1
|
Chang Y, Shi M, Wang X, Cheng H, Zhang J, Liu H, Wu H, Ou X, Yu K, Zhang X, Day B, Miao C, Zhao Y, Jiang K. A CRY1-HY5-MYB signaling cascade fine-tunes guard cell reactive oxygen species levels and triggers stomatal opening. THE PLANT CELL 2025; 37:koaf064. [PMID: 40139914 PMCID: PMC11973966 DOI: 10.1093/plcell/koaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025]
Abstract
Stomatal opening facilitates CO2 uptake and causes water loss via transpiration. Compared with the considerable progress made toward understanding phototropin-mediated blue light (BL) signaling in guard cells, the significance of cryptochromes (CRYs) in stomatal opening and their downstream elements remain largely unknown. Here, we show that 3 homologous MYB transcription factor genes, namely MYB11, MYB12, and MYB111, are rapidly transactivated in guard cells during the dark-to-light transition in Arabidopsis (Arabidopsis thaliana). Genetic characterization of myb mutants demonstrates that these proteins specifically mediate light-induced stomatal opening by promoting local flavonol accumulation, thereby controlling reactive oxygen species homeostasis in guard cells. In response to light, activation of the plasma membrane H+-ATPase is inhibited in the myb11 myb12 myb111 triple mutant, compromising transmembrane K+ influx in the mutant guard cells. Furthermore, we demonstrate that MYB11/12/111 expression in guard cells upon illumination is induced by a CRY1-specific signaling cascade involving ELONGATED HYPOCOTYL 5 (HY5), a direct transcriptional activator of these MYBs. Overall, our work reveals a mechanism by which the CRY1-HY5-MYB module facilitates light-induced stomatal opening, providing evidence that flavonoid metabolism in guard cells is crucial for plant stress tolerance.
Collapse
Affiliation(s)
- Yuankai Chang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Mianmian Shi
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Xiao Wang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Hui Cheng
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Junli Zhang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Hongrui Liu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Huiruo Wu
- School of Biochemistry, University of Bristol, Bristol BS8 1TD, UK
| | - Xiaobin Ou
- Gansu Key laboratory of Protection and Utilization for Biological Resources and Ecological Restoration, Longdong University, Qingyang, Gansu Province 745000, China
| | - Ke Yu
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Brad Day
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Chen Miao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, Henan Province 475004, China
| | - Yi Zhao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| |
Collapse
|
2
|
Zhang P, Tang Y, Zhang J, Liu J, Li L, Li H, Huang L, Jiang G, Wang X, Zhang L, Bai Y, Qin P. Multi-omics analysis of the accumulation mechanism of flavonoids in rice caryopsis under blue light. PLANT CELL REPORTS 2025; 44:64. [PMID: 39992423 DOI: 10.1007/s00299-025-03435-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 01/18/2025] [Indexed: 02/25/2025]
Abstract
KEY MESSAGE Blue light influences the MYB gene family, resulting in varying accumulations of different flavonoids in rice caryopsis at distinct developmental stages, with a higher concentration observed in the initial stage. The regulatory effect of blue light on plant flavonoids has been extensively documented; however, its influence on the development of rice caryopsis morphology remains unreported. Through the analysis of transcriptomes, proteomes, and metabolites, combined with Weighted Gene Co-expression Network Analysis (WGCNA), the accumulation of flavonoids in rice caryopsis under blue light at various developmental stages was thoroughly examined. Furthermore, four MYB family transcription factors (TFs) that significantly influence the structural genes involved in flavonoid biosynthesis were identified. The results indicate that the accumulation of flavonoids primarily occurs during the early stages of caryopsis development. Key structural genes, including PAL, 4CL, CHS, CHI, F3H, and FLS, are upregulated in both gene and protein expression when exposed to blue light. Moreover, the WGCNA analysis identified several TFs that may influence these genes, including Os08t0144000-01 and Os01t0695900-01, as well as the proteins Q7F3D6, Q2QM89, A0A0P0W9C3, and Q6ZDM0, all of which belong to the MYB family. The research has enhanced our understanding of flavonoid accumulation in rice caryopsis when exposed to blue light. It also establishes a framework for the synthesis of secondary metabolites induced by blue light, thereby creating more opportunities to enhance the quality of horticultural plants.
Collapse
Affiliation(s)
- Ping Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Yongsheng Tang
- Qujing Academy of Agricultural Science, Qujing, 655000, People's Republic of China
| | - Juxiang Zhang
- Qujing Academy of Agricultural Science, Qujing, 655000, People's Republic of China
| | - Junna Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Li Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Hanxue Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Liubin Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Guofei Jiang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Xuqin Wang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Lingyuan Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Yutao Bai
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Peng Qin
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, 650201, People's Republic of China.
| |
Collapse
|
3
|
Li WX, Fang QT, Han QO, Huang HH, Zheng XQ, Lu JL, Liang YR, Ye JH. Different performance of tea plants to shade based on key metabolites and transcriptome profiles: case study of cultivars Longjing 43 and Yabukita. PHYSIOLOGIA PLANTARUM 2025; 177:e70103. [PMID: 39905973 DOI: 10.1111/ppl.70103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 02/06/2025]
Abstract
Shading is widely used in tea cultivation to improve quality by modulating various metabolic pathways in tea plants. However, the differential sensitivity of specific metabolites and the cultivar-dependent responses to shading are not yet fully understood. This study examined the impact of shading on the chemical composition and transcriptional profiles of cv. Longjing 43 and cv. Yabukita. Among the main quality-related compounds, flavonol glycosides were highly responsive to shading, while catechins displayed distinct cultivar-specific responses. KEGG enrichment analysis revealed that flavonoid biosynthesis was the key secondary metabolic difference between cv. Longjing and cv. Yabukita plants under the sunlight, and shading regulated flavonoid biosynthetic pathways in both cultivars. The genes such as ANTHOCYANIDIN REDUCTASE (CsANR) and ANTHOCYANIDIN SYNTHASE (CsANS) were less sensitive to shade in cv. Longjing 43 than cv. Yabukita, leading to relatively higher levels of epi-type catechins in the shade-treated cv. Longjing 43 sample. Additionally, the UVR8-mediated light signaling pathway demonstrated cultivar-specific expression patterns, although the functional roles of key signaling proteins were conserved across both cultivars. The insights into the chemical and molecular responses of tea plants to shading deepen our understanding of the mechanisms driving the cultivar-dependent behaviors of flavonoids, which offers valuable applications for maintaining consistent matcha quality and informing breeding programs of matcha.
Collapse
Affiliation(s)
- Wen-Xuan Li
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Qi-Ting Fang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Qian-Ou Han
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Hui-Hui Huang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Xin-Qiang Zheng
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian-Liang Lu
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Yue-Rong Liang
- Tea Research Institute, Zhejiang University, Hangzhou, China
| | - Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Jin J, Qi L, Shen S, Yang S, Yuan H, Wang A. Violet LED light-activated MdHY5 positively regulates phenolic accumulation to inhibit fresh-cut apple fruit browning. HORTICULTURE RESEARCH 2025; 12:uhae276. [PMID: 39830309 PMCID: PMC11739620 DOI: 10.1093/hr/uhae276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/21/2024] [Indexed: 01/22/2025]
Abstract
Fresh-cut fruit browning severely affects the appearance of fruit. Light treatment can effectively inhibit fresh-cut apple fruit browning, but the regulatory mechanism remains unknown. Here, we discovered that violet LED (Light-Emitting-Diode) light treatment significantly reduced fresh-cut apple fruit browning. Metabolomic analysis revealed that violet LED light treatment enhanced the phenolic accumulation of fresh-cut apple fruit. Transcriptomic analysis showed that the expression of phenolic degradation genes POLYPHENOL OXIDASE (MdPPO) and PEROXIDASE (MdPOD) was reduced, and the expression of phenolic synthesis gene PHENYLALANINE AMMONIA LYASE (MdPAL) was activated by violet LED light treatment. Moreover, two ELONGATED HYPOCOTYL 5 (MdHY5 and MdHYH) transcription factors involved in light signaling were identified. The expression of MdHY5 and MdHYH was activated by violet LED light treatment. Violet LED light treatment no longer inhibited fresh-cut apple fruit browning in MdHY5- or MdHYH- silenced fruit. Further experiments revealed that MdHY5 and MdHYH suppressed MdPPO and MdPOD expression and promoted MdPAL expression by binding to their promoters. In addition, MdHY5 and MdHYH bound to each other's promoters and enhanced their expression. Overall, our findings revealed that violet LED light-activated MdHY5 and MdHYH formed a positive transcriptional loop to regulate the transcription of MdPPO, MdPOD, and MdPAL, which in turn inhibited the degradation of phenolics and promoted the synthesis of phenolics, thus inhibiting fresh-cut apple fruit browning. These results provide a theoretical basis for improving the appearance and quality of fresh-cut apple fruit.
