway. Therefore, this paper reviews the ubiquitin-proteasome-mediated protein degradation pathway, ABA-related signaling pathways, and the regulation of ABA-signaling-pathway-related genes by E3 ubiquitin ligases, aiming to provide references for further exploration of the relevant research on how plant E3 ubiquitin ligases regulate the ABA pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xianliang Song
- State Key Laboratory of Crop Biology, Agronomy College, Shandong Agricultural University, Tai’an 271018, China
| |
Collapse
|
7
|
Dabravolski SA, Isayenkov SV. The Role of Plant Ubiquitin-like Modifiers in the Formation of Salt Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2024; 13:1468. [PMID: 38891277 PMCID: PMC11174624 DOI: 10.3390/plants13111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/22/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
The climate-driven challenges facing Earth necessitate a comprehensive understanding of the mechanisms facilitating plant resilience to environmental stressors. This review delves into the crucial role of ubiquitin-like modifiers, particularly focusing on ATG8-mediated autophagy, in bolstering plant tolerance to salt stress. Synthesising recent research, we unveil the multifaceted contributions of ATG8 to plant adaptation mechanisms amidst salt stress conditions, including stomatal regulation, photosynthetic efficiency, osmotic adjustment, and antioxidant defence. Furthermore, we elucidate the interconnectedness of autophagy with key phytohormone signalling pathways, advocating for further exploration into their molecular mechanisms. Our findings underscore the significance of understanding molecular mechanisms underlying ubiquitin-based protein degradation systems and autophagy in salt stress tolerance, offering valuable insights for designing innovative strategies to improve crop productivity and ensure global food security amidst increasing soil salinisation. By harnessing the potential of autophagy and other molecular mechanisms, we can foster sustainable agricultural practices and develop stress-tolerant crops resilient to salt stress.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Biotechnology Engineering, Braude Academic College of Engineering, Snunit 51, Karmiel 2161002, Israel;
| | - Stanislav V. Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Betty-Heimann-Strasse 3, 06120 Halle, Germany
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics, The National Academy of Sciences of Ukraine, Baidi-Vyshneveckogo Str. 2a, 04123 Kyiv, Ukraine
| |
Collapse
|
8
|
Xu J, Liu H, Zhou C, Wang J, Wang J, Han Y, Zheng N, Zhang M, Li X. The ubiquitin-proteasome system in the plant response to abiotic stress: Potential role in crop resilience improvement. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112035. [PMID: 38367822 DOI: 10.1016/j.plantsci.2024.112035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/09/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
The post-translational modification (PTM) of proteins by ubiquitination modulates many physiological processes in plants. As the major protein degradation pathway in plants, the ubiquitin-proteasome system (UPS) is considered a promising target for improving crop tolerance drought, high salinity, extreme temperatures, and other abiotic stressors. The UPS also participates in abiotic stress-related abscisic acid (ABA) signaling. E3 ligases are core components of the UPS-mediated modification process due to their substrate specificity. In this review, we focus on the abiotic stress-associated regulatory mechanisms and functions of different UPS components, emphasizing the participation of E3 ubiquitin ligases. We also summarize and discuss UPS-mediated modulation of ABA signaling. In particular, we focus our review on recent research into the UPS-mediated modulation of the abiotic stress response in major crop plants. We propose that altering the ubiquitination site of the substrate or the substrate-specificity of E3 ligase using genome editing technology such as CRISPR/Cas9 may improve the resistance of crop plants to adverse environmental conditions. Such a strategy will require continued research into the role of the UPS in mediating the abiotic stress response in plants.
