1
|
Sato M, Fukusaki E. Gas chromatography-mass spectrometry metabolic profiling and sensory evaluation of greenhouse mangoes (Mangifera indica L. 'Irwin') over multiple harvest seasons. J Biosci Bioeng 2025; 139:280-287. [PMID: 39875282 DOI: 10.1016/j.jbiosc.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/01/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025]
Abstract
Compared to outdoor mango cultivation in the tropics, greenhouse cultivation in temperate regions is less reported due to its short history and small scale. Here, we evaluated for the first time the taste-focused quality of greenhouse-grown mangoes (Irwin) by GC-MS metabolic profiling and sensory evaluation for over three years (2021-2023). The relative standard deviation in sensory evaluation scores was approximately 15 % each year. Meanwhile, principal component analysis was performed on 45 identified metabolites and clustered with similar topology over three years. Orthogonal partial least squares regression analysis showed that a prediction model could be constructed with R2, Q2 = 0.9 or higher for all three years. Furthermore, the 2021 prediction model was used to evaluate the accuracy of sensory evaluation scores in a different year (2023). Compared to the model that used all 45 metabolites as explanatory variables, the accuracy of the model improved when using only 24 important metabolites which are common to both years (2021 and 2022), suggesting that these metabolites are highly reproducible across years. This study would contribute not only to fundamental greenhouse information, but also to the improvement of quality and cultivation methods in greenhouse in the future.
Collapse
Affiliation(s)
- Miwa Sato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Miyazaki Agricultural Research Institute, 5805 Shimonaka, Sadowara-cho, Miyazaki 880-0212, Japan
| | - Eiichiro Fukusaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Osaka University Shimadzu Analytical Innovation Research Laboratory, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
2
|
Kumaraswamy S, Yogendra K, Sotelo-Cardona P, Shivanna A, Hemalatha S, Mohan M, Srinivasan R. Non-targeted metabolomics reveals fatty acid and associated pathways driving resistance to whitefly and tomato leafminer in wild tomato accessions. Sci Rep 2025; 15:3754. [PMID: 39885264 PMCID: PMC11782529 DOI: 10.1038/s41598-025-86191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 01/08/2025] [Indexed: 02/01/2025] Open
Abstract
Wild tomato species exhibit natural insect resistance, yet the specific secondary metabolites and underlying mechanisms governing the resistance remain unclear. Moreover, defense expression dynamically adapts to insect herbivory, causing significant metabolic changes and species-specific secondary metabolite accumulation. The present study aims to identify the resistance-related metabolites in wild tomato accessions that influence the defense mechanism against whitefly (Bemisia tabaci Asia II 7) and leafminer (Phthorimaea absoluta). In this study, LC-HRMS-based non-targeted metabolomics of resistant wild (Solanum cheesmaniae and Solanum galapagense) and susceptible cultivated (Solanum lycopersicum) accessions following 6- and 12-h post-infestation (hpi) by B. tabaci Asia II 7 and P. absoluta revealed distinct sets of resistance-related constitutive (RRC) and induced (RRI) metabolites. The key resistance-related metabolites were those involved in the fatty acid and associated biosynthesis pathways (e.g., triacontane, di-heptanoic acid, dodecanoic acid, undecanoic acid, N-hexadecanoic acid, pentacosane, monogalactosyldiacylglycerols, sphinganine, and 12-hydroxyjasmonic acid), which are recognized for their direct or indirect role in mediating plant defense against insects. Additionally, the differential accumulation of metabolites was evident through partial least squares-discriminant analysis (PLS-DA), highlighting differences in metabolite profiles between resistant and susceptible accessions at 6 and 12 hpi of B. tabaci and P. absoluta. Volcano plot analysis revealed a higher number of significantly upregulated metabolites in wild accessions following herbivory. Moreover, wild tomato accessions responded uniquely to B. tabaci and P. absoluta, highlighting species-specific metabolic responses of tomato accessions to the two feeding guilds. This study uncovered biochemical mechanisms governing resistance in wild tomato accessions, elucidated the influence of dual herbivory on the plant metabolome, and offered well-characterized parent materials and candidate metabolites for breeding insect-resistant varieties.
Collapse
Affiliation(s)
- Sunil Kumaraswamy
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560024, India
- Department of Plant Biology, Ecology and Evolution, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, India
| | - Paola Sotelo-Cardona
- World Vegetable Center, 60 Yi-Min Liao, Shanhua, Tainan, 74151, Taiwan
- Oregon IPM Center, Oregon State University, Corvallis, OR, 97330, USA
| | - Aparna Shivanna
- World Vegetable Center, South and Central Asia, ICRISAT Campus, Hyderabad, 502324, India
| | - Sanivarapu Hemalatha
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, 502324, India
| | - Muthugounder Mohan
- ICAR-National Bureau of Agricultural Insect Resources, Bengaluru, 560024, India
| | | |
Collapse
|
3
|
Sincinelli F, Gaonkar SS, Tondepu SAG, Dueñas CJ, Pagano A. Hallmarks of DNA Damage Response in Germination Across Model and Crop Species. Genes (Basel) 2025; 16:95. [PMID: 39858642 PMCID: PMC11764568 DOI: 10.3390/genes16010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
DNA damage response (DDR) contributes to seed quality by guarding genome integrity in the delicate phases of pre- and post-germination. As a key determinant of stress tolerance and resilience, DDR has notable implications on the wider scale of the agroecosystems challenged by harsh climatic events. The present review focuses on the existing and documented links that interconnect DDR efficiency with an array of molecular hallmarks with biochemical, molecular, and physiological valence within the seed metabolic networks. The expression of genes encoding DDR sensors, transducers, mediators, and effectors is interpreted as a source of conserved hallmarks, along with markers of oxidative damage reflecting the seed's ability to germinate. Similarly, the accumulation patterns of proteins and metabolites that contribute to DNA stability are predictive of seed quality traits. While a list of candidates is presented from multiple models and crop species, their interaction with chromatin dynamics, cell cycle progression, and hormonal regulation provides further levels of analysis to investigate the seed stress response holistically. The identification of novel hallmarks of DDR in seeds constitutes a framework to prompt validation with different experimental systems, to refine the current models of pre-germinative metabolism, and to promote targeted approaches for seed quality evaluation.
Collapse
Affiliation(s)
| | | | | | | | - Andrea Pagano
- Department of Biology and Biotechnology ‘L. Spallanzani’, University of Pavia, via Ferrata 9, 27100 Pavia, Italy
| |
Collapse
|
4
|
Zhou C, Miao P, Xu Z, Yi X, Yin X, Li D, Pan C. Exploring the mechanism of nano-selenium treatment on the nutritional quality and resistance in plum plants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116957. [PMID: 39232291 DOI: 10.1016/j.ecoenv.2024.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/06/2024]
Abstract
The impact of emerging stressors, such as pesticides and heavy metals, on the nutritional quality, resistance, and antioxidant systems of crops is the subject of intense monitoring. Due to its low toxicity and biocompatibility, nano-selenium (nano-Se) increases antioxidant capacity more effectively than selenium (Se). However, the protective mechanism of nano-Se in plum trees is still unknown when subjected to long-term abiotic stress. In this study, nano-Se foliar application enhanced the fruit's fresh weight and diameter and plant growth and development by increasing the content of trace elements (Zn and Se) and amino acids (Try, Phe, Pro, and Arg) in leaves and fruits. Compared to the control, nano-Se treatment dramatically improved the plant's antioxidant system, resulting in a substantial increase in SOD (44.3 %), POD (24.3 %), and CAT (95.6 %) levels. It also increased IAA (118.8 %), total flavonoids (23.0 %), total phenols (15.8 %), rutin (37.7 %), quercetin (146.8 %), and caffeic acid (19.8 %) contents by regulating phenylpropane metabolic pathways. Targeted amino acid analysis indicated that nano-Se biofortification greatly enhanced the levels of His (60.7 %), Ser (123.5 %), Thr (105.7 %), Val (202.1 %), Ile (236.2 %), Leu (84.0 %), Tyr (235.0 %), and Phe (164.7 %). The non-target metabolomics results showed that nano-Se treatment stimulated plum growth and nutrition by boosting phenylpropane metabolism and amino acid production. Therefore, nano-Se can improve the quality and resistance of plums by regulating both the primary and secondary metabolic pathways of plants and enhancing the antioxidant capacity. This investigation provides a reference for extrapolating the positive effects of nano-Se on crop quality to other plant species.