Collapse
Affiliation(s)
- Juntong Jin
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Liyong Qi
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Shurong Shen
- Liaoning Agricultural Vocational and Technical College, Xiongyue 115009, China
| | - Shuran Yang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Hui Yuan
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Aide Wang
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
5
|
Kohli M, Bansal H, Aski M, Mishra GP, Shashidhar BR, Roy A, Gupta S, Sinha SK, Mishra BK, Kumari N, Kumar A, Kumar RR, Nair RM, Dikshit HK. Genome-wide association mapping of biochemical traits and its correlation with MYMIV resistance in mungbean (Vigna radiata L. Wilczek). Sci Rep 2024; 14:31805. [PMID: 39738266 PMCID: PMC11685830 DOI: 10.1038/s41598-024-82836-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 12/09/2024] [Indexed: 01/01/2025] Open
Abstract
The mungbean yellow mosaic India virus (MYMIV, Begomovirus vignaradiataindiaense) causes Yellow Mosaic Disease (YMD) in mungbean (Vigna radiata L.). The biochemical assays including total phenol content (TPC), total flavonoid content (TFC), ascorbic acid (AA), DPPH (2,2-diphenyl-1-picrylhydrazyl), and FRAP (Ferric Reducing Antioxidant Power) were used to study the mungbean plants defense response to MYMIV infection. A wide range was recorded for the Area Under Disease Progress Curve (AUDPC; 1.75-1266.98) and coefficient of infection (CI; 0.33-45.53). In YMD susceptible genotypes, significant variations were observed for TPC [2001.27-2834.13 mgGAE/100 g dry weight (DW)], TFC (252.65-341.30 mg/100 g DW), AA (40.33-64.69 mg/100 g DW), DPPH (32.11-53.47% scavenging effect DW), and FRAP (48.99-101.22 µmol Fe2+/g DW). Similarly, in resistant genotypes also wide range was recorded for TPC (1788.50-2286.38 mgGAE/100 g DW), TFC (206.12-337.32 mg/100 gDAS samples varied from 384.6.46-47.64% scavenging effect DW), and FRAP (53.68-114.24 µmol Fe2+/g DW). Except for FRAP, other studied parameters were in the lower range in the resistant genotypes than the susceptible genotypes. Genome-wide association studies (GWAS) of 132 genotypes have identified 31,953 single nucleotide polymorphism (SNPs). MLM (Mixed Linear Model) and BLINK (Bayesian-information and Linkage-disequilibrium Iteratively Nested Keyway) models have identified 119 shared SNPs for various biochemical traits and MYMIV resistance. The key candidate genes include VRADI09G06940 (YMD resistance, TIR-NBS-LRR class, chr. 9), VRADI01G05030 [flavonoid biosynthesis; MYB65 transcription factor (TF); chr. 1], VRADI03G07600 (phenol biosynthesis; GATA TF 16; chr. 3), VRADI04G08470 (ascorbic acid; heat shock protein 70 kDa protein; chr. 4), VRADI04G07510 (FRAP; subtilisin-like protease SBT1.9; chr. 4), and VRADI05G02870 (DPPH; vacuolar protein sorting-associated protein 2; chr. 5). The identified genomic resources will enhance mungbean genomics and facilitate the advancement of genomic-assisted breeding in mungbean.
Collapse
Affiliation(s)
- Manju Kohli
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
- Center for Computational Biology and Bioinformatics, Amity University, Uttar Pradesh, 201301, India
| | - Hina Bansal
- Center for Computational Biology and Bioinformatics, Amity University, Uttar Pradesh, 201301, India
| | - Muraleedhar Aski
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Gyan P Mishra
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India.
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - B R Shashidhar
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anirban Roy
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Soma Gupta
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Subodh K Sinha
- National Institute for Plant Biotechnology, New Delhi, India
| | - Brijesh Kumar Mishra
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Nikki Kumari
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Atul Kumar
- Division of Seed Science and Technology, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ranjeet Ranjan Kumar
- Division of Biochemistry, Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Ramakrishnan M Nair
- World Vegetable Center, South Asia, ICRISAT Campus Patancheru, Hyderabad, India
| | - Harsh Kumar Dikshit
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
6
|
Xing M, Xin P, Wang Y, Han C, Lei C, Huang W, Zhang Y, Zhang X, Cheng K, Zhang X. A negative feedback regulatory module comprising R3-MYB repressor MYBL2 and R2R3-MYB activator PAP1 fine-tunes high light-induced anthocyanin biosynthesis in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7381-7400. [PMID: 39303008 DOI: 10.1093/jxb/erae399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024]
Abstract
Anthocyanins, a group of flavonoids, play diverse roles in plant growth and environmental adaptation. The biosynthesis and accumulation of anthocyanin are regulated by environmental cues, such as high light. However, the precise mechanism underlying anthocyanin biosynthesis under high light conditions remains largely unclear. Here, we report that the R3-MYB repressor MYB-LIKE 2 (MYBL2) negatively regulates high light-induced anthocyanin biosynthesis in Arabidopsis by repressing two R2R3-MYB activators, PRODUCTION OF ANTHOCYANIN PIGMENT 1 (PAP1) and PAP2, which are core components of the MYB-bHLH-WD40 (MBW) complex. We found that MYBL2 interacts with PAP1/2 and reduces their transcriptional activation activities, thus disrupting the expression of key genes involved in anthocyanin biosynthesis, such as DIHYDROFLAVONOL 4-REDUCTASE (DFR) and TRANSPARENT TESTA 19 (TT19). Additionally, MYBL2 attenuates the transcriptional activation of PAP1 and its own expression, but not that of PAP2. Conversely, PAP1 collaborates with TRANSPARENT TESTA 8 (TT8), a bHLH member of the MBW complex, to activate MYBL2 transcription when excessive anthocyanins are accumulated. Taken together, our findings reveal a negative feedback regulatory module composed of MYBL2 and PAP1 that fine-tunes high light-induced anthocyanin biosynthesis through modulating MBW complex assembly.
Collapse
Affiliation(s)
- Minghui Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Puman Xin
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Yuetian Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Chunyan Han
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Cangbao Lei
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Weiyi Huang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Youpeng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Xiangyu Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Kai Cheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
| | - Xiao Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng 475001, China
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
7
|
Bulgakov VP, Fialko AV, Yugay YA. Involvement of epigenetic factors in flavonoid accumulation during plant cold adaptation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109096. [PMID: 39250844 DOI: 10.1016/j.plaphy.2024.109096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Plant responses to cold stress include either induction of flavonoid biosynthesis as part of defense responses or initially elevated levels of these substances to mitigate sudden temperature fluctuations. The role of chromatin modifying factors and, in general, epigenetic variability in these processes is not entirely clear. In this work, we review the literature to establish the relationship between flavonoids, cold and chromatin modifications. We demonstrate the relationship between cold acclimation and flavonoid accumulation, and then describe the cold adaptation signaling pathways and their relationship with chromatin modifying factors. Particular attention was paid to the cold signaling module OST1-HOS1-ICE1 and the novel function of the E3 ubiquitin protein ligase HOS1 (a protein involved in chromatin modification during cold stress) in flavonoid regulation.