Collapse
Affiliation(s)
- Jian Xu
- Qiqihar Branch of the Heilongjiang Academy of Agricultural Sciences, Qiqihar, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin, China
| | - Hongjie Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Zhou
- Qiqihar Branch of the Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Jinxing Wang
- Suihua Branch of the Heilongjiang Academy of Agricultural Sciences, Suihua, China
| | - Junqiang Wang
- Qiqihar Branch of the Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Yehui Han
- Qiqihar Branch of the Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Nan Zheng
- Industrial Crop Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ming Zhang
- Industrial Crop Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xiaoming Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Gao Z, Geng X, Xiang L, Shao C, Geng Q, Wu J, Yang Q, Liu S, Chen X. TaVQ22 Interacts with TaWRKY19-2B to Negatively Regulate Wheat Resistance to Sheath Blight. PHYTOPATHOLOGY 2024; 114:454-463. [PMID: 38394356 DOI: 10.1094/phyto-02-23-0058-fi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Wheat sheath blight caused by the necrotic fungal pathogen Rhizoctonia cerealis is responsible for severe damage to bread wheat. Reactive oxygen species (ROS) are vital for stress resistance by plants and their homeostasis plays an important role in wheat resistance to sheath blight. Valine-glutamine (VQ) proteins play important roles in plant growth and development, and responses to biotic and abiotic stresses. However, the functional mechanism mediated by wheat VQ protein in response to sheath blight via ROS homeostasis regulation is unclear. In this study, we identified TaVQ22 protein containing the VQ motif and clarified the functional mechanisms involved in the defense of wheat against R. cerealis. TaVQ22 silencing reduced the accumulation of ROS and enhanced the resistance of wheat to R. cerealis. In addition, we showed that TaVQ22 regulated ROS generation by interacting with the WRKY transcription factor TaWRKY19-2B, thereby indicating that TaVQ22 and TaWRKY19-2B formed complexes in the plant cell nucleus. Yeast two-hybrid analysis showed that the VQ motif in TaVQ22 is crucial for the interaction, where it inhibits the transcriptional activation function of TaWRKY19-2B. In summary, TaVQ22 interacts with TaWRKY19-2B to regulate ROS homeostasis and negatively regulate the defense response to R. cerealis infection. This study provides novel insights into the mechanism that allows VQ protein to mediate the immune response in plants.
Collapse
Affiliation(s)
- Zhen Gao
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xingxia Geng
- Jiangsu Key Laboratory for Biofunctional Molecules, College of Life Science and Chemistry, Jiangsu Second Normal University, 77 West Beijing Road, Nanjing 210013, China
| | - Linrun Xiang
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Chunyu Shao
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qiang Geng
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Jun Wu
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Qunhui Yang
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuhui Liu
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinhong Chen
- Shaanxi Key Laboratory of Genetic Engineering for Plant Breeding, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
10
|
Ma J, Wang Y, Tang X, Zhao D, Zhang D, Li C, Li W, Li T, Jiang L. TaSINA2B, interacting with TaSINA1D, positively regulates drought tolerance and root growth in wheat (Triticum aestivum L.). PLANT, CELL & ENVIRONMENT 2023; 46:3760-3774. [PMID: 37642386 DOI: 10.1111/pce.14708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/05/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Wheat (Triticum aestivum L.) is an important food crop mainly grown in arid and semiarid regions worldwide, whose productivity is severely limited by drought stress. Although various E3 ubiquitin (Ub) ligases regulate drought stress, only a few SINA-type E3 Ub ligases are known to participate in such responses. Herein, we identified and cloned 15 TaSINAs from wheat. The transcription level of TaSINA2B was highly induced by drought, osmotic and abscisic acid treatments. Two-type promoters of TaSINA2B were found in 192 wheat accessions; furthermore wheat accessions with promoter TaSINA2BII showed a considerably higher level of drought tolerance and gene expression levels than those characterizing accessions with promoter TaSINA2BI that was mainly caused by a 64 bp insertion in its promoter. Enhanced drought tolerance of TaSINA2B-overexpressing (OE) transgenic wheat lines was found to be associated with root growth promotion. Further, an interaction between TaSINA2B and TaSINA1D was detected through yeast two-hybrid and bimolecular fluorescence complementation assays. And TaSINA1D-OE transgenic wheat lines showed similar drought tolerance and root growth phenotype to those observed when TaSINA2B was overexpressed. Therefore, the variation of TaSINA2B promoter contributed to the drought stress regulation, while TaSINA2B, interacting with TaSINA1D, positively regulated drought tolerance by promoting root growth.