Collapse
Affiliation(s)
- Chunran Zhou
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Peijuan Miao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China
| | - Zhimei Xu
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin, Guangxi 541004, China
| | - Xianrong Yi
- Guangxi Key Laboratory of Germplasm Innovation and Utilization of Specialty Commercial Crops in North Guangxi, Guangxi Academy of Specialty Crops, Guilin, Guangxi 541004, China
| | - Xuebin Yin
- The Institute of Functional Agriculture (Food) Science and Technology at Yangtze River Delta (iFAST), Anhui Science and Technology University, Chuzhou, China
| | - Dong Li
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570228, China.
| | - Canping Pan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Yuanmingyuan West Road 2, Beijing 100193, China.
| |
Collapse
|
5
|
Takaragawa H, Wakayama M. Responses of leaf gas exchange and metabolites to drought stress in different organs of sugarcane and its closely related species Erianthus arundinaceus. PLANTA 2024; 260:90. [PMID: 39256219 PMCID: PMC11387454 DOI: 10.1007/s00425-024-04508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/09/2024] [Indexed: 09/12/2024]
Abstract
MAIN CONCLUSION The high intrinsic water-use efficiency of Erianthus may be due to the low abaxial stomatal density and the accumulation of leaf metabolites such as betaine and gamma-aminobutyric acid. Sugarcane is an important crop that is widely cultivated in tropical and subtropical regions of the world. Because drought is among the main impediments limiting sugarcane production in these regions, breeding of drought-tolerant sugarcane varieties is important for sustainable production. Erianthus arundinaceus, a species closely related to sugarcane, exhibits high intrinsic water-use efficiency (iWUE), the underlying mechanisms for which remain unknown. To improve the genetic base for conferring drought tolerance in sugarcane, in the present study, we performed a comprehensive comparative analysis of leaf gas exchange and metabolites in different organs of sugarcane and Erianthus under wet and dry soil-moisture conditions. Erianthus exhibited lower stomatal conductance under both conditions, which resulted in a higher iWUE than in sugarcane. Organ-specific metabolites showed gradations between continuous parts and organs, suggesting linkages between them. Cluster analysis of organ-specific metabolites revealed the effects of the species and treatments in the leaves. Principal component analysis of leaf metabolites confirmed a rough ordering of the factors affecting their accumulations. Compared to sugarcane leaf, Erianthus leaf accumulated more raffinose, betaine, glutamine, gamma-aminobutyric acid, and S-adenosylmethionine, which function as osmolytes and stress-response compounds, under both the conditions. Our extensive analyses reveal that the high iWUE of Erianthus may be due to the specific accumulation of such metabolites in the leaves, in addition to the low stomatal density on the abaxial side of leaves. The identification of drought-tolerance traits of Erianthus will benefit the generation of sugarcane varieties capable of withstanding drought stress.
Collapse
Affiliation(s)
- Hiroo Takaragawa
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, Maezato Kawarabaru, Ishigaki, Okinawa, 907-0002, Japan.
| | - Masataka Wakayama
- Integrated Medical and Agricultural School for Public Health, Ehime University, Tōon, Ehime, 791-0295, Japan.
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0052, Japan.
| |
Collapse
|
6
|
Zhang L, Liu X, Xu L, Xie M, Yu M. Non-Targeted Metabolomics Analysis of γ-Aminobutyric Acid Enrichment in Germinated Maize Induced by Pulsed Light. Foods 2024; 13:2675. [PMID: 39272441 PMCID: PMC11395081 DOI: 10.3390/foods13172675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Pulsed light is an emerging technique in plant physiology recognized for its ability to enhance germination and accumulate γ-aminobutyric acid in maize. Pulsed light involves exposing plants to brief, high-intensity bursts of light, which can enhance photosynthesis, improve growth, and increase resistance to environmental stresses. Despite its promising potential, the specific metabolic changes leading to γ-aminobutyric acid enrichment in maize induced by pulsed light are not fully understood. This study addresses this gap by quantifying key nutrients and γ-aminobutyric acid-related compounds during maize germination and investigating the underlying mechanisms using non-targeted metabolomics. Our findings indicate that pulsed light significantly promotes maize germination and accelerates the hydrolysis of proteins, sugars, and lipids. This acceleration is likely due to the activation of enzymes involved in these metabolic pathways. Additionally, pulsed light markedly increases the content of glutamic acid and the activity of glutamate decarboxylase, which are crucial for γ-aminobutyric acid synthesis. Moreover, pulsed light significantly reduces the activity of γ-aminobutyric transaminase, thereby inhibiting γ-aminobutyric acid decomposition and resulting in a substantial increase in γ-aminobutyric acid content, with a 27.20% increase observed in germinated maize following pulsed light treatment. Metabolomic analysis further revealed enrichment of metabolic pathways associated with γ-aminobutyric acid, including amino acid metabolism, carbohydrate metabolism, plant hormone signal transduction, energy metabolism, pyrimidine metabolism, and ABC transporters. In conclusion, pulsed light is a robust and efficient method for producing sprouted maize with a high γ-aminobutyric acid content. This technique provides a novel approach for developing sprouted cereal foods with enhanced nutritional profiles, leveraging the physiological benefits of γ-aminobutyric acid, which include stress alleviation and potential health benefits for humans.
Collapse
Affiliation(s)
- Liangchen Zhang
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Xiaojing Liu
- Center for Disease Control and Prevention of Liaoning Province, Shenyang 110172, China
| | - Liwei Xu
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Mengxi Xie
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| | - Miao Yu
- Institute of Food and Processing, Liaoning Academy of Agricultural Sciences, Shenyang 110161, China
| |
Collapse
|
7
|
Ni L, Xu Y, Wang Z, Yu C, Hua J, Yin Y, Li H, Gu C. Integrated metabolomics and transcriptomics reveal that HhERF9 positively regulates salt tolerance in Hibiscus hamabo Siebold & Zuccarini. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108843. [PMID: 38879985 DOI: 10.1016/j.plaphy.2024.108843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/01/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
Hibiscus hamabo Siebold & Zuccarini is one of the few semi-mangrove plants in the genus Hibiscus that can survive in saline-alkali soil and flooded land, but the mechanism underlying its adaptation to salt soil remains unknown. Here, to uncover this unsolved mystery, we characterized the changes in the accumulation of specific metabolites under salt stress in H. hamabo by integrating physiological, metabolic, and transcriptomic data, and found that osmotic adjustment and abscisic acid (ABA) is highly associated with the salt stress response. Further, a weighted gene co-expression network analysis was performed on the root transcriptome data, which identified three key candidate transcription factors responsive to salt stress. Among them, the expression HhERF9 was significantly upregulated under salt stress and ABA treatment and was involved in regulating the expression of genes related to the salt stress response. Further research indicated that HhERF9 enhances the accumulation of proline and soluble sugars by regulating the expression of genes such as NHX2 and P5CS. These findings provide a reference for improving H. hamabo through targeted genetic engineering and lay a theoretical foundation for its future promotion and cultivation in saline-alkali areas.
Collapse
Affiliation(s)
- Longjie Ni
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Yu Xu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Zhiquan Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China.
| | - Chaoguang Yu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China.
| | - Jianfeng Hua
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China.
| | - Yunlong Yin
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China.