Collapse
Affiliation(s)
- Victor P Bulgakov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia; Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, 5 Radio Str., Vladivostok, 690041, Russia.
| | - Alexandra V Fialko
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia; Institute of Automation and Control Processes, Far Eastern Branch of the Russian Academy of Sciences, 5 Radio Str., Vladivostok, 690041, Russia
| | - Yulia A Yugay
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, 159 Stoletija Str., Vladivostok, 690022, Russia
| |
Collapse
|
8
|
Gaddam SR, Sharma A, Bhatia C, Trivedi PK. A network comprising ELONGATED HYPOCOTYL 5, microRNA397b, and auxin-associated factors regulates root hair growth in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1460-1474. [PMID: 38820143 DOI: 10.1093/plphys/kiae301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 06/02/2024]
Abstract
ELONGATED HYPOCOTYL 5 (HY5) is a major light-associated transcription factor involved in plant growth and development. In Arabidopsis (Arabidopsis thaliana), the role of HY5 is very well defined in regulating primary root growth and lateral root formation; however, information regarding its role in root hair development is still lacking, and little is known about the genetic pathways regulating this process. In this study, we investigated the role of HY5 and its associated components in root hair development. Detailed analysis of root hair phenotype in wild-type and light signaling mutants under light and dark conditions revealed the importance of light-dependent HY5-mediated root hair initiation. Altered auxin levels in the root apex of the hy5 mutant and interaction of HY5 with promoters of root hair developmental genes were responsible for differential expression of root hair developmental genes and phenotype in the hy5 mutant. The partial complementation of root hair in the hy5 mutant after external supplementation of auxin and regaining of root hair in PIN-FORMED 2 and PIN-FORMED 2 mutants after grafting suggested that the auxin-mediated root hair development pathway requires HY5. Furthermore, miR397b overexpression (miR397bOX) and CRISPR/Cas9-based mutants (miR397bCR) indicated miR397b targets genes encoding reduced residual arabinose (RRA1/RRA2), which in turn regulate root hair growth. The regulation of the miR397b-(RRA1/RRA2) module by HY5 demonstrated its indirect role by targeting root hair cell wall genes. Together, this study demonstrated that HY5 controls root hair development by integrating auxin signaling and other miRNA-mediated pathways.
Collapse
Affiliation(s)
- Subhash Reddy Gaddam
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
| | - Ashish Sharma
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Chitra Bhatia
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Prabodh Kumar Trivedi
- Molecular Biology and Biotechnology Division, CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India
- Plant Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP) P.O. CIMAP, Near Kukrail Picnic Spot, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
9
|
Eirich J, Boyer JB, Armbruster L, Ivanauskaite A, De La Torre C, Meinnel T, Wirtz M, Mulo P, Finkemeier I, Giglione C. Light Changes Promote Distinct Responses of Plastid Protein Acetylation Marks. Mol Cell Proteomics 2024; 23:100845. [PMID: 39321874 PMCID: PMC11546460 DOI: 10.1016/j.mcpro.2024.100845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/21/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
Protein acetylation is a key co- and post-translational modification. However, how different types of acetylation respond to environmental stress is still unknown. To address this, we investigated the role of a member of the newly discovered family of plastid acetyltransferases (GNAT2), which features both lysine- and N-terminal acetyltransferase activities. Our study aimed to provide a holistic multi-omics acetylation-dependent view of plant acclimation to short-term light changes. We found that both the yield and coverage of the N-terminal acetylome remained unchanged in WT and gnat2-KO backgrounds after 2 h of exposure to high light or darkness. Similarly, no differences in transcriptome or adenylate energy charge were observed between the genotypes under the tested light conditions. In contrast, the lysine acetylome proved to be sensitive to the changes in light conditions, especially in the gnat2 background. This suggests unique strategies of plant acclimation for quick responses to environmental changes involving lysine, but not N-terminal, GNAT2-mediated acetylation activity.
Collapse
Affiliation(s)
- Jürgen Eirich
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany
| | - Jean-Baptiste Boyer
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Laura Armbruster
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Aiste Ivanauskaite
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Carolina De La Torre
- NGS Core Facility, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Thierry Meinnel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Markus Wirtz
- Centre for Organismal Studies Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Paula Mulo
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Iris Finkemeier
- Plant Physiology, Institute of Plant Biology and Biotechnology, University of Muenster, Muenster, Germany.
| | - Carmela Giglione
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Singh D, Dwivedi S, Singh N, Trivedi PK. HY5 and COP1 function antagonistically in the regulation of nicotine biosynthesis in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108916. [PMID: 39002305 DOI: 10.1016/j.plaphy.2024.108916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/30/2024] [Accepted: 07/04/2024] [Indexed: 07/15/2024]
Abstract
Nicotine constitutes approximately 90% of the total alkaloid content in leaves within the Nicotiana species, rendering it the most prevalent alkaloid. While the majority of genes responsible for nicotine biosynthesis express in root tissue, the influence of light on this process through shoot-to-root mobile ELONGATED HYPOCOTYL 5 (HY5) has been recognized. CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1), a key regulator of light-associated responses, known for its role in modulating HY5 accumulation, remains largely unexplored in its relationship to light-dependent nicotine accumulation. Here, we identified NtCOP1, a COP1 homolog in Nicotiana tabacum, and demonstrated its ability to complement the cop1-4 mutant in Arabidopsis thaliana at molecular, morphological, and biochemical levels. Through the development of NtCOP1 overexpression (NtCOP1OX) plants, we observed a significant reduction in nicotine and flavonol content, inversely correlated with the down-regulation of nicotine and phenylpropanoid pathway. Conversely, CRISPR/Cas9-based knockout mutant plants (NtCOP1CR) exhibited an increase in nicotine levels. Further investigations, including yeast-two hybrid assays, grafting experiments, and Western blot analyses, revealed that NtCOP1 modulates nicotine biosynthesis by targeting NtHY5, thereby impeding its transport from shoot-to-root. We conclude that the interplay between HY5 and COP1 functions antagonistically in the light-dependent regulation of nicotine biosynthesis in tobacco.
Collapse
Affiliation(s)
- Deeksha Singh
- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shambhavi Dwivedi
- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Nivedita Singh
- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India
| | - Prabodh Kumar Trivedi
- Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, India; CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Rana Pratap Marg, Lucknow, 226001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Michael R, Ranjan A, Gautam S, Trivedi PK. HY5 and PIF antagonistically regulate HMGR expression and sterol biosynthesis in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112168. [PMID: 38914157 DOI: 10.1016/j.plantsci.2024.112168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/08/2024] [Accepted: 06/18/2024] [Indexed: 06/26/2024]
Abstract
Secondary metabolites play multiple crucial roles in plants by modulating various regulatory networks. The biosynthesis of these compounds is unique to each species and is intricately controlled by a range of developmental and environmental factors. While light's role in certain secondary metabolites is evident, its impact on sterol biosynthesis remains unclear. Previous studies indicate that ELONGATED HYPOCOTYL5 (HY5), a bZIP transcription factor, is pivotal in skotomorphogenesis to photomorphogenesis transition. Additionally, PHYTOCHROME INTERACTING FACTORs (PIFs), bHLH transcription factors, act as negative regulators. To unveil the light-dependent regulation of the mevalonic acid (MVA) pathway, a precursor for sterol biosynthesis, mutants of light signaling components, specifically hy5-215 and the pifq quadruple mutant (pif 1,3,4, and 5), were analyzed in Arabidopsis thaliana. Gene expression analysis in wild-type and mutants implicates HY5 and PIFs in regulating sterol biosynthesis genes. DNA-protein interaction analysis confirms their interaction with key genes like AtHMGR2 in the rate-limiting pathway. Results strongly suggest HY5 and PIFs' pivotal role in light-dependent MVA pathway regulation, including the sterol biosynthetic branch, in Arabidopsis, highlighting a diverse array of light signaling components finely tuning crucial growth pathways.