Collapse
Affiliation(s)
- Jianhui Ma
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Yudie Wang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Xiaoxiao Tang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Dongyang Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Daijing Zhang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Chunxi Li
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Tian Li
- Key Laboratory of Crop Gene Resources and Germplasm Enhancement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lina Jiang
- College of Life Sciences, Henan Normal University, Xinxiang, Henan, China
| |
Collapse
|
11
|
Zong J, Chen P, Luo Q, Gao J, Qin R, Wu C, Lv Q, Zhao T, Fu Y. Transcriptome-Based WGCNA Analysis Reveals the Mechanism of Drought Resistance Differences in Sweetpotato ( Ipomoea batatas (L.) Lam.). Int J Mol Sci 2023; 24:14398. [PMID: 37762701 PMCID: PMC10531967 DOI: 10.3390/ijms241814398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 09/29/2023] Open
Abstract
Sweetpotato (Ipomoea batatas (L.) Lam.) is a globally significant storage root crop, but it is highly susceptible to yield reduction under severe drought conditions. Therefore, understanding the mechanism of sweetpotato resistance to drought stress is helpful for the creation of outstanding germplasm and the selection of varieties with strong drought resistance. In this study, we conducted a comprehensive analysis of the phenotypic and physiological traits of 17 sweetpotato breeding lines and 10 varieties under drought stress through a 48 h treatment in a Hoagland culture medium containing 20% PEG6000. The results showed that the relative water content (RWC) and vine-tip fresh-weight reduction (VTFWR) in XS161819 were 1.17 and 1.14 times higher than those for the recognized drought-resistant variety Chaoshu 1. We conducted RNA-seq analysis and weighted gene co-expression network analysis (WGCNA) on two genotypes, XS161819 and 18-12-3, which exhibited significant differences in drought resistance. The transcriptome analysis revealed that the hormone signaling pathway may play a crucial role in determining the drought resistance in sweetpotato. By applying WGCNA, we identified twenty-two differential expression modules, and the midnight blue module showed a strong positive correlation with drought resistance characteristics. Moreover, twenty candidate Hub genes were identified, including g47370 (AFP2), g14296 (CDKF), and g60091 (SPBC2A9), which are potentially involved in the regulation of drought resistance in sweetpotato. These findings provide important insights into the molecular mechanisms underlying drought resistance in sweetpotato and offer valuable genetic resources for the development of drought-resistant sweetpotato varieties in the future.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yufan Fu
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, China; (J.Z.); (P.C.); (Q.L.); (J.G.); (R.Q.); (C.W.); (Q.L.); (T.Z.)
| |
Collapse
|
12
|
Fujita K, Sonoda C, Chujo M, Inui H. Major latex-like proteins show pH dependency in their binding to hydrophobic organic pollutants. JOURNAL OF PESTICIDE SCIENCE 2023; 48:71-77. [PMID: 37745171 PMCID: PMC10513956 DOI: 10.1584/jpestics.d23-014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/30/2023] [Indexed: 09/26/2023]
Abstract
The Cucurbitaceae family accumulates hydrophobic organic pollutants in its aerial parts at high concentrations. Major latex-like proteins (MLPs) were identified in zucchini (Cucurbita pepo) as a transporting factor for hydrophobic organic pollutants. MLPs bind to hydrophobic organic pollutants in the roots, are secreted to xylem vessels as complexes, and are transported to the aerial parts. However, the suitable conditions for binding MLPs to hydrophobic organic pollutants remain elusive. In the present study, we show that MLPs bind to the hydrophobic organic pollutant pyrene with higher affinity under acidic conditions. Our results demonstrated that pH regulates the binding of MLPs to hydrophobic organic pollutants.