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Chunsun Gu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, 210014, China; Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 210014, China.
| |
Collapse
|
8
|
Wang J, Yao L, Hao J, Li C, Li B, Meng Y, Ma X, Si E, Yang K, Zhang H, Shang X, Wang H. Growth Properties and Metabolomic Analysis Provide Insight into Drought Tolerance in Barley ( Hordeum vulgare L.). Int J Mol Sci 2024; 25:7224. [PMID: 39000330 PMCID: PMC11241679 DOI: 10.3390/ijms25137224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Drought stress is a major meteorological threat to crop growth and yield. Barley (Hordeum vulgare L.) is a vital cereal crop with strong drought tolerance worldwide. However, the underlying growth properties and metabolomic regulatory module of drought tolerance remains less known. Here, we investigated the plant height, spike length, effective tiller, biomass, average spikelets, 1000-grain weight, number of seeds per plant, grain weight per plant, ash content, protein content, starch content, cellulose content, and metabolomic regulation mechanisms of drought stress in barley. Our results revealed that the growth properties were different between ZDM5430 and IL-12 under drought stress at different growth stages. We found that a total of 12,235 metabolites were identified in two barley genotype root samples with drought treatment. More than 50% of these metabolites showed significant differences between the ZDM5430 and IL-12 roots. The Kyoto Encyclopedia of Genes and Genomes pathway analysis identified 368 differential metabolites mainly involved in starch and sucrose metabolism, the pentose phosphate pathway, pyrimidine metabolism, phenylalanine, tyrosine, and tryptophan biosynthesis in ZDM5430 under drought stress, whereas the different metabolites of IL-12 under drought stress related to starch and sucrose metabolism, the pentose phosphate pathway, 2-oxocarboxylic acid metabolism, cutin, suberine and wax biosynthesis, carbon metabolism, fatty acid biosynthesis, and C5-branched dibasic acid metabolism. These metabolites have application in the tricarboxylic cycle, the urea cycle, the met salvage pathway, amino acid metabolism, unsaturated fatty acid biosynthesis, phenolic metabolism, and glycolysis. On the other hand, the expression patterns of 13 genes related to the abovementioned bioprocesses in different barley genotypes roots were proposed. These findings afford an overview for the understanding of barley roots' metabolic changes in the drought defense mechanism by revealing the differently accumulated compounds.
Collapse
Affiliation(s)
- Juncheng Wang
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Lirong Yao
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jing Hao
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 66667, Australia
| | - Baochun Li
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaxiong Meng
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaole Ma
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Erjing Si
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Ke Yang
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Hong Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Huajun Wang
- State Key Laboratory of Aridland Crop Science, Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
9
|
Ijaz A, Anwar Z, Ali A, Ditta A, Shani MY, Haidar S, Wang B, Fang L, Khan SMUD, Khan MKR. Unraveling the genetic and molecular basis of heat stress in cotton. Front Genet 2024; 15:1296622. [PMID: 38919956 PMCID: PMC11196824 DOI: 10.3389/fgene.2024.1296622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 04/29/2024] [Indexed: 06/27/2024] Open
Abstract
Human activities and climate change have resulted in frequent and intense weather fluctuations, leading to diverse abiotic stresses on crops which hampers greatly their metabolic activities. Heat stress, a prevalent abiotic factor, significantly influences cotton plant biological activities resulting in reducing yield and production. We must deepen our understanding of how plants respond to heat stress across various dimensions, encompassing genes, RNAs, proteins, metabolites for effective cotton breeding. Multi-omics methods, primarily genomics, transcriptomics, proteomics, metabolomics, and phenomics, proves instrumental in studying cotton's responses to abiotic stresses. Integrating genomics, transcriptomics, proteomics, and metabolomic is imperative for our better understanding regarding genetics and molecular basis of heat tolerance in cotton. The current review explores fundamental omics techniques, covering genomics, transcriptomics, proteomics, and metabolomics, to highlight the progress made in cotton omics research.
Collapse
Affiliation(s)
- Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Allah Ditta
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Muhammad Yousaf Shani
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Sajjad Haidar
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| | - Boahua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Liu Fang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, China
| | | | - Muhammad Kashif Riaz Khan
- Nuclear Institute for Agriculture and Biology College (NIAB-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
- Nuclear Institute for Agriculture and Biology (NIAB), Faisalabad, Pakistan
| |
Collapse
|
10
|
Zhou P, Zuo L, Liu C, Xiong B, Li Z, Zhou X, Yue H, Jia Q, Zheng T, Zou J, Du S, Chen D, Sun Z. Unraveling spatial metabolome of the aerial and underground parts of Scutellaria baicalensis by matrix-assisted laser desorption/ionization mass spectrometry imaging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155259. [PMID: 38096718 DOI: 10.1016/j.phymed.2023.155259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Scutellaria baicalensis Georgi, a traditional Chinese medicine, is clinically applied mainly as the dried root of Scutellaria baicalensis, and the aerial parts of Scutellaria baicalensis, its stems and leaves, are often consumed as "Scutellaria baicalensis tea" to clear heat, dry dampness, reduce fire and detoxify, while few comparative analyses of the spatial metabolome of the aerial and underground parts of Scutellaria baicalensis have been carried out in current research. METHODS In this work, Matrix-assisted laser desorption ionization-mass spectrometry imaging (MALDI-MSI) was used to visualize the spatial imaging of the root, stem, and leaf of Scutellaria baicalensis at a high resolution of 10 μm, respectively, investigating the spatial distribution of the different secondary metabolites in the aerial and underground parts of Scutellaria baicalensis. RESULTS In the present results, various metabolites, such as flavonoid glycosides, flavonoid metabolites, and phenolic acids, were systematically characterized in Scutellaria baicalensis root, stem, and leaf. Nine glycosides, 18 flavonoids, one organic acid, and four other metabolites in Scutellaria baicalensis root; nine glycosides, nine flavonoids, one organic acid in Scutellaria baicalensis stem; and seven flavonoids and seven glycosides in Scutellaria baicalensis leaf were visualized by MALDI-MSI. In the underground part of Scutellaria baicalensis, baicalein, wogonin, baicalin, wogonoside, and chrysin were widely distributed, while there was less spatial location in the aerial parts. Moreover, scutellarein, carthamidin/isocarthamidin, scutellarin, carthamidin/isocarthamidin-7-O-glucuronide had a high distribution in the aerial parts of Scutellaria baicalensis. In addition, the biosynthetic pathways involved in the biosynthesis of significant flavonoid metabolites in aerial and underground parts of Scutellaria baicalensis were successfully localized and visualized. CONCLUSIONS MALDI-MSI offers a favorable approach for investigating the spatial distribution and effective utilization of metabolites of Scutellaria baicalensis. The detailed spatial chemical information can not only improve our understanding of the biosynthesis pathways of flavonoid metabolites, but more importantly, suggest that we need to fully exert the overall medicinal value of Scutellaria baicalensis, strengthening the reuse and development of the resources of Scutellaria baicalensis aboveground parts.
Collapse
Affiliation(s)
- Peipei Zhou
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Precision Clinical Pharmacy Laboratory of Henan Province, Zhengzhou, China
| | - Lihua Zuo
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Precision Clinical Pharmacy Laboratory of Henan Province, Zhengzhou, China
| | - Chang Liu
- Department of Oral Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Baolin Xiong
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Science, Suzhou, China
| | - Zhuolun Li
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Precision Clinical Pharmacy Laboratory of Henan Province, Zhengzhou, China
| | - Xiaoguang Zhou
- Intelligene Biosystems (QingDao) Co. Ltd., Shangdong Province, China
| | - Heying Yue
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Precision Clinical Pharmacy Laboratory of Henan Province, Zhengzhou, China
| | - Qingquan Jia
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Precision Clinical Pharmacy Laboratory of Henan Province, Zhengzhou, China
| | - Tianyuan Zheng
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Precision Clinical Pharmacy Laboratory of Henan Province, Zhengzhou, China
| | - Jing Zou
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Precision Clinical Pharmacy Laboratory of Henan Province, Zhengzhou, China
| | - Shuzhang Du
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Precision Clinical Pharmacy Laboratory of Henan Province, Zhengzhou, China.
| | - Di Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China.