Collapse
Affiliation(s)
- Rahul Michael
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad 201002, India
| | - Avriti Ranjan
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad 201002, India; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Picnic Spot Road, Lucknow 226015, India
| | - Swati Gautam
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India; Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad 201002, India
| | - Prabodh Kumar Trivedi
- Academy of Scientific and Innovative Research (AcSIR), CSIR, Ghaziabad 201002, India; Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Picnic Spot Road, Lucknow 226015, India.
| |
Collapse
|
12
|
Yang Q, Li Z, Ma Y, Fang L, Liu Y, Zhu X, Dong H, Wang S. Metabolite analysis reveals flavonoids accumulation during flower development in Rhododendron pulchrum sweet (Ericaceae). PeerJ 2024; 12:e17325. [PMID: 38832044 PMCID: PMC11146334 DOI: 10.7717/peerj.17325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 04/10/2024] [Indexed: 06/05/2024] Open
Abstract
The azalea (Rhododendron simsii Planch.) is an important ornamental woody plant with various medicinal properties due to its phytochemical compositions and components. However little information on the metabolite variation during flower development in Rhododendron has been provided. In our study, a comparative analysis of the flavonoid profile was performed in Rhododendron pulchrum sweet at three stages of flower development, bud (stage 1), partially open flower (stage 2), and full bloom (stage 3). A total of 199 flavonoids, including flavone, flavonol, flavone C-glycosides, flavanone, anthocyanin, and isoflavone were identified. In hierarchical clustering analysis (HCA) and principal component analysis (PCA), the accumulation of flavonoids displayed a clear development stage variation. During flower development, 78 differential accumulated metabolites (DAMs) were identified, and most were enriched to higher levels at the full bloom stage. A total of 11 DAMs including flavone (chrysin, chrysoeriol O-glucuronic acid, and chrysoeriol O-hexosyl-O-pentoside), isoflavone (biochanin A), and flavonol (3,7-di-O-methyl quercetin and isorhamnetin) were significantly altered at three stages. In particular, 3,7-di-O-methyl quercetin was the top increased metabolite during flower development. Furthermore, integrative analyses of metabolomic and transcriptomic were conducted, revealing that the contents of isoflavone, biochanin A, glycitin, and prunetin were correlated with the expression of 2-hydroxyisoflavanone dehydratase (HIDH), which provide insight into the regulatory mechanism that controls isoflavone biosynthesis in R. pulchrum. This study will provide a new reference for increasing desired metabolites effectively by more accurate or appropriate genetic engineering strategies.
Collapse
Affiliation(s)
- Qiaofeng Yang
- Forestry and Fruit Tree Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
- College of Food and Bioengineering, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Zhiliang Li
- Huanggang Normal University, Huanggang, China
| | - Yuting Ma
- Huanggang Normal University, Huanggang, China
| | - Linchuan Fang
- Forestry and Fruit Tree Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Yan Liu
- Huanggang Normal University, Huanggang, China
| | - Xinyu Zhu
- Huanggang Normal University, Huanggang, China
| | | | | |
Collapse
|
13
|
Chen S, Wang X, Cheng Y, Gao H, Chen X. Effects of Supplemental Lighting on Flavonoid and Anthocyanin Biosynthesis in Strawberry Flesh Revealed via Metabolome and Transcriptome Co-Analysis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1070. [PMID: 38674479 PMCID: PMC11055167 DOI: 10.3390/plants13081070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
The spectral composition of light influences the biosynthesis of flavonoids in many plants. However, the detailed composition of flavonoids and anthocyanins and the molecular basis for their biosynthesis in strawberry fruits under two light-quality treatments, red light supplemented with blue light (RB) and ultraviolet B (UVB) irradiation, remain unclear. In this study, the content of flavonoids and anthocyanins was significantly increased in strawberry fruits under RB light and UVB, respectively. The content of flavonoids and anthocyanins in strawberry fruits under UVB light was dramatically higher than that in strawberry fruits irradiated with RB light, and a total of 518 metabolites were detected by means of LC-MS/MS analysis. Among them, 18 phenolic acids, 23 flavonoids, and 8 anthocyanins were differentially accumulated in the strawberry fruits irradiated with red/blue (RB) light compared to 30 phenolic acids, 46 flavonoids, and 9 anthocyanins in fruits irradiated with UVB. The major genes associated with the biosynthesis of flavonoids and anthocyanins, including structural genes and transcription factors (TFs), were differentially expressed in the strawberry fruits under RB and UVB irradiation, as determined through RNA-seq data analysis. A correlation test of transcriptome and metabolite profiling showed that the expression patterns of most genes in the biosynthesis pathway of flavonoids and anthocyanins were closely correlated with the differential accumulation of flavonoids and anthocyanins. Two TFs, bZIP (FvH4_2g36400) and AP2 (FvH4_1g21210), induced by RB and UVB irradiation, respectively, exhibited similar expression patterns to most structural genes, which were closely correlated with six and eight flavonoids, respectively. These results indicated that these two TFs regulated the biosynthesis of flavonoids and anthocyanins in strawberry fruit under RB light and UVB, respectively. These results provide a systematic and comprehensive understanding of the accumulation of flavonoids and anthocyanins and the molecular basis for their biosynthesis in strawberry fruits under RB light and UVB.
Collapse
Affiliation(s)
- Shen Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (S.C.); (Y.C.)
| | - Xiaojing Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China;
| | - Yu Cheng
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (S.C.); (Y.C.)
| | - Hongsheng Gao
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (S.C.); (Y.C.)
| | - Xuehao Chen
- School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (S.C.); (Y.C.)
| |
Collapse
|
14
|
Cao Y, Mei Y, Zhang R, Zhong Z, Yang X, Xu C, Chen K, Li X. Transcriptional regulation of flavonol biosynthesis in plants. HORTICULTURE RESEARCH 2024; 11:uhae043. [PMID: 38623072 PMCID: PMC11017525 DOI: 10.1093/hr/uhae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 02/02/2024] [Indexed: 04/17/2024]
Abstract
Flavonols are a class of flavonoids that play a crucial role in regulating plant growth and promoting stress resistance. They are also important dietary components in horticultural crops due to their benefits for human health. In past decades, research on the transcriptional regulation of flavonol biosynthesis in plants has increased rapidly. This review summarizes recent progress in flavonol-specific transcriptional regulation in plants, encompassing characterization of different categories of transcription factors (TFs) and microRNAs as well as elucidation of different transcriptional mechanisms, including direct and cascade transcriptional regulation. Direct transcriptional regulation involves TFs, such as MYB, AP2/ERF, and WRKY, which can directly target the key flavonol synthase gene or other early genes in flavonoid biosynthesis. In addition, different regulation modules in cascade transcriptional regulation involve microRNAs targeting TFs, regulation between activators, interaction between activators and repressors, and degradation of activators or repressors induced by UV-B light or plant hormones. Such sophisticated regulation of the flavonol biosynthetic pathway in response to UV-B radiation or hormones may allow plants to fine-tune flavonol homeostasis, thereby balancing plant growth and stress responses in a timely manner. Based on orchestrated regulation, molecular design strategies will be applied to breed horticultural crops with excellent health-promoting effects and high resistance.
Collapse
Affiliation(s)
- Yunlin Cao
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Yuyang Mei
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Ruining Zhang
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Zelong Zhong
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaochun Yang
- Center for Drug Safety Evaluation and Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| | - Changjie Xu
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Kunsong Chen
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
| | - Xian Li
- Zhejiang Provincial Key Laboratory of Horticultural Crop Quality Manipulation, Zhejiang University, Hangzhou, 310058, China
- Shandong (Linyi) Institute of Modern Agriculture, Zhejiang University, Linyi, 276000, China
| |
Collapse
|
15
|
Luo L, Molthoff J, Li Q, Liu Y, Luo S, Li N, Xuan S, Wang Y, Shen S, Bovy AG, Zhao J, Chen X. Identification of candidate genes associated with less-photosensitive anthocyanin phenotype using an EMS mutant ( pind) in eggplant ( Solanum melongena L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1282661. [PMID: 38169942 PMCID: PMC10758619 DOI: 10.3389/fpls.2023.1282661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/24/2023] [Indexed: 01/05/2024]
Abstract
Eggplant (Solanum melongena L.) is a highly nutritious and economically important vegetable crop. However, the fruit peel of eggplant often shows poor coloration owing to low-light intensity during cultivation, especially in the winter. The less-photosensitive varieties produce anthocyanin in low light or even dark conditions, making them valuable breeding materials. Nevertheless, genes responsible for anthocyanin biosynthesis in less-photosensitive eggplant varieties are not characterized. In this study, an EMS mutant, named purple in the dark (pind), was used to identify the key genes responsible for less-photosensitive coloration. Under natural conditions, the peel color and anthocyanin content in pind fruits were similar to that of wildtype '14-345'. The bagged pind fruits were light purple, whereas those of '14-345' were white; and the anthocyanin content in the pind fruit peel was significantly higher than that in '14-345'. Genetic analysis revealed that the less-photosensitive trait was controlled by a single dominant gene. The candidate gene was mapped on chromosome 10 in the region 7.72 Mb to 11.71 Mb. Thirty-five differentially expressed genes, including 12 structural genes, such as CHS, CHI, F3H, DFR, ANS, and UFGT, and three transcription factors MYB113, GL3, and TTG2, were identified in pind using RNA-seq. Four candidate genes EGP21875 (myb domain protein 113), EGP21950 (unknown protein), EGP21953 (CAAX amino-terminal protease family protein), and EGP21961 (CAAX amino-terminal protease family protein) were identified as putative genes associated with less-photosensitive anthocyanin biosynthesis in pind. These findings may clarify the molecular mechanisms underlying less-photosensitive anthocyanin biosynthesis in eggplant.