Collapse
Affiliation(s)
- Kentaro Fujita
- Graduate School of Pharmaceutical Sciences, Osaka University
| | - Chihiro Sonoda
- Graduate School of Agricultural Science, Kobe University
| | | | - Hideyuki Inui
- Graduate School of Agricultural Science, Kobe University
- Biosignal Research Center, Kobe University
| |
Collapse
|
13
|
Yang J, Mao T, Geng Z, Xue W, Ma L, Jin Y, Guo P, Qiu Z, Wang L, Yu C, Sheng Y, Zhang J, Zhang H. Constitutive expression of AtSINA2 from Arabidopsis improves grain yield, seed oil and drought tolerance in transgenic soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:444-453. [PMID: 36758291 DOI: 10.1016/j.plaphy.2023.01.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The SEVEN IN Absentia (SINA), a typical member of the RING E3 ligase family, plays a crucial role in plant growth, development and response to abiotic stress. However, its biological functions in oil crops are still unknown. Previously, we reported that overexpression of AtSINA2 in Arabidopsis positively regulated the drought tolerance of transgenic plants. In this work, we demonstrate that ectopic expression of AtSINA2 in soybean improved the shoot growth, grain yield, drought tolerance and seed oil content in transgenic plants. Compared to wild type, transgenic soybean produced greater shoot biomass and grain yield, and showed improved seed oil and drought tolerance. Physiological analyses exhibited that the increased drought tolerance of transgenic plants was accompanied with a higher chlorophyll content, and a lower malondialdehyde accumulation and water loss during drought stress. Further transcriptomic analyses revealed that the expressions of genes related to plant growth, flowering and stress response were up- or down-regulated in transgenic soybean under both normal and drought stress conditions. Our findings imply that AtSINA2 improved both agricultural production and drought tolerance, and it can be used as a candidate gene for the genetic engineering of new soybean cultivars with improved grain yield and drought resistance.
Collapse
Affiliation(s)
- Jin Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Tingting Mao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Zigui Geng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Wenwen Xue
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Lan Ma
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai, 264001, China
| | - Yu Jin
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Pan Guo
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Zitong Qiu
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Chunyan Yu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Yuting Sheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China
| | - Juan Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, China; Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai, 264001, China; Zhaoyuan Shenghui Agricultural Technology Development Co, Ltd, North of Beiyuanzhuang Village, Fushan County, Zhaoyuan, Shandong, 265400, China.
| |
Collapse
|
14
|
Moulick D, Bhutia KL, Sarkar S, Roy A, Mishra UN, Pramanick B, Maitra S, Shankar T, Hazra S, Skalicky M, Brestic M, Barek V, Hossain A. The intertwining of Zn-finger motifs and abiotic stress tolerance in plants: Current status and future prospects. FRONTIERS IN PLANT SCIENCE 2023; 13:1083960. [PMID: 36684752 PMCID: PMC9846276 DOI: 10.3389/fpls.2022.1083960] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Environmental stresses such as drought, high salinity, and low temperature can adversely modulate the field crop's ability by altering the morphological, physiological, and biochemical processes of the plants. It is estimated that about 50% + of the productivity of several crops is limited due to various types of abiotic stresses either presence alone or in combination (s). However, there are two ways plants can survive against these abiotic stresses; a) through management practices and b) through adaptive mechanisms to tolerate plants. These adaptive mechanisms of tolerant plants are mostly linked to their signalling transduction pathway, triggering the action of plant transcription factors and controlling the expression of various stress-regulated genes. In recent times, several studies found that Zn-finger motifs have a significant function during abiotic stress response in plants. In the first report, a wide range of Zn-binding motifs has been recognized and termed Zn-fingers. Since the zinc finger motifs regulate the function of stress-responsive genes. The Zn-finger was first reported as a repeated Zn-binding motif, comprising conserved cysteine (Cys) and histidine (His) ligands, in Xenopus laevis oocytes as a transcription factor (TF) IIIA (or TFIIIA). In the proteins where Zn2+ is mainly attached to amino acid residues and thus espousing a tetrahedral coordination geometry. The physical nature of Zn-proteins, defining the attraction of Zn-proteins for Zn2+, is crucial for having an in-depth knowledge of how a Zn2+ facilitates their characteristic function and how proteins control its mobility (intra and intercellular) as well as cellular availability. The current review summarized the concept, importance and mechanisms of Zn-finger motifs during abiotic stress response in plants.