| | - Zhi Sun
- Pharmaceutical Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China; Precision Clinical Pharmacy Laboratory of Henan Province, Zhengzhou, China.
| |
Collapse
|
11
|
San Nicolas M, Villate A, Olivares M, Etxebarria N, Zuloaga O, Aizpurua-Olaizola O, Usobiaga A. Exploratory optimisation of a LC-HRMS based analytical method for untargeted metabolomic screening of Cannabis Sativa L. through Data Mining. Anal Chim Acta 2023; 1279:341848. [PMID: 37827627 DOI: 10.1016/j.aca.2023.341848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Recent increase in public acceptance of cannabis as a natural medical alternative for certain neurological pathologies has led to its approval in different regions of the world. However, due to its previous illegal background, little research has been conducted around its biochemical insights. Therefore, in the current framework, metabolomics may be a suitable approach for deepening the knowledge around this plant species. Nevertheless, experimental methods in metabolomics must be carefully handled, as slight modifications can lead to metabolomic coverage loss. Hence, the main objective of this work was to optimise an analytical method for appropriate untargeted metabolomic screening of cannabis. RESULTS We present an empirically optimised experimental procedure through which the broadest metabolomic coverage was obtained, in which extraction solvents for metabolite isolation, chromatographic columns for LC-qOrbitrap analysis and plant-representative biological tissues were compared. By exploratory means, it was determined that the solvent combination composed of CHCl3:H2O:CH3OH (2:1:1, v/v) provided the highest number of features from diverse chemical classes, as it was a two-phase extractant. In addition, a reverse phase 2.6 μm C18 100 Å (150 × 3 mm) chromatographic column was determined as the appropriate choice for adequate separation and further detection of the diverse metabolite classes. Apart from that, overall chromatographic peak quality provided by each column was observed and the need for batch correction methods through quality control (QC) samples was confirmed. At last, leaf and flower tissues resulted to provide complementary metabolic information of the plant, to the detriment of stem tissue, which resulted to be negligible. SIGNIFICANCE It was concluded that the optimised experimental procedure could significantly ease the path for future research works related to cannabis metabolomics by LC-HRMS means, as the work was based on previous plant metabolomics literature. Furthermore, it is crucial to highlight that an optimal analytical method can vary depending on the main objective of the research, as changes in the experimental factors can lead to different outcomes, regardless of whether the results are better or worse.
Collapse
Affiliation(s)
- M San Nicolas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain; Sovereign Fields S.L., 20006, San Sebastian, Basque Country, Spain.
| | - A Villate
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - M Olivares
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - N Etxebarria
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | - O Zuloaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| | | | - A Usobiaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Basque Country, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Basque Country, Spain
| |
Collapse
|
12
|
Vrobel O, Tarkowski P. Can plant hormonomics be built on simple analysis? A review. PLANT METHODS 2023; 19:107. [PMID: 37833752 PMCID: PMC10576392 DOI: 10.1186/s13007-023-01090-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
The field of plant hormonomics focuses on the qualitative and quantitative analysis of the hormone complement in plant samples, akin to other omics sciences. Plant hormones, alongside primary and secondary metabolites, govern vital processes throughout a plant's lifecycle. While active hormones have received significant attention, studying all related compounds provides valuable insights into internal processes. Conventional single-class plant hormone analysis employs thorough sample purification, short analysis and triple quadrupole tandem mass spectrometry. Conversely, comprehensive hormonomics analysis necessitates minimal purification, robust and efficient separation and better-performing mass spectrometry instruments. This review summarizes the current status of plant hormone analysis methods, focusing on sample preparation, advances in chromatographic separation and mass spectrometric detection, including a discussion on internal standard selection and the potential of derivatization. Moreover, current approaches for assessing the spatiotemporal distribution are evaluated. The review touches on the legitimacy of the term plant hormonomics by exploring the current status of methods and outlining possible future trends.
Collapse
Affiliation(s)
- Ondřej Vrobel
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Olomouc, Czech Republic.
- Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Olomouc, Czech Republic.
| |
Collapse
|
13
|
Li R, Liu H, Liu Y, Guo J, Chen Y, Lan X, Lu C. Insights into the mechanism underlying UV-B induced flavonoid metabolism in callus of a Tibetan medicinal plant Mirabilis himalaica. JOURNAL OF PLANT PHYSIOLOGY 2023; 288:154074. [PMID: 37651898 DOI: 10.1016/j.jplph.2023.154074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/15/2023] [Accepted: 08/20/2023] [Indexed: 09/02/2023]
Abstract
Mirabilis himalaica is an important Tibetan medicinal plant in China. However, it has become a rare and class I endangered Tibetan medicine plant. Therefore, the use of callus to propagate germplasm resources is of great significance. We found that the flavonoid content of M. himalaica callus increased continuously with the extension of UV-B treatment. Multi-omics profiles were used to reveal the co-expression patterns of gene networks of flavonoid metabolism in M. himalaica callus during UV-B radiation. Results showed that five medicinal metabolics, including geranin, eriodictyol, astragalin, isoquercetin, pyrotechnic acid, and one anthocyanin malvide-3-O-glucoside were identified. The transcriptome data were divided into 46 modules according to the expression pattern by WGCNA (weighted gene co-expression network analysis), of which the module Turquoise had the strongest correlation with six target metabolites. We found that seven structural genes and twenty-five transcription factors were related to the metabolism of flavonoid synthesis, among which the structural genes CHI, C4H and UGT79B6 had strong co-expression relationships with the 6 target metabolites. WRKY42, WRKY7, bHLH128 and other transcription factors had strong co-expression relationships with multiple structural genes. Consequently, these findings suggest callus grown under UV-B treatment could be an effective alternative medical resource of M. himalaica, which is valuable for conservation and usage of this wild and endangered plant.
Collapse
Affiliation(s)
- Rongchen Li
- College of Biological Sciences and Biotechnology, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Forest Tree Breeding and Ecological Remediation, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Huan Liu
- College of Biological Sciences and Biotechnology, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Forest Tree Breeding and Ecological Remediation, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Yanjing Liu
- College of Biological Sciences and Biotechnology, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Forest Tree Breeding and Ecological Remediation, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Jiaojiao Guo
- College of Biological Sciences and Biotechnology, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Forest Tree Breeding and Ecological Remediation, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China
| | - Yuzhen Chen
- College of Biological Sciences and Biotechnology, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Forest Tree Breeding and Ecological Remediation, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Xiaozhong Lan
- The Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, The Center for Xizang Chinese (Tibetan) Medicine Resource, Joint Laboratory for Tibetan Materia Medica Resources Scientific Protection and Utilization Research of Tibetan Medical Research Center of Tibet, Tibet Agriculture and Animal Husbandry University, Nyingchi, 860000, China.
| | - Cunfu Lu
- College of Biological Sciences and Biotechnology, State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center for Forest Tree Breeding and Ecological Remediation, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
14
|
Alseekh S, Karakas E, Zhu F, Wijesingha Ahchige M, Fernie AR. Plant biochemical genetics in the multiomics era. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4293-4307. [PMID: 37170864 PMCID: PMC10433942 DOI: 10.1093/jxb/erad177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
Our understanding of plant biology has been revolutionized by modern genetics and biochemistry. However, biochemical genetics can be traced back to the foundation of Mendelian genetics; indeed, one of Mendel's milestone discoveries of seven characteristics of pea plants later came to be ascribed to a mutation in a starch branching enzyme. Here, we review both current and historical strategies for the elucidation of plant metabolic pathways and the genes that encode their component enzymes and regulators. We use this historical review to discuss a range of classical genetic phenomena including epistasis, canalization, and heterosis as viewed through the lens of contemporary high-throughput data obtained via the array of approaches currently adopted in multiomics studies.