Collapse
Affiliation(s)
- Lei Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Jos Molthoff
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Qiang Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Ying Liu
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Shuangxia Luo
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Na Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxin Xuan
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yanhua Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Shuxing Shen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Arnaud G. Bovy
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xueping Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, International Joint R & D Center of Hebei Province in Modern Agricultural Biotechnology, College of Horticulture, Hebei Agricultural University, Baoding, China
| |
Collapse
|
16
|
Song Y, Ma B, Feng X, Guo Q, Zhou L, Zhang X, Zhang C. Genome-Wide Analysis of the Universal Stress Protein Gene Family in Blueberry and Their Transcriptional Responses to UV-B Irradiation and Abscisic Acid. Int J Mol Sci 2023; 24:16819. [PMID: 38069138 PMCID: PMC10706445 DOI: 10.3390/ijms242316819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Universal stress proteins (USPs) play essential roles in plant development, hormonal regulation, and abiotic stress responses. However, the characteristics and functional divergence of USP family members have not been studied in blueberry (Vaccinium corymbosum). In this study, we identified 72 VcUSP genes from the Genome Database for Vaccinium. These VcUSPs could be divided into five groups based on their phylogenetic relationships. VcUSPs from groups Ⅰ, Ⅳ, and Ⅴ each possess one UspA domain; group Ⅰ proteins also contain an ATP-binding site that is not present in group Ⅳ and Ⅴ proteins. Groups Ⅱ and Ⅲ include more complex proteins possessing one to three UspA domains and UspE or UspF domains. Prediction of cis-regulatory elements in the upstream sequences of VcUSP genes indicated that their protein products are likely involved in phytohormone signaling pathways and abiotic stress responses. Analysis of RNA deep sequencing data showed that 21 and 7 VcUSP genes were differentially expressed in response to UV-B radiation and exogenous abscisic acid (ABA) treatments, respectively. VcUSP41 and VcUSP68 expressions responded to both treatments, and their encoded proteins may integrate the UV-B and ABA signaling pathways. Weighted gene co-expression network analysis revealed that VcUSP22, VcUSP26, VcUSP67, VcUSP68, and VcUSP41 were co-expressed with many transcription factor genes, most of which encode members of the MYB, WRKY, zinc finger, bHLH, and AP2 families, and may be involved in plant hormone signal transduction, circadian rhythms, the MAPK signaling pathway, and UV-B-induced flavonoid biosynthesis under UV-B and exogenous ABA treatments. Our study provides a useful reference for the further functional analysis of VcUSP genes and blueberry molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Chunyu Zhang
- College of Plant Science, Jilin University, Changchun 130062, China
| |
Collapse
|
17
|
Xiao Z, Wang J, Jiang N, Fan C, Xiang X, Liu W. An LcMYB111-LcHY5 Module Differentially Activates an LcFLS Promoter in Different Litchi Cultivars. Int J Mol Sci 2023; 24:16817. [PMID: 38069137 PMCID: PMC10706726 DOI: 10.3390/ijms242316817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Flavonol synthase (FLS) is the crucial enzyme of the flavonol biosynthetic pathways, and its expression is tightly regulated in plants. In our previous study, two alleles of LcFLS,LcFLS-A and LcFLS-B, have been identified in litchi, with extremely early-maturing (EEM) cultivars only harboring LcFLS-A, while middle-to-late-maturing (MLM) cultivars only harbor LcFLS-B. Here, we overexpressed both LcFLS alleles in tobacco, and transgenic tobacco produced lighter-pink flowers and showed increased flavonol levels while it decreased anthocyanin levels compared to WT. Two allelic promoters of LcFLS were identified, with EEM cultivars only harboring proLcFLS-A, while MLM cultivars only harbor proLcFLS-B. One positive and three negative R2R3-MYB transcription regulators of LcFLS expression were identified, among which only positive regulator LcMYB111 showed a consistent expression pattern with LcFLS, which both have higher expression in EEM than that of MLM cultivars. LcMYB111 were further confirmed to specifically activate proLcFLS-A with MYB-binding element (MBE) while being unable to activate proLcFLS-B with mutated MBE (MBEm). LcHY5 were also identified and can interact with LcMYB111 to promote LcFLS expression. Our study elucidates the function of LcFLS and its differential regulation in different litchi cultivars for the first time.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China; (Z.X.); (J.W.); (N.J.); (C.F.); (X.X.)
| |
Collapse
|
18
|
Li S, Ou C, Wang F, Zhang Y, Ismail O, Elaziz YSA, Edris S, Jiang S, Li H. Mutant Ppbbx24-delgene positively regulates light-induced anthocyanin accumulation in the red pear.. [DOI: 10.1101/2023.05.19.541476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
AbstractAnthocyanins are pigments and nutrients in red pears regulated by BBX family genes. Herein, we characterized a 14-nucleotide deletion mutation in the coding region of thePpBBX24gene from ‘Red Zaosu’ pear (Pyrus pyrifoliaWhite Pear Group), namedPpbbx24-del. Genetic and biochemical approaches were used to compare the roles of PpBBX24 and Ppbbx24-del in anthocyanin accumulation.Ppbbx24-delplayed a positive role in anthocyanin biosynthesis of the ‘Red Zaosu’ pear peel by light treatment. Functional analyses based on overexpression in tobacco and transient overexpression in pear fruit peels showed thatPpbbx24-delpromoted anthocyanin accumulation. Cyanidin and peonidin were major differentially expressed anthocyanins, and transcript levels of some structural genes in the anthocyanin biosynthesis pathway were significantly increased. Protein interaction assays showed that PpBBX24 was located in the nucleus and interacted with PpHY5, whereas Ppbbx24-del was colocalized in the nucleoplasm and did not interact with PpHY5. PpHY5 and Ppbbx24-del had positive regulatory effects on the expression ofPpCHS,PpCHI, andPpMYB10when acting alone, but had cumulative effects on gene activation when acting simultaneously. Alone, PpBBX24 had no significant effect on the expression ofPpCHS,PpCHI, orPpMYB10, whereas it inhibited the activation effects of PpHY5 on downstream genes when it existed with PpHY5. Our study demonstrated that mutant Ppbbx24-del positively regulates the anthocyanin accumulation in pear. The results of this study clarify the mechanism and enrich the regulatory network of anthocyanin biosynthesis, which lays a theoretical foundation forPpbbx24-deluse to create red pear cultivars.
Collapse
|
19
|
Daryanavard H, Postiglione AE, Mühlemann JK, Muday GK. Flavonols modulate plant development, signaling, and stress responses. CURRENT OPINION IN PLANT BIOLOGY 2023; 72:102350. [PMID: 36870100 PMCID: PMC10372886 DOI: 10.1016/j.pbi.2023.102350] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 06/11/2023]
Abstract
Flavonols are plant-specialized metabolites with important functions in plant growth and development. Isolation and characterization of mutants with reduced flavonol levels, especially the transparent testa mutants in Arabidopsis thaliana, have contributed to our understanding of the flavonol biosynthetic pathway. These mutants have also uncovered the roles of flavonols in controlling development in above- and below-ground tissues, notably in the regulation of root architecture, guard cell signaling, and pollen development. In this review, we present recent progress made towards a mechanistic understanding of flavonol function in plant growth and development. Specifically, we highlight findings that flavonols act as reactive oxygen species (ROS) scavengers and inhibitors of auxin transport in diverse tissues and cell types to modulate plant growth and development and responses to abiotic stresses.