Collapse
Affiliation(s)
- Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India
| | - Karma Landup Bhutia
- Department of Agricultural Biotechnology & Molecular Breeding, College of Basic Science and Humanities, Dr. Rajendra Prasad Central Agricultural University, Samastipur, India
| | - Sukamal Sarkar
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Anirban Roy
- School of Agriculture and Rural Development, Faculty Centre for Integrated Rural Development and Management (IRDM), Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata, India
| | - Udit Nandan Mishra
- Department of Crop Physiology and Biochemistry, Sri University, Cuttack, Odisha, India
| | - Biswajit Pramanick
- Department of Agronomy, Dr. Rajendra Prasad Central Agricultural University, PUSA, Samastipur, Bihar, India
- Department of Agronomy and Horticulture, University of Nebraska Lincoln, Scottsbluff, NE, United States
| | - Sagar Maitra
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Tanmoy Shankar
- Department of Agronomy and Agroforestry, Centurion University of Technology and Management, Paralakhemundi, Odisha, India
| | - Swati Hazra
- School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
- Institute of Plant and Environmental Sciences, Slovak University of Agriculture, Nitra, Slovakia
| | - Viliam Barek
- Department of Water Resources and Environmental Engineering, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Akbar Hossain
- Division of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur, Bangladesh
| |
Collapse
|
15
|
Lv Q, Li L, Meng Y, Sun H, Chen L, Wang B, Li X. Wheat E3 ubiquitin ligase TaGW2-6A degrades TaAGPS to affect seed size. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111274. [PMID: 35643616 DOI: 10.1016/j.plantsci.2022.111274] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/13/2022] [Accepted: 03/24/2022] [Indexed: 06/15/2023]
Abstract
TaGW2 has been identified as a key determinant of the grain weight in wheat (Triticum aestivum L.). In our previous study, we found that the grain size differs in Chinese Spring (CS) and its TaGW2-6A allelic variant (NIL31). In addition, the expression of the key starch biosynthesis enzyme gene TaAGPS differs significantly in the two materials. However, the underlying molecular mechanism associated with the action of TaGW2-6A has not been reported. In the present study, we found that TaGW2-6A-CS interacted with TaAGPS, whereas TaGW2-6A-NIL31 did not interact with it in vitro and in vivo. Furthermore, we found that the C-terminal LXLX domain (376-424 aa) of TaGW2-6A recognized TaAGPS. However, the TaGW2-6A allelic variant lacked this key interaction region due to premature translation termination. We also found that TaGW2-6A-CS can ubiquitinate TaAGPS and degrade it via the 26 S proteasome pathway. In addition, our analysis of the activity of ADP-glucose pyrophosphorylase (AGPase) indicated that the AGPase level in the endosperm cells was lower in CS than NIL31. Cytological observations demonstrated that the average number of starch granules and the average area of starch granules in endosperm cells were lower in CS than NIL31. The overexpression of TaAGPS positively regulated the seed size in transgenic Arabidopsis. Our findings provide novel insights into the molecular mechanism that allows TaGW2-6A-TaAGPS to regulate seed size via the starch synthesis pathway.
Collapse
Affiliation(s)
- Qian Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ying Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huimin Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Liuping Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bingxin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
16
|
Fujita K, Chitose N, Chujo M, Komura S, Sonoda C, Yoshida M, Inui H. Genome-wide identification and characterization of major latex-like protein genes responsible for crop contamination in Cucurbita pepo. Mol Biol Rep 2022; 49:7773-7782. [PMID: 35648252 DOI: 10.1007/s11033-022-07602-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Zucchini plants (Cucurbita pepo) accumulate persistent organic pollutants (POPs) at high concentrations in their aerial parts, and major latex-like proteins (MLPs) play crucial roles in their accumulation. MLPs bind to POPs in root cells, MLP-POP complexes are then translocated into xylem vessels, and POPs are transported to the aerial parts. We previously identified three CpMLP genes (MLP-PG1, MLP-GR1, and MLP-GR3) as transporting factors for POPs; however, other studies have shown that the genomes of several plant species contain more than 10 MLP genes, thus, further MLP genes responsible for POP accumulation may have been overlooked. METHODS AND RESULTS Here, we investigated the number of CpMLP genes by performing a hidden Markov model search against the C. pepo genome database and characterized their effects on POP accumulation by performing the expression analysis in the organs and in silico structural analysis. The C. pepo genome contained 21 CpMLP genes, and several CpMLP genes, including MLP-PG1 and MLP-GR3, were highly expressed in roots. 3D structural prediction showed that all examined CpMLPs contained a cavity with a hydrophobic region, which facilitated binding to POPs. CONCLUSIONS The present study provides insights regarding CpMLP genes responsible for POP accumulation.