Collapse
Affiliation(s)
- Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Esra Karakas
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, 430070 Wuhan, China
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
15
|
Schrieber K, Glüsing S, Peters L, Eichert B, Althoff M, Schwarz K, Erfmeier A, Demetrowitsch T. Population divergence in heat and drought responses of a coastal plant: from metabolic phenotypes to plant morphology and growth. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4559-4578. [PMID: 37147850 DOI: 10.1093/jxb/erad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/05/2023] [Indexed: 05/07/2023]
Abstract
Studying intraspecific variation in multistress responses is central for predicting and managing the population dynamics of wild plant species under rapid global change. Yet, it remains a challenging goal in this field to integrate knowledge on the complex biochemical underpinnings for the targeted 'non-model' species. Here, we studied divergence in combined drought and heat responses among Northern and Southern European populations of the dune plant Cakile maritima, by combining comprehensive plant phenotyping with metabolic profiling via FT-ICR-MS and UPLC-TQ-MS/MS. We observed pronounced constitutive divergence in growth phenology, leaf functional traits, and defence chemistry (glucosinolates and alkaloids) among population origins. Most importantly, the magnitude of growth reduction under drought was partly weaker in southern plants and associated with divergence in plastic growth responses (leaf abscission) and the modulation of primary and specialized metabolites with known central functions not only in plant abiotic but also in biotic stress responses. Our study indicates that divergent selection has shaped the constitutive and drought-/heat-induced expression of numerous morphological and biochemical functional traits to mediate higher abiotic stress resistance in southern Cakile populations, and highlights that metabolomics can be a powerful tool to explore the underlying mechanisms of local adaptation in 'non-model' species.
Collapse
Affiliation(s)
- Karin Schrieber
- Faculty of Mathematics and Natural Sciences, Institute for Ecosystem Research, Division of Geobotany, Kiel University, D-24118 Kiel, Germany
| | - Svea Glüsing
- Faculty of Agricultural and Nutritional Sciences, Institute for Human Nutrition and Food Science, Division of Food Technology, Kiel University, D-24118 Kiel, Germany
| | - Lisa Peters
- Faculty of Mathematics and Natural Sciences, Institute for Ecosystem Research, Division of Geobotany, Kiel University, D-24118 Kiel, Germany
- Department of Agriculture, Ecotrophology and Landscape Development, Anhalt University of Applied Sciences, D-06406 Bernburg (Saale), Germany
| | - Beke Eichert
- Faculty of Mathematics and Natural Sciences, Institute for Ecosystem Research, Division of Geobotany, Kiel University, D-24118 Kiel, Germany
- Institute of Plant Science and Microbiology, University of Hamburg, D-20146 Hamburg, Germany
| | - Merle Althoff
- Faculty of Mathematics and Natural Sciences, Institute for Ecosystem Research, Division of Geobotany, Kiel University, D-24118 Kiel, Germany
| | - Karin Schwarz
- Faculty of Agricultural and Nutritional Sciences, Institute for Human Nutrition and Food Science, Division of Food Technology, Kiel University, D-24118 Kiel, Germany
| | - Alexandra Erfmeier
- Faculty of Mathematics and Natural Sciences, Institute for Ecosystem Research, Division of Geobotany, Kiel University, D-24118 Kiel, Germany
| | - Tobias Demetrowitsch
- Faculty of Agricultural and Nutritional Sciences, Institute for Human Nutrition and Food Science, Division of Food Technology, Kiel University, D-24118 Kiel, Germany
| |
Collapse
|
16
|
Maisl C, Doppler M, Seidl B, Bueschl C, Schuhmacher R. Untargeted Plant Metabolomics: Evaluation of Lyophilization as a Sample Preparation Technique. Metabolites 2023; 13:686. [PMID: 37367843 DOI: 10.3390/metabo13060686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/28/2023] Open
Abstract
Lyophilization is a common method used for stabilizing biological samples prior to storage or to concentrate extracts. However, it is possible that this process may alter the metabolic composition or lead to the loss of metabolites. In this study, the performance of lyophilization is investigated in the example of wheat roots. To this end, native and 13C-labelled, fresh or already lyophilized root samples, and (diluted) extracts with dilution factors up to 32 and authentic reference standards were investigated. All samples were analyzed using RP-LC-HRMS. Results show that using lyophilization for the stabilization of plant material altered the metabolic sample composition. Overall, 7% of all wheat metabolites detected in non-lyophilized samples were not detected in dried samples anymore, and up to 43% of the remaining metabolites exhibited significantly increased or decreased abundances. With respect to extract concentration, less than 5% of the expected metabolites were completely lost by lyophilization and the recovery rates of the remaining metabolites were slightly reduced with increasing concentration factors to an average of 85% at an enrichment factor of 32. Compound annotation did not indicate specific classes of wheat metabolites to be affected.
Collapse
Affiliation(s)
- Christina Maisl
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Maria Doppler
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
- Core Facility Bioactive Molecules: Screening and Analysis, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Bernhard Seidl
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Christoph Bueschl
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| | - Rainer Schuhmacher
- Department of Agrobiotechnology IFA-Tulln, Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Str. 20, 3430 Tulln, Austria
| |
Collapse
|
17
|
Noleto-Dias C, Picoli EADT, Porzel A, Wessjohann LA, Tavares JF, Farag MA. Metabolomics characterizes early metabolic changes and markers of tolerant Eucalyptus ssp. clones against drought stress. PHYTOCHEMISTRY 2023; 212:113715. [PMID: 37156433 DOI: 10.1016/j.phytochem.2023.113715] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
EUCALYPTUS L'Hér. (Myrtaceae) is one of the economically most important and widely cultivated trees for wood crop purposes worldwide. Climatic changes together with the constant need to expand plantations to areas that do not always provide optimal conditions for plant growth highlight the need to assess the impact of abiotic stresses on eucalypt trees. We aimed to unveil the drought effect on the leaf metabolome of commercial clones with differential phenotypic response to this stress. For this, seedlings of 13 clones were grown at well-watered (WW) and water-deficit (WD) conditions and their leaf extracts were subjected to comparative analysis using ultra-high performance liquid chromatography coupled to mass spectrometry (UPLC-MS) and nuclear magnetic resonance spectroscopy (NMR). UPLC-MS and NMR analyses led to the annotation of over 100 molecular features of classes such as cyclitols, phenolics, flavonoids, formylated phloroglucinol compounds (FPCs) and fatty acids. Multivariate data analysis was employed for specimens' classifications and markers identification from both platforms. The results obtained in this work allowed us to classify clones differing in drought tolerance. Classification models were validated using an extra subset of samples. Tolerant plants exposed to water deficit accumulated arginine, gallic acid derivatives, caffeic acid and tannins at higher levels. In contrast, stressed drought-sensitive clones were characterised by a significant reduction in glucose, inositol and shikimic acid levels. These changes in contrasting drought response eucalypt pave ways for differential outcomes of tolerant and susceptible phenotypes. Under optimal growth conditions, all clones were rich in FPCs. These results can be used for early screening of tolerant clones and to improve our understanding of the role of these biomarkers in Eucalyptus tolerance to drought stress.
Collapse
Affiliation(s)
- Clarice Noleto-Dias
- Natural and Synthetic Bioactive Products Graduate Program, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil; Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Edgard A de T Picoli
- Plant Biology Department, Federal University of Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Andrea Porzel
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Ludger A Wessjohann
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany.
| | - Josean F Tavares
- Natural and Synthetic Bioactive Products Graduate Program, Federal University of Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
18
|
Xue T, Liu S, Liu J, Yuan Y. Metabolomics based on GC-MS revealed hub metabolites of pecan seeds germinating at different temperatures. BMC PLANT BIOLOGY 2023; 23:192. [PMID: 37038116 PMCID: PMC10084692 DOI: 10.1186/s12870-023-04209-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND As an important plant source of food and edible oils, pecans are rich in metabolites. Few studies have focused on metabolites involved in pecan seed germination at different temperatures. RESULTS In our study, we germinated pecan seeds at different temperatures and found that, the germination rate and water content were highest at 30°C. It was found that the radicle of pecan seeds could sense seed coat cracking by observing the microstructure and cell ultra-structure of the seeds at the early stage of germination. We compared the metabolomes of seeds at different temperatures with different germination processes. A total of 349 metabolites were identified, including 138 primary metabolites and 211 secondary metabolites. KEGG enrichment analysis indicated that the differential metabolites were mainly enriched in the metabolic pathways, amino acid synthesis pathways and ABC transporters. Using weighted gene co-expression network analysis (WGCNA), three modules of closely related metabolites were identified. In the brown module, most of hub metabolites were amino substances, whereas in the blue module, many hub metabolites were sugars. CONCLUSIONS Amino acids and carbohydrates play an important role in pecan seed germination. Differential metaboliteanalysis showed that 30°C was the temperature at which metabolites differed most significantly. This study provides useful information for further research on the seedling establishment of pecan seeds.