Collapse
Affiliation(s)
- Hana Daryanavard
- Climate Resilient Crop Production Laboratory, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit (KU) Leuven, Leuven, Belgium
| | - Anthony E Postiglione
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, USA
| | - Joëlle K Mühlemann
- Climate Resilient Crop Production Laboratory, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Leuven Plant Institute, KU Leuven, Leuven, Belgium
| | - Gloria K Muday
- Department of Biology, Center for Molecular Signaling, Wake Forest University, Winston-Salem, NC, USA.
| |
Collapse
|
20
|
Song Y, Ma B, Guo Q, Zhou L, Zhou X, Ming Z, You H, Zhang C. MYB pathways that regulate UV-B-induced anthocyanin biosynthesis in blueberry ( Vaccinium corymbosum). FRONTIERS IN PLANT SCIENCE 2023; 14:1125382. [PMID: 36794225 PMCID: PMC9923047 DOI: 10.3389/fpls.2023.1125382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 05/27/2023]
Abstract
Ultraviolet-B (UV-B) promotes anthocyanin accumulation and improves fruit quality in plants. To explore the underlying network of MYB transcription factors that regulates UV-B-induced anthocyanin biosynthesis in blueberry (Vaccinium corymbosum), we analyzed the response of MYB transcription factor genes to UV-B treatment. Transcriptome sequencing analysis revealed that VcMYBA2 and VcMYB114 expression were upregulated and were positively correlated with the expression of anthocyanin structural genes under UV-B radiation according to weighted gene co-expression network analysis (WGCNA) data. The VcUVR8-VcCOP1-VcHY5 pathway perceives UV-B signals and promotes the expression of anthocyanin structural genes by upregulating VcMYBA2 and VcMYB114 or by regulating the VcBBXs-VcMYB pathway, ultimately promoting anthocyanin accumulation. By contrast, VcMYB4a and VcUSP1 were downregulated under UV-B treatment, and VcMYB4a expression was negatively correlated with that of anthocyanin biosynthesis genes in response to UV-B. Analysis of VcMYB4a-overexpressing and wild-type blueberry calli exposed to UV-B radiation revealed that VcMYB4a represses UV-B-induced anthocyanin accumulation. Yeast one-hybrid and dual luciferase assays showed that the universal stress protein VcUSP1 directly bound to the promoter of VcMYB4a. These results suggest that the VcUSP1-VcMYB4a pathway negatively regulates UV-B-induced anthocyanin biosynthesis and provide insight into UV-B-induced anthocyanin biosynthesis.
Collapse
|
21
|
Temmerman A, Marquez-Garcia B, Depuydt S, Bruznican S, De Cuyper C, De Keyser A, Boyer FD, Vereecke D, Struk S, Goormachtig S. MAX2-dependent competence for callus formation and shoot regeneration from Arabidopsis thaliana root explants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6272-6291. [PMID: 35738874 DOI: 10.1093/jxb/erac281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/23/2022] [Indexed: 05/21/2023]
Abstract
Although the division of the pericycle cells initiates both lateral root development and root-derived callus formation, these developmental processes are affected differently in the strigolactone and karrikin/KARRIKIN INSENSITIVE 2 (KAI2) ligand signalling mutant more axillary growth 2 (max2). Whereas max2 produces more lateral roots than the wild type, it is defective in the regeneration of shoots from root explants. We suggest that the decreased shoot regeneration of max2 originates from delayed formation of callus primordium, yielding less callus material to regenerate shoots. Indeed, when incubated on callus-inducing medium, the pericycle cell division was reduced in max2 and the early gene expression varied when compared with the wild type, as determined by a transcriptomics analysis. Furthermore, the expression of the LATERAL ORGAN BOUNDARIES DOMAIN genes and of callus-induction genes was modified in correlation with the max2 phenotype, suggesting a role for MAX2 in the regulation of the interplay between cytokinin, auxin, and light signalling in callus initiation. Additionally, we found that the in vitro shoot regeneration phenotype of max2 might be caused by a defect in KAI2, rather than in DWARF14, signalling. Nevertheless, the shoot regeneration assays revealed that the strigolactone biosynthesis mutants max3 and max4 also play a minor role.
Collapse
Affiliation(s)
- Arne Temmerman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Belen Marquez-Garcia
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Stephen Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, Songdomunhwa-Ro, Yeonsu-Gu, Incheon, Korea
| | - Silvia Bruznican
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Carolien De Cuyper
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Saclay, Avenue de la Terrasse, Gif-sur-Yvette, France
| | - Danny Vereecke
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Valentin Vaerwyckweg, Ghent, Belgium
| | - Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Technologiepark, Ghent, Belgium
| |
Collapse
|
22
|
Chen Q, Hou S, Pu X, Li X, Li R, Yang Q, Wang X, Guan M, Rengel Z. Dark secrets of phytomelatonin. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5828-5839. [PMID: 35522068 DOI: 10.1093/jxb/erac168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Phytomelatonin is a newly identified plant hormone, and its primary functions in plant growth and development remain relatively poorly appraised. Phytomelatonin is a master regulator of reactive oxygen species (ROS) signaling and acts as a darkness signal in circadian stomatal closure. Plants exhibit at least three interrelated patterns of interaction between phytomelatonin and ROS production. Exogenous melatonin can induce flavonoid biosynthesis, which might be required for maintenance of antioxidant capacity under stress, after harvest, and in leaf senescence conditions. However, several genetic studies have provided direct evidence that phytomelatonin plays a negative role in the biosynthesis of flavonoids under non-stress conditions. Phytomelatonin delays flowering time in both dicot and monocot plants, probably via its receptor PMTR1 and interactions with the gibberellin, strigolactone, and ROS signaling pathways. Furthermore, phytomelatonin signaling also functions in hypocotyl and shoot growth in skotomorphogenesis and ultraviolet B (UV-B) exposure; the G protein α-subunit (Arabidopsis GPA1 and rice RGA1) and constitutive photomorphogenic1 (COP1) are important signal components during this process. Taken together, these findings indicate that phytomelatonin acts as a darkness signal with important regulatory roles in circadian stomatal closure, flavonoid biosynthesis, flowering, and hypocotyl and shoot growth.
Collapse
Affiliation(s)
- Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Suying Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaojun Pu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiaomin Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rongrong Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qian Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xinjia Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Miao Guan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth WA, Australia
- Institute for Adriatic Crops and Karst Reclamation, Split, Croatia
| |
Collapse
|
23
|
Shao D, Liang Q, Wang X, Zhu QH, Liu F, Li Y, Zhang X, Yang Y, Sun J, Xue F. Comparative Metabolome and Transcriptome Analysis of Anthocyanin Biosynthesis in White and Pink Petals of Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2022; 23:ijms231710137. [PMID: 36077538 PMCID: PMC9456042 DOI: 10.3390/ijms231710137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Upland cotton (Gossypium hirsutum L.) is one of the important fiber crops. Cotton flowers usually appear white (or cream-colored) without colored spots at the petal base, and turn pink on the next day after flowering. In this study, using a mutant showing pink petals with crimson spots at their base, we conducted comparative metabolome and transcriptome analyses to investigate the molecular mechanism of coloration in cotton flowers. Metabolic profiling showed that cyanidin-3-O-glucoside and glycosidic derivatives of pelargonidins and peonidins are the main pigments responsible for the coloration of the pink petals of the mutant. A total of 2443 genes differentially expressed (DEGs) between the white and pink petals were identified by RNA-sequencing. Many DEGs are structural genes and regulatory genes of the anthocyanin biosynthesis pathway. Among them, MYB21, UGT88F3, GSTF12, and VPS32.3 showed significant association with the accumulation of cyanidin-3-O-glucoside in the pink petals. Taken together, our study preliminarily revealed the metabolites responsible for the pink petals and the key genes regulating the biosynthesis and accumulation of anthocyanins in the pink petals. The results provide new insights into the biochemical and molecular mechanism underlying anthocyanin biosynthesis in upland cotton.
Collapse
Affiliation(s)
- Dongnan Shao
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Qian Liang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Xuefeng Wang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra 2601, Australia
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Yanjun Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Yonglin Yang
- Cotton Research Institute, Shihezi Academy of Agriculture Science, Shihezi 832000, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Correspondence: (J.S.); (F.X.)