Collapse
Affiliation(s)
- Kentaro Fujita
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Natsumi Chitose
- Faculty of Agriculture, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Maho Chujo
- Faculty of Agriculture, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Shoya Komura
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Chihiro Sonoda
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Minami Yoshida
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan
| | - Hideyuki Inui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan. .,Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
17
|
TaNBR1, a Novel Wheat NBR1-like Domain Gene Negatively Regulates Drought Stress Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms23094519. [PMID: 35562909 PMCID: PMC9105663 DOI: 10.3390/ijms23094519] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Drought stress is an important factor that severely affects crop yield and quality. Autophagy has a crucial role in the responses to abiotic stresses. In this study, we explore TaNBR1 in response to drought stress. Expression of the TaNBR1 gene was strongly induced by NaCl, PEG, and abscisic acid treatments. The TaNBR1 protein is localized in the Golgi apparatus and autophagosome. Transgenic Arabidopsis plants overexpressing TaNBR1 exhibited reduced drought tolerance. When subjected to drought stress, compared to the wild-type (WT) lines, the transgenic overexpressing TaNBR1 plants had a lower seed germination rate, relative water content, proline content, and reduced accumulation of antioxidant enzymes, i.e., superoxide dismutase, peroxidase, and catalase, as well as higher chlorophyll losses, malondialdehyde contents, and water loss. The transgenic plants overexpressing TaNBR1 produced much shorter roots in response to mannitol stress, in comparison to the WT plants, and they exhibited greater sensitivity to abscisic acid treatment. The expression levels of the genes related to stress in the transgenic plants were affected in response to drought stress. Our results indicate that TaNBR1 negatively regulates drought stress responses by affecting the expression of stress-related genes in Arabidopsis.
Collapse
|
18
|
Han G, Qiao Z, Li Y, Yang Z, Wang C, Zhang Y, Liu L, Wang B. RING Zinc Finger Proteins in Plant Abiotic Stress Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:877011. [PMID: 35498666 PMCID: PMC9047180 DOI: 10.3389/fpls.2022.877011] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/22/2022] [Indexed: 05/03/2023]
Abstract
RING zinc finger proteins have a conserved RING domain, mainly function as E3 ubiquitin ligases, and play important roles in plant growth, development, and the responses to abiotic stresses such as drought, salt, temperature, reactive oxygen species, and harmful metals. RING zinc finger proteins act in abiotic stress responses mainly by modifying and degrading stress-related proteins. Here, we review the latest progress in research on RING zinc finger proteins, including their structural characteristics, classification, subcellular localization, and physiological functions, with an emphasis on abiotic stress tolerance. Under abiotic stress, RING zinc finger proteins on the plasma membrane may function as sensors or abscisic acid (ABA) receptors in abiotic stress signaling. Some RING zinc finger proteins accumulate in the nucleus may act like transcription factors to regulate the expression of downstream abiotic stress marker genes through direct or indirect ways. Most RING zinc finger proteins usually accumulate in the cytoplasm or nucleus and act as E3 ubiquitin ligases in the abiotic stress response through ABA, mitogen-activated protein kinase (MAPK), and ethylene signaling pathways. We also highlight areas where further research on RING zinc finger proteins in plants is needed.