Collapse
Affiliation(s)
- Tingting Xue
- Department of Civil and Architecture and Engineering, Chuzhou University, Anhui, 239000 China
| | - Sian Liu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009 China
| | - Jia Liu
- Department of Civil and Architecture and Engineering, Chuzhou University, Anhui, 239000 China
| | - Yingdan Yuan
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
19
|
Xie H, Tian X, He L, Li J, Cui L, Cong X, Tang B, Zhang Y, Guo Z, Zhou A, Chen D, Wang L, Zhao J, Yu YL, Li B, Li YF. Spatial Metallomics Reveals Preferable Accumulation of Methylated Selenium in a Single Seed of the Hyperaccumulator Cardamine violifolia†. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2658-2665. [PMID: 36695191 DOI: 10.1021/acs.jafc.2c08112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cardamine violifolia is a Se hyperaccumulator found in Enshi, China. In this study, spatial metallomics was applied to visualize the distribution and speciation of Se in a single seed of C. violifolia. It was found that Se reached 1729.89 ± 28.14 mg/kg and the main Se species were SeCys and SeMet in bulk seeds. Further in situ study on a single seed found that the methylated Se species located mostly in the episperm. This is the first visualized evidence of the in situ distribution of methylated Se species in the seeds of C. violifolia. In all, spatial metallomics finds a preferable accumulation of methylated Se species in the seed coat, which deepens the understanding of the tolerance of Se by C. violifolia. The protocol applied in this study may also be used for the understanding of the tolerance of heavy metals/metalloids in other hyperaccumulators.
Collapse
Affiliation(s)
- Hongxin Xie
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Xue Tian
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Lina He
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Environmental Science and Engineering, and State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
| | - Jincheng Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- College of Mechanical Engineering, and National Consortium for Excellence in Metallomics, Guangxi University, Nanning 530004, Guangxi, China
| | - Liwei Cui
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Cong
- Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, Hubei, China
| | - Bochong Tang
- Shimadzu China Innovation Center, Beijing 100020, China
| | - Yi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Synchrotron Radiation Facility, and High Energy Photon Source, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiying Guo
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Synchrotron Radiation Facility, and High Energy Photon Source, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Aiyu Zhou
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Synchrotron Radiation Facility, and High Energy Photon Source, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Dongliang Chen
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Synchrotron Radiation Facility, and High Energy Photon Source, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Wang
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiating Zhao
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Liang Yu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, Liaoning, China
| | - Bai Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Feng Li
- CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, and Beijing Metallomics Facility, and National Consortium for Excellence in Metallomics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Silva VNB, da Silva TLC, Ferreira TMM, Neto JCR, Leão AP, de Aquino Ribeiro JA, Abdelnur PV, Valadares LF, de Sousa CAF, Júnior MTS. Multi-omics Analysis of Young Portulaca oleracea L. Plants' Responses to High NaCl Doses Reveals Insights into Pathways and Genes Responsive to Salinity Stress in this Halophyte Species. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:1-21. [PMID: 36947413 PMCID: PMC9883379 DOI: 10.1007/s43657-022-00061-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/28/2022] [Accepted: 05/03/2022] [Indexed: 11/24/2022]
Abstract
Soil salinity is among the abiotic stressors that threaten agriculture the most, and purslane (Portulaca oleracea L.) is a dicot species adapted to inland salt desert and saline habitats that hyper accumulates salt and has high phytoremediation potential. Many researchers consider purslane a suitable model species to study the mechanisms of plant tolerance to drought and salt stresses. Here, a robust salinity stress protocol was developed and used to characterize the morphophysiological responses of young purslane plants to salinity stress; then, leaf tissue underwent characterization by distinct omics platforms to gain further insights into its response to very high salinity stress. The salinity stress protocol did generate different levels of stress by gradients of electrical conductivity at field capacity and water potential in the saturation extract of the substrate, and the morphological parameters indicated three distinct stress levels. As expected from a halophyte species, these plants remained alive under very high levels of salinity stress, showing salt crystal-like structures constituted mainly by Na+, Cl-, and K+ on and around closed stomata. A comprehensive and large-scale metabolome and transcriptome single and integrated analyses were then employed using leaf samples. The multi-omics integration (MOI) system analysis led to a data-set of 51 metabolic pathways with at least one enzyme and one metabolite differentially expressed due to salinity stress. These data sets (of genes and metabolites) are valuable for future studies aimed to deepen our knowledge on the mechanisms behind the high tolerance of this species to salinity stress. In conclusion, besides showing that this species applies salt exclusion already in young plants to support very high levels of salinity stress, the initial analysis of metabolites and transcripts data sets already give some insights into other salt tolerance mechanisms used by this species to support high levels of salinity stress. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00061-2.
Collapse
Affiliation(s)
- Vivianny Nayse Belo Silva
- Graduate Program of Plant Biotechnology, Federal University of Lavras, CP 3037, Lavras, MG 37200-000 Brazil
| | | | | | | | - André Pereira Leão
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF 70770‐901 Brazil
| | | | - Patrícia Verardi Abdelnur
- Institute of Chemistry, Federal University of Goiás, Campus Samambaia, Goiânia, GO 74690‐900 Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF 70770‐901 Brazil
| | | | | | - Manoel Teixeira Souza Júnior
- Graduate Program of Plant Biotechnology, Federal University of Lavras, CP 3037, Lavras, MG 37200-000 Brazil
- Brazilian Agricultural Research Corporation, Embrapa Agroenergy, Brasília, DF 70770‐901 Brazil
| |
Collapse
|
21
|
Comprehensive Metabolomic Fingerprinting Combined with Chemometrics Identifies Species- and Variety-Specific Variation of Medicinal Herbs: An Ocimum Study. Metabolites 2023; 13:metabo13010122. [PMID: 36677046 PMCID: PMC9862730 DOI: 10.3390/metabo13010122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023] Open
Abstract
Identification of plant species is a crucial process in natural products. Ocimum, often referred to as the queen of herbs, is one of the most versatile and globally used medicinal herbs for various health benefits due to it having a wide variety of pharmacological activities. Despite there being significant global demand for this medicinal herb, rapid and comprehensive metabolomic fingerprinting approaches for species- and variety-specific classification are limited. In this study, metabolomic fingerprinting of five Ocimum species (Ocimum basilicum L., Ocimum sanctum L., Ocimum africanum Lour., Ocimum kilimandscharicum Gurke., and Hybrid Tulsi) and their varieties was performed using LC-MS, GC-MS, and the rapid fingerprinting approach FT-NIR combined with chemometrics. The aim was to distinguish the species- and variety-specific variation with a view toward developing a quality assessment of Ocimum species. Discrimination of species and varieties was achieved using principal component analysis (PCA), partial least squares discriminate analysis (PLS-DA), data-driven soft independent modelling of class analogy (DD-SIMCA), random forest, and K-nearest neighbours with specificity of 98% and sensitivity of 99%. Phenolics and flavonoids were found to be major contributing markers for species-specific variation. The present study established comprehensive metabolomic fingerprinting consisting of rapid screening and confirmatory approaches as a highly efficient means to identify the species and variety of Ocimum, being able to be applied for the quality assessment of other natural medicinal herbs.