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Correspondence: (J.S.); (F.X.)
| |
Collapse
|
24
|
Han J, Li T, Wang X, Zhang X, Bai X, Shao H, Wang S, Hu Z, Wu J, Leng P. AmMYB24 Regulates Floral Terpenoid Biosynthesis Induced by Blue Light in Snapdragon Flowers. FRONTIERS IN PLANT SCIENCE 2022; 13:885168. [PMID: 35845643 PMCID: PMC9284265 DOI: 10.3389/fpls.2022.885168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Floral terpenoid volatiles are impacted by light quality. In snapdragon, blue light can significantly enhance the emissions of ocimene and myrcene and the expression of ocimene synthase (AmOCS) and myrcene synthase (AmMYS). However, the mechanisms underlying the response to blue light are largely unknown. In this study, two transcription factors (TFs), AmMYB24 and AmMYB63 were screened which showed high expression level under blue light. AmMYB24 exhibited synchronous expression with AmOCS. Moreover, AmOCS transcript expression was up-regulated in response to AmMYB24 overexpression. This activation is direct and occurs through binding of AmMYB24 to MYBCORECYCATB1 sites in the AmOCS promoter. In addition, AmMYB24 interacts with the blue light signal key receptor AmCRY1 and the transcriptional activation activity of AmMYB24 was decreased in AmCRY1 silencing flowers. Taken together, our results revealed the regulatory pathway of biosynthesis of ocimene induced by blue light mediated by AmMYB24 and AmCRY1. When snapdragon flowers were exposed to blue light, AmCRY1 was first activated, the light signal is transduced to AmMYB24 through interaction with AmCRY1, and finally AmMYB24 activates AmOCS by binding to its MYBCOREATCYCB1 motif, resulting in abundant ocimene emission.
Collapse
Affiliation(s)
- Jianing Han
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Tong Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Xuelian Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Xi Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Xiaoning Bai
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Huihui Shao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Shaojie Wang
- Institute of Forestry New Technology, Chinese Academy of Forestry, Beijing, China
| | - Zenghui Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Jing Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| | - Pingsheng Leng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
25
|
Badola PK, Sharma A, Gautam H, Trivedi PK. MicroRNA858a, its encoded peptide, and phytosulfokine regulate Arabidopsis growth and development. PLANT PHYSIOLOGY 2022; 189:1397-1415. [PMID: 35325214 PMCID: PMC9237717 DOI: 10.1093/plphys/kiac138] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/04/2022] [Indexed: 06/02/2023]
Abstract
Small molecules, such as peptides and miRNAs, are crucial regulators of plant growth. Here, we show the importance of cross-talk between miPEP858a (microRNA858a-encoded peptide)/miR858a and phytosulfokine (PSK4) in regulating plant growth and development in Arabidopsis (Arabidopsis thaliana). Genome-wide expression analysis suggested modulated expression of PSK4 in miR858a mutants and miR858a-overexpressing (miR858aOX) plants. The silencing of PSK4 in miR858aOX plants compromised growth, whereas overexpression of PSK4 in the miR858a mutant rescued the developmental defects. The exogenous application of synthetic PSK4 further complemented the plant development in mutant plants. Exogenous treatment of synthetic miPEP858a in the PSK4 mutant led to clathrin-mediated internalization of the peptide; however, it did not enhance growth as is the case in wild-type plants. We also demonstrated that MYB3 is an important molecular component participating in the miPEP858a/miR858a-PSK4 module. Finally, our work highlights the signaling between miR858a/miPEP858a-MYB3-PSK4 in modulating the expression of key elements involved in auxin responses, leading to the regulation of growth.
Collapse
Affiliation(s)
| | | | - Himanshi Gautam
- CSIR-National Botanical Research Institute, Council of Scientific and Industrial Research (CSIR-NBRI), Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | | |
Collapse
|
26
|
Nascimento LBDS, Tattini M. Beyond Photoprotection: The Multifarious Roles of Flavonoids in Plant Terrestrialization. Int J Mol Sci 2022; 23:5284. [PMID: 35563675 PMCID: PMC9101737 DOI: 10.3390/ijms23095284] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Plants evolved an impressive arsenal of multifunctional specialized metabolites to cope with the novel environmental pressures imposed by the terrestrial habitat when moving from water. Here we examine the multifarious roles of flavonoids in plant terrestrialization. We reason on the environmental drivers, other than the increase in UV-B radiation, that were mostly responsible for the rise of flavonoid metabolism and how flavonoids helped plants in land conquest. We are reasonably based on a nutrient-deficiency hypothesis for the replacement of mycosporine-like amino acids, typical of streptophytic algae, with the flavonoid metabolism during the water-to-land transition. We suggest that flavonoids modulated auxin transport and signaling and promoted the symbiosis between plants and fungi (e.g., arbuscular mycorrhizal, AM), a central event for the conquest of land by plants. AM improved the ability of early plants to take up nutrients and water from highly impoverished soils. We offer evidence that flavonoids equipped early land plants with highly versatile "defense compounds", essential for the new set of abiotic and biotic stressors imposed by the terrestrial environment. We conclude that flavonoids have been multifunctional since the appearance of plants on land, not only acting as UV filters but especially improving both nutrient acquisition and biotic stress defense.
Collapse
Affiliation(s)
| | - Massimiliano Tattini
- Institute for Sustainable Plant Protection (IPSP), National Research Council of Italy, 50019 Sesto Fiorentino, Florence, Italy;
| |
Collapse
|
27
|
Zhang H, Tao H, Yang H, Zhang L, Feng G, An Y, Wang L. MdSCL8 as a Negative Regulator Participates in ALA-Induced FLS1 to Promote Flavonol Accumulation in Apples. Int J Mol Sci 2022; 23:ijms23042033. [PMID: 35216148 PMCID: PMC8875840 DOI: 10.3390/ijms23042033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/02/2022] [Accepted: 02/10/2022] [Indexed: 01/11/2023] Open
Abstract
Apples (Malus domestica) are rich in flavonols, and 5-aminolevulinic acid (ALA) plays an important role in the regulation of plant flavonoid metabolism. To date, the underlying mechanism of ALA promoting flavonol accumulation is unclear. Flavonol synthase (FLS) is a key enzyme in flavonol biosynthesis. In this study, we found that ALA could enhance the promoter activity of MdFLS1 in the ‘Fuji’ apple and improve its expression. With MdFLS1 as bait, we screened a novel transcription factor MdSCL8 by the Yeast One-Hybrid (Y1H) system from the apple cDNA library which we previously constructed. Using luciferase reporter assay and transient GUS activity assay, we verified that MdSCL8 inhibits the activity of MdFLS1 promoter and hinders MdFLS1 expression, thus reducing flavonol accumulation in apple. ALA significantly inhibited MdSCL8 expression. Therefore, ALA promoted the expression of MdFLS1 and the consequent flavonol accumulation probably by down-regulating MdSCL8. We also found that ALA significantly enhanced the gene expression of MdMYB22 and MdHY5, two positive regulators of MdFLS. We further demonstrated that MdMYB22 interacts with MdHY5, but neither of them interacts with MdSCL8. Taken together, our data suggest MdSCL8 as a novel regulator of MdFLS1 and provide important insights into mechanisms of ALA-induced flavonol accumulation in apples.
Collapse
|
28
|
Struk S, Braem L, Matthys C, Walton A, Vangheluwe N, Van Praet S, Jiang L, Baster P, De Cuyper C, Boyer FD, Stes E, Beeckman T, Friml J, Gevaert K, Goormachtig S. Transcriptional Analysis in the Arabidopsis Roots Reveals New Regulators that Link rac-GR24 Treatment with Changes in Flavonol Accumulation, Root Hair Elongation and Lateral Root Density. PLANT & CELL PHYSIOLOGY 2022; 63:104-119. [PMID: 34791413 DOI: 10.1093/pcp/pcab149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/06/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The synthetic strigolactone (SL) analog, rac-GR24, has been instrumental in studying the role of SLs as well as karrikins because it activates the receptors DWARF14 (D14) and KARRIKIN INSENSITIVE 2 (KAI2) of their signaling pathways, respectively. Treatment with rac-GR24 modifies the root architecture at different levels, such as decreasing the lateral root density (LRD), while promoting root hair elongation or flavonol accumulation. Previously, we have shown that the flavonol biosynthesis is transcriptionally activated in the root by rac-GR24 treatment, but, thus far, the molecular players involved in that response have remained unknown. To get an in-depth insight into the changes that occur after the compound is perceived by the roots, we compared the root transcriptomes of the wild type and the more axillary growth2 (max2) mutant, affected in both SL and karrikin signaling pathways, with and without rac-GR24 treatment. Quantitative reverse transcription (qRT)-PCR, reporter line analysis and mutant phenotyping indicated that the flavonol response and the root hair elongation are controlled by the ELONGATED HYPOCOTYL 5 (HY5) and MYB12 transcription factors, but HY5, in contrast to MYB12, affects the LRD as well. Furthermore, we identified the transcription factors TARGET OF MONOPTEROS 5 (TMO5) and TMO5 LIKE1 as negative and the Mediator complex as positive regulators of the rac-GR24 effect on LRD. Altogether, hereby, we get closer toward understanding the molecular mechanisms that underlay the rac-GR24 responses in the root.