Collapse
Affiliation(s)
- Guoliang Han
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
- Dongying Institute, Shandong Normal University, Dongying, China
| | - Ziqi Qiao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Yuxia Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Zongran Yang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Chengfeng Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Yuanyuan Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Lili Liu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Jinan, China
| |
Collapse
|
19
|
Wang S, Lv X, Zhang J, Chen D, Chen S, Fan G, Ma C, Wang Y. Roles of E3 Ubiquitin Ligases in Plant Responses to Abiotic Stresses. Int J Mol Sci 2022; 23:ijms23042308. [PMID: 35216424 PMCID: PMC8878164 DOI: 10.3390/ijms23042308] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 01/09/2023] Open
Abstract
Plants are frequently exposed to a variety of abiotic stresses, such as those caused by salt, drought, cold, and heat. All of these stressors can induce changes in the proteoforms, which make up the proteome of an organism. Of the many different proteoforms, protein ubiquitination has attracted a lot of attention because it is widely involved in the process of protein degradation; thus regulates many plants molecular processes, such as hormone signal transduction, to resist external stresses. Ubiquitin ligases are crucial in substrate recognition during this ubiquitin modification process. In this review, the molecular mechanisms of plant responses to abiotic stresses from the perspective of ubiquitin ligases have been described. This information is critical for a better understanding of plant molecular responses to abiotic stresses.
Collapse
Affiliation(s)
- Shuang Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (S.W.); (J.Z.)
| | - Xiaoyan Lv
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China;
| | - Jialin Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (S.W.); (J.Z.)
| | - Daniel Chen
- Judy Genshaft Honors College and College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA;
| | - Sixue Chen
- Plant Molecular and Cellular Biology Program, Department of Biology, Genetics Institude, University of Florida, Gainesville, FL 32610, USA;
| | - Guoquan Fan
- Industrial Crops Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China;
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (S.W.); (J.Z.)
- Correspondence: (C.M.); (Y.W.)
| | - Yuguang Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (S.W.); (J.Z.)
- Correspondence: (C.M.); (Y.W.)
| |
Collapse
|
20
|
Sun H, Li J, Li X, Lv Q, Chen L, Wang B, Li L. RING E3 ubiquitin ligase TaSADR1 negatively regulates drought resistance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:255-265. [PMID: 34922142 DOI: 10.1016/j.plaphy.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Drought stress is an important factor that affects crop yields and quality. E3 ubiquitin ligase has crucial roles in the responses to abiotic stresses. However, few studies have investigated the role of E3 ubiquitin ligase during drought stress in wheat. In this study, we cloned and identified the orthologous gene of Oryza sativa Salt-, ABA- and Drought-Induced RING Finger Protein 1 (OsSADR1) in wheat (Triticum aestivum L.) called TaSADR1. TaSADR1 encodes a protein containing 486 amino acids with a C3HC4 type RING finger conserved domain at the N-terminal. We confirmed that TaSADR1 has an E3 ubiquitin ligase activity and it is located in the nucleus. High expression of TaSADR1 was induced by treatment with PEG6000 and abscisic acid (ABA). TaSADR1-overexpressing transgenic Arabidopsis plants exhibited decreased drought tolerance. Under drought stress, compared with the wild-type (WT) lines, TaSADR1-overexpressing transgenic Arabidopsis lines had lower proline and chlorophyll contents, and antioxidant enzyme activities (superoxide dismutase, peroxidase, and catalase), whereas the water loss rate, malondialdehyde content, and relative electrolyte leakage were higher. In addition, the overexpressing transgenic Arabidopsis lines were more sensitive to mannitol and ABA treatment at seed germination and during seedling growth. The expression levels of genes related to stress were downregulated under drought conditions in the transgenic plants. Our results demonstrate that TaSADR1 may negatively regulate drought stress responses by regulating the expression of stress-related genes.