Collapse
|
22
|
de Moraes Pontes JG, da Silva Pinheiro MS, Fill TP. Unveiling Chemical Interactions Between Plants and Fungi Using Metabolomics Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1439:1-20. [PMID: 37843803 DOI: 10.1007/978-3-031-41741-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Metabolomics has been extensively used in clinical studies in the search for new biomarkers of human diseases. However, this approach has also been highlighted in agriculture and biological sciences, once metabolomics studies have been assisting researchers to deduce new chemical mechanisms involved in biological interactions that occur between microorganisms and plants. In this sense, the knowledge of the biological role of each metabolite (virulence factors, signaling compounds, antimicrobial metabolites, among others) and the affected biochemical pathways during the interaction contribute to a better understand of different ecological relationships established in nature. The current chapter addresses five different applications of the metabolomics approach in fungal-plant interactions research: (1) Discovery of biomarkers in pathogen-host interactions, (2) plant diseases diagnosis, (3) chemotaxonomy, (4) plant defense, and (5) plant resistance; using mass spectrometry and/or nuclear magnetic resonance spectroscopy, which are the techniques most used in metabolomics.
Collapse
Affiliation(s)
- João Guilherme de Moraes Pontes
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Laboratório de Biologia Química Microbiana (LaBioQuiMi), Campinas, SP, Brazil
| | - Mayra Suelen da Silva Pinheiro
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Laboratório de Biologia Química Microbiana (LaBioQuiMi), Campinas, SP, Brazil
| | - Taícia Pacheco Fill
- Universidade Estadual de Campinas (UNICAMP), Instituto de Química, Laboratório de Biologia Química Microbiana (LaBioQuiMi), Campinas, SP, Brazil.
| |
Collapse
|
23
|
Yang M, Tian X, Zhang M, Wei J, Niu Y, Hou J, Jin Y, Du Y. A holistic comparison of flavor signature and chemical profile in different harvesting periods of Chrysanthemum morifolium Ramat. based on metabolomics combined with bioinformatics and molecular docking strategy. RSC Adv 2022; 12:34971-34989. [PMID: 36540235 PMCID: PMC9728093 DOI: 10.1039/d2ra05698d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/15/2022] [Indexed: 01/23/2024] Open
Abstract
Taiju and Duoju are products of Hangbaiju (HJ) obtained during different collection periods, and they have been commonly used as ingredients in tea beverages and dietary traditional Chinese medicine. This study reports an integrated strategy based on metabolomics, bioinformatics and molecular docking to further explore the effect of the harvesting period on the metabolic profile and clinical efficacy of HJ. Firstly, gas chromatography-mass spectrometry (GC-MS) and ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF/MS) were employed for non-targeted metabolomics profiling of essential oils and flavonoids. A sequential window acquisition of all theoretical fragment-ion spectra information-dependent acquisition (SWATH-IDA) bi-directionally verified (SIBDV) method was developed that integrates the advantages of both SWATH and IDA in characterizing flavonoids. Chemometric methods were then used to screen potential chemical markers. Furthermore, HJ is effective in hepatoprotective functions. Therefore, hepatocellular-carcinoma-related differentially expressed genes were obtained using bioinformatics, and the corresponding proteins were molecularly docked with diagnostic chemical markers. In total, 78 volatile oils and 63 flavonoids were tentatively identified. The results allowed the selection of 11 metabolites (5 volatile oils and 6 flavonoids), which are nominated as novel markers for material authentication of Taiju and Duoju. Additionally, two proteins associated with hepatoma were screened using bioinformatics. All six flavonoid markers with binding energies of <-5 kcal mol-1 were considered to be anti-hepatoma biomarkers. Noticeably, in Taiju, the content of hydroxygenkwanin showed a downward trend, but the content of the other five flavonoids and the five flavored volatile difference compounds had an upward trend. This bestows a unique flavor profile on Taiju, leading to differences in sensory aroma and clinical efficacy in Taiju and Duoju. In conclusion, the transformation of secondary metabolites was the dominant trend during HJ growth. These findings lay the foundation for food development and distinguishing clinical applications.
Collapse
Affiliation(s)
- Mengxin Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University Shijiazhuang Hebei 050017 P. R. China +86-311-86266419 +86-311-86265625
| | - Xi Tian
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University Shijiazhuang Hebei 050017 P. R. China +86-311-86266419 +86-311-86265625
| | - Miaoting Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University Shijiazhuang Hebei 050017 P. R. China +86-311-86266419 +86-311-86265625
| | - Jinhuan Wei
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University Shijiazhuang Hebei 050017 P. R. China +86-311-86266419 +86-311-86265625
| | - Yukun Niu
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University Shijiazhuang Hebei 050017 P. R. China +86-311-86266419 +86-311-86265625
| | - Jiali Hou
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University Shijiazhuang Hebei 050017 P. R. China +86-311-86266419 +86-311-86265625
| | - Yiran Jin
- The Second Hospital of Hebei Medical University Shijiazhuang Hebei 050000 P. R. China +86-311-86266419 +86-311-86265625
| | - Yingfeng Du
- Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University Shijiazhuang Hebei 050017 P. R. China +86-311-86266419 +86-311-86265625
| |
Collapse
|
24
|
Nguyen NL, Bui VH, Pham HN, To HM, Dijoux-Franca MG, Vu CT, Nguyen KOT. Ionomics and metabolomics analysis reveal the molecular mechanism of metal tolerance of Pteris vittata L. dominating in a mining site in Thai Nguyen province, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87268-87280. [PMID: 35802316 DOI: 10.1007/s11356-022-21820-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
This study aims to find the interaction between ionome and metabolome profiles of Pteris vittata L., an arsenic hyperaccumulator plant, to reveal its metal tolerance mechanism. Therefore, at the Pb-Zn mining sites located in Thai Nguyen province, Vietnam, where these species dominate, soil and plant samples were collected. Their multi-element compositions were analyzed using inductively coupled plasma mass spectrometry (ICP-MS) and thus referred to as the "ionomics" approach. In parallel, the widely targeted metabolomics profiles of these plant samples were performed using liquid chromatography-tandem mass spectrometry (UPLC-QqQ-MS). Nineteen elements, including both metals and nonmetals, were detected and quantified in both tissues of thirty-five plant individuals. A comparison of these elements' levels in two tissues showed that above-ground parts accumulated more As and inorganic P, whereas Zn, Pb, and Sb were raised mostly in the under-ground samples. The partial least squares regression (PLSR) model predicting the level of each element by the whole metabolome indicated that the enhancement of flavonoids content plays an essential contribution in adaptation with the higher levels of Pb, Ag, and Ni accumulated in the aerial part, and Mn, Pb in subterranean part. Moreover, the models also highlighted the effect of Mn and Pb on the metabolic induction of adenosine derivatives in subterranean parts. At the same time, the model presented the most contribution of As to the metabolisms of the amino acids of this tissue. On those accounts, the developed integration approach linking the ionomics and metabolomics data of P. vittata improved the understanding of the molecular mechanism of hyperaccumulation characteristics and provided markers that could be targeted in future investigations.