Collapse
Affiliation(s)
- Sylwia Struk
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| | - Lukas Braem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark 75, Ghent 9052, Belgium
- Center for Medical Biotechnology, VIB, Technologiepark 75, Ghent 9052, Belgium
| | - Cedrick Matthys
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| | - Alan Walton
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark 75, Ghent 9052, Belgium
- Center for Medical Biotechnology, VIB, Technologiepark 75, Ghent 9052, Belgium
| | - Nick Vangheluwe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| | - Stan Van Praet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
- Laboratory of Plant Growth Analysis, Ghent University Global Campus, 119 Songdomunhwa-Ro, Yeonsu-Gu, Incheon 21985, Republic of Korea
| | - Lingxiang Jiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| | - Pawel Baster
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| | - Carolien De Cuyper
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| | - François-Didier Boyer
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, AgroParisTech, Centre National de la Recherche Scientifique, Université Paris-Saclay, Route de Saint-Cyr, Versailles 78026, France
- Institut de Chimie des Substances Naturelles, Centre National de la Recherche Scientifique, UPR2301, Université Paris-Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, Gif-sur-Yvette 91198, France
| | - Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
- Department of Biomolecular Medicine, Ghent University, Technologiepark 75, Ghent 9052, Belgium
- Center for Medical Biotechnology, VIB, Technologiepark 75, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| | - Jiří Friml
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
- Institute of Science and Technology (IST) Austria, Cell Biology Laboratory, Am Campus 1, Klosterneuburg 3400, Austria
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Technologiepark 75, Ghent 9052, Belgium
- Center for Medical Biotechnology, VIB, Technologiepark 75, Ghent 9052, Belgium
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium
- Center of Plant Systems Biology, VIB, Technologiepark 71, Ghent 9052, Belgium
| |
Collapse
|
29
|
Xiao Y, Chu L, Zhang Y, Bian Y, Xiao J, Xu D. HY5: A Pivotal Regulator of Light-Dependent Development in Higher Plants. FRONTIERS IN PLANT SCIENCE 2022; 12:800989. [PMID: 35111179 PMCID: PMC8801436 DOI: 10.3389/fpls.2021.800989] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/17/2021] [Indexed: 05/10/2023]
Abstract
ELONGATED HYPOCOTYL5 (HY5), a bZIP-type transcription factor, acts as a master regulator that regulates various physiological and biological processes in plants such as photomorphogenesis, root growth, flavonoid biosynthesis and accumulation, nutrient acquisition, and response to abiotic stresses. HY5 is evolutionally conserved in function among various plant species. HY5 acts as a master regulator of light-mediated transcriptional regulatory hub that directly or indirectly controls the transcription of approximately one-third of genes at the whole genome level. The transcription, protein abundance, and activity of HY5 are tightly modulated by a variety of factors through distinct regulatory mechanisms. This review primarily summarizes recent advances on HY5-mediated molecular and physiological processes and regulatory mechanisms on HY5 in the model plant Arabidopsis as well as in crops.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongqing Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
30
|
Lu S, Wang J, Zhuge Y, Zhang M, Liu C, Jia H, Fang J. Integrative Analyses of Metabolomes and Transcriptomes Provide Insights into Flavonoid Variation in Grape Berries. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12354-12367. [PMID: 34632763 DOI: 10.1021/acs.jafc.1c02703] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Flavonoids in grapes contribute the quality of the berry, but the flavonoid diversity and the regulatory networks underlying the variation require a further investigation. In this study, we integrated multi-omics data to systematically explore the global metabolic and transcriptional profiles in the skins and pulps of three grape cultivars. The results revealed large-scale differences involved in the flavonoid metabolic pathway. A total of 133 flavonoids, including flavone and flavone C-glycosides, were identified. Beyond the visible differences of anthocyanins, there was large variation in other sub-branched flavonoids, most of which were positively correlated with anthocyanins in grapes. The expressions of most flavonoid biosynthetic genes and the major regulators MYBA1 were strongly consistent with the changes in flavonoids. Integrative analysis identified two novel transcription factors (MYB24 and MADS5) and two ubiquitin proteins (RHA2) as promising regulatory candidates for flavonoid biosynthesis in grapes. Further verification in various grape accessions indicated that five major genes including flavonol 3'5'-hydroxylase (F3'5'H), UDP-glucose:flavonoid 3-O-glycosyl-transferase, anthocyanin O-methyltransferase, acyltransferase (3AT), and glutathione S-transferase (GST4) controlled flavonoid variation in grape berries. These findings provide valuable information for understanding the mechanism of flavonoid biosynthesis in grape berries and the further development of grape health products.
Collapse
Affiliation(s)
- Suwen Lu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayang Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaxian Zhuge
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengwei Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
31
|
Ye JH, Lv YQ, Liu SR, Jin J, Wang YF, Wei CL, Zhao SQ. Effects of Light Intensity and Spectral Composition on the Transcriptome Profiles of Leaves in Shade Grown Tea Plants ( Camellia sinensis L.) and Regulatory Network of Flavonoid Biosynthesis. Molecules 2021; 26:molecules26195836. [PMID: 34641378 PMCID: PMC8510202 DOI: 10.3390/molecules26195836] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/19/2021] [Accepted: 09/23/2021] [Indexed: 01/18/2023] Open
Abstract
Black net shade treatment attenuates flavonoid biosynthesis in tea plants, while the effect of light quality is still unclear. We investigated the flavonoid and transcriptome profiles of tea leaves under different light conditions, using black nets with different shade percentages, blue, yellow and red nets to alter the light intensity and light spectral composition in the fields. Flavonol glycosides are more sensitive to light intensity than catechins, with a reduction percentage of total flavonol glycosides up to 79.6% compared with 38.7% of total catechins under shade treatment. A total of 29,292 unigenes were identified, and the KEGG result indicated that flavonoid biosynthesis was regulated by both light intensity and light spectral composition while phytohormone signal transduction was modulated under blue net shade treatment. PAL, CHS, and F3H were transcriptionally downregulated with light intensity. Co-expression analysis showed the expressions of key transcription factors MYB12, MYB86, C1, MYB4, KTN80.4, and light signal perception and signaling genes (UVR8, HY5) had correlations with the contents of certain flavonoids (p < 0.05). The level of abscisic acid in tea leaves was elevated under shade treatment, with a negative correlation with TFG content (p < 0.05). This work provides a potential route of changing light intensity and spectral composition in the field to alter the compositions of flavor substances in tea leaves and regulate plant growth, which is instructive to the production of summer/autumn tea and matcha.
Collapse
Affiliation(s)
- Jian-Hui Ye
- Tea Research Institute, Zhejiang University, Hangzhou 310013, China; (J.-H.Y.); (Y.-Q.L.); (Y.-F.W.)
| | - Yi-Qing Lv
- Tea Research Institute, Zhejiang University, Hangzhou 310013, China; (J.-H.Y.); (Y.-Q.L.); (Y.-F.W.)
| | - Sheng-Rui Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China;
| | - Jing Jin
- Zhejiang Agricultural Technical Extension Center, 29 Fengqidong Road, Hangzhou 310000, China;
| | - Yue-Fei Wang
- Tea Research Institute, Zhejiang University, Hangzhou 310013, China; (J.-H.Y.); (Y.-Q.L.); (Y.-F.W.)
| | - Chao-Ling Wei
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei 230036, China;
- Correspondence: (C.-L.W.); (S.-Q.Z.)
| | - Shi-Qi Zhao
- Tea Research Institute, Zhejiang University, Hangzhou 310013, China; (J.-H.Y.); (Y.-Q.L.); (Y.-F.W.)
- Correspondence: (C.-L.W.); (S.-Q.Z.)
| |
Collapse
|