Collapse
Affiliation(s)
- Huimin Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Jiatao Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Xu Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Qian Lv
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Liuping Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Bingxin Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Liqun Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
21
|
Wang B, Li L, Peng D, Liu M, Wei A, Li X. TaFDL2-1A interacts with TabZIP8-7A protein to cope with drought stress via the abscisic acid signaling pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:111022. [PMID: 34482905 DOI: 10.1016/j.plantsci.2021.111022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Drought has negative effects on cereal production. Studies have shown that many basic leucine zipper transcription factors (bZIP TFs) help to cope with drought stress. In this study, bZIP TF wheat (Triticum aestivum L.) FD-Like2 (TaFDL2) was isolated and functionally analyzed. Three homologs of TaFDL2 were identified and their expression was induced by drought and abscisic acid (ABA) treatment. TaFDL2-1A has transactivation activity and two activation domains, and the domain D region has different effects on the transcriptional activity of the two domains. Analysis of TaFDL2-1A overexpression plants indicated their enhanced drought tolerance and greater sensitivity to ABA. TabZIP8-7A was identified as a protein that interacts with TaFDL2-1A in the nucleus, and the overexpression of TabZIP8-7A conferred greater drought resistance and ABA sensitivity in Arabidopsis. Surprisingly, TaFDL2-1A × TabZIP8-7A double overexpression lines exhibited the highest drought resistance. Genetic and transcriptional regulation analyses demonstrated that stress-response gene transcription was initiated by TaFDL2-1A or TabZIP8-7A via the ABA signaling pathway. Importantly, TaFDL2-1A and TabZIP8-7A synergistically promoted ABA-inducible gene expression in a more efficient manner to form the transcriptional activation complex. Our findings provide new insights into the molecular mechanisms that allow bZIP TFs to regulate ABA signaling in response to drought stress.
Collapse
Affiliation(s)
- Bingxin Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - De Peng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Mingliu Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Aosong Wei
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
22
|
Fujita K, Inui H. Review: Biological functions of major latex-like proteins in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110856. [PMID: 33775363 DOI: 10.1016/j.plantsci.2021.110856] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/20/2021] [Accepted: 02/14/2021] [Indexed: 05/23/2023]
Abstract
Major latex-like proteins (MLPs) have been identified in dicots and monocots. They are members of the birch pollen allergen Bet v 1 family as well as pathogenesis-related proteins class 10. MLPs have two main features. One is binding affinity toward various hydrophobic compounds, such as long-chain fatty acids, steroids, and systemic acquired resistance signals, via its internal hydrophobic cavity or hydrophobic residues on its surface. MLPs transport such compounds to other organs via phloem and xylem vessels and contribute to the expression of physiologically important ligands' activity in the particular organs. The second feature is responses to abiotic and biotic stresses. MLPs are involved in drought and salt tolerance through the mediation of plant hormone signaling pathways. MLPs generate resistance against pathogens by the induction of pathogenesis-related protein genes. Therefore, MLPs play crucial roles in drought and salt tolerance and resistance against pathogens. However, knowledge of MLPs is fragmented, and an overview of them is needed. Herein, we summarize the current knowledge of the biological functions of MLPs, which to our knowledge, is the first review about MLPs that has been reported.
Collapse
Affiliation(s)
- Kentaro Fujita
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Hideyuki Inui
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan; Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
23
|
Sharma S, Prasad A, Sharma N, Prasad M. Role of ubiquitination enzymes in abiotic environmental interactions with plants. Int J Biol Macromol 2021; 181:494-507. [PMID: 33798570 DOI: 10.1016/j.ijbiomac.2021.03.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/08/2021] [Accepted: 03/27/2021] [Indexed: 12/14/2022]
Abstract
Ubiquitination, a post-translational modification, plays a crucial role in various aspects of plant development and stress responses. Protein degradation by ubiquitination is well established and ubiquitin is the main underlying component directing the turnover of proteins. Recent reports have also revealed the non-proteolytic roles of ubiquitination in plants. In the past decade, ubiquitination has emerged to be one of the most important players in modulating plant's responses to abiotic stresses, which led to identification of specific E3 ligases and their targets involved in the process. Most of the E3 ligases play regulatory roles by modifying the stability and accumulation of stress responsive regulatory proteins, such as transcription factors, thus, modifying the downstream responses, or by degrading the proteins involved in the downstream cascade itself. In this review, we summarize and highlight the recent advances in the field of ubiquitination-mediated regulation of plant's responses to various abiotic stresses including limited nutrient availability and metal toxicity. The non-proteolytic role of ubiquitination in epigenetic regulation of abiotic stress induced response has also been discussed.
Collapse
Affiliation(s)
- Shambhavi Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|