Collapse
Affiliation(s)
- Ngoc-Lien Nguyen
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Van-Hoi Bui
- Department of Water, Environment, Oceanography, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Hoang-Nam Pham
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Hien-Minh To
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Marie-Geneviève Dijoux-Franca
- UMR 5557, Ecologie Microbienne, CNRS, INRA, VetagroSup, UCBL, Université de Lyon, 43 Boulevard du 11 Novembre, 69622, Villeurbanne, France
| | - Cam-Tu Vu
- Department of Water, Environment, Oceanography, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam
| | - Kieu-Oanh Thi Nguyen
- Department of Life Sciences, University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam.
| |
Collapse
|
25
|
Stereoselective effects of chiral epoxiconazole on the metabolomic and lipidomic profiling of leek. Food Chem 2022; 405:134962. [DOI: 10.1016/j.foodchem.2022.134962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/05/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
26
|
Ganugi P, Pathan SI, Zhang L, Arfaioli P, Benedettelli S, Masoni A, Pietramellara G, Lucini L. The pivotal role of cultivar affinity to arbuscular mycorrhizal fungi in determining mycorrhizal responsiveness to water deficit. PHYTOCHEMISTRY 2022; 203:113381. [PMID: 36030905 DOI: 10.1016/j.phytochem.2022.113381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Arbuscular mycorrhizal fungi (AMF) have gained remarkable importance, having been proved to alleviate drought stress-induced damage in wheat due to their ability to ameliorate plant water use efficiency and antioxidant enzyme activity. However, despite the current relevance of the topic, the molecular and physiological processes at the base of this symbiosis never consider the single cultivar affinity to mycorrhization as an influencing factor for the metabolic response in the AMF-colonized plant. In the present study, the mycorrhizal affinity of two durum wheat species (T. turgidum subsp. durum (Desf.)) varieties, Iride and Ramirez, were investigated. Successively, an untargeted metabolomics approach has been used to study the fungal contribution to mitigating water deficit in both varieties. Iride and Ramirez exhibited a high and low level of mycorrhizal symbiosis, respectively; resulting in a more remarkable alteration of metabolic pathways in the most colonised variety under water deficit conditions. However, the analysis highlighted the contribution of AMF to mitigating water deficiency in both varieties, resulting in the up- and down-regulation of many amino acids, alkaloids, phenylpropanoids, lipids, and hormones.
Collapse
Affiliation(s)
- Paola Ganugi
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Shamina Imran Pathan
- Department of Agriculture, Food, Environment and Forestry, University of Florence, P.le delle Cascine 28, Firenze, 50144, Italy.
| | - Leilei Zhang
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Paola Arfaioli
- Department of Agriculture, Food, Environment and Forestry, University of Florence, P.le delle Cascine 28, Firenze, 50144, Italy
| | - Stefano Benedettelli
- Department of Agriculture, Food, Environment and Forestry, University of Florence, P.le delle Cascine 28, Firenze, 50144, Italy
| | - Alberto Masoni
- Department of Biology, University of Florence, Sesto Fiorentino, 50019, Italy
| | - Giacomo Pietramellara
- Department of Agriculture, Food, Environment and Forestry, University of Florence, P.le delle Cascine 28, Firenze, 50144, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Research Centre for Nutrigenomics and Proteomics, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
27
|
Advances in Metabolomics-Driven Diagnostic Breeding and Crop Improvement. Metabolites 2022; 12:metabo12060511. [PMID: 35736444 PMCID: PMC9228725 DOI: 10.3390/metabo12060511] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 02/04/2023] Open
Abstract
Climate change continues to threaten global crop output by reducing annual productivity. As a result, global food security is now considered as one of the most important challenges facing humanity. To address this challenge, modern crop breeding approaches are required to create plants that can cope with increased abiotic/biotic stress. Metabolomics is rapidly gaining traction in plant breeding by predicting the metabolic marker for plant performance under a stressful environment and has emerged as a powerful tool for guiding crop improvement. The advent of more sensitive, automated, and high-throughput analytical tools combined with advanced bioinformatics and other omics techniques has laid the foundation to broadly characterize the genetic traits for crop improvement. Progress in metabolomics allows scientists to rapidly map specific metabolites to the genes that encode their metabolic pathways and offer plant scientists an excellent opportunity to fully explore and rationally harness the wealth of metabolites that plants biosynthesize. Here, we outline the current application of advanced metabolomics tools integrated with other OMICS techniques that can be used to: dissect the details of plant genotype–metabolite–phenotype interactions facilitating metabolomics-assisted plant breeding for probing the stress-responsive metabolic markers, explore the hidden metabolic networks associated with abiotic/biotic stress resistance, facilitate screening and selection of climate-smart crops at the metabolite level, and enable accurate risk-assessment and characterization of gene edited/transgenic plants to assist the regulatory process. The basic concept behind metabolic editing is to identify specific genes that govern the crucial metabolic pathways followed by the editing of one or more genes associated with those pathways. Thus, metabolomics provides a superb platform for not only rapid assessment and commercialization of future genome-edited crops, but also for accelerated metabolomics-assisted plant breeding. Furthermore, metabolomics can be a useful tool to expedite the crop research if integrated with speed breeding in future.
Collapse
|
28
|
Hall RD, D'Auria JC, Silva Ferreira AC, Gibon Y, Kruszka D, Mishra P, van de Zedde R. High-throughput plant phenotyping: a role for metabolomics? TRENDS IN PLANT SCIENCE 2022; 27:549-563. [PMID: 35248492 DOI: 10.1016/j.tplants.2022.02.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/18/2022] [Accepted: 02/02/2022] [Indexed: 05/17/2023]
Abstract
High-throughput (HTP) plant phenotyping approaches are developing rapidly and are already helping to bridge the genotype-phenotype gap. However, technologies should be developed beyond current physico-spectral evaluations to extend our analytical capacities to the subcellular level. Metabolites define and determine many key physiological and agronomic features in plants and an ability to integrate a metabolomics approach within current HTP phenotyping platforms has huge potential for added value. While key challenges remain on several fronts, novel technological innovations are upcoming yet under-exploited in a phenotyping context. In this review, we present an overview of the state of the art and how current limitations might be overcome to enable full integration of metabolomics approaches into a generic phenotyping pipeline in the near future.
Collapse
Affiliation(s)
- Robert D Hall
- BU Bioscience, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands; Laboratory of Plant Physiology, Wageningen University, 6700 AA, Wageningen, The Netherlands; Netherlands Metabolomics Centre, Einsteinweg 55, Leiden, The Netherlands.
| | - John C D'Auria
- Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK Gatersleben), Gatersleben, Corrensstraße 3, 06466 Seeland, Germany
| | - Antonio C Silva Ferreira
- Universidade Católica Portuguesa, CBQF-Centro de Biotecnologia e Química Fina-Laboratório Associado, Escola Superior de Biotecnologia, Rua Arquiteto Lobão Vital, Apartado 2511, 4202-401 Porto, Portugal; Faculty of AgriSciences, University of Stellenbosch, Matieland 7602, South Africa; Cork Supply Portugal, S.A., Rua Nova do Fial, 4535, Portugal
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie, INRAE, Univ. Bordeaux, INRAE Nouvelle Aquitaine - Bordeaux, Avenue Edouard Bourlaux, Villenave d'Ornon, France; Bordeaux Metabolome, MetaboHUB, INRAE, Univ. Bordeaux, Avenue Edouard Bourlaux, Villenave d'Ornon, France PMB-Metabolome, INRAE, Centre INRAE de Nouvelle, Aquitaine-Bordeaux, Villenave d'Ornon, France
| | - Dariusz Kruszka
- Institute of Plant Genetics, Polish Academy of Sciences, 60-479 Poznan, Poland
| | - Puneet Mishra
- Food and Biobased Research, Wageningen University & Research, 6708 WE, Wageningen, The Netherlands
| | - Rick van de Zedde
- Plant Sciences Group, Wageningen University & Research, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
29
|
Rico-Chávez AK, Franco JA, Fernandez-Jaramillo AA, Contreras-Medina LM, Guevara-González RG, Hernandez-Escobedo Q. Machine Learning for Plant Stress Modeling: A Perspective towards Hormesis Management. PLANTS 2022; 11:plants11070970. [PMID: 35406950 PMCID: PMC9003083 DOI: 10.3390/plants11070970] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 01/11/2023]
Abstract
Plant stress is one of the most significant factors affecting plant fitness and, consequently, food production. However, plant stress may also be profitable since it behaves hormetically; at low doses, it stimulates positive traits in crops, such as the synthesis of specialized metabolites and additional stress tolerance. The controlled exposure of crops to low doses of stressors is therefore called hormesis management, and it is a promising method to increase crop productivity and quality. Nevertheless, hormesis management has severe limitations derived from the complexity of plant physiological responses to stress. Many technological advances assist plant stress science in overcoming such limitations, which results in extensive datasets originating from the multiple layers of the plant defensive response. For that reason, artificial intelligence tools, particularly Machine Learning (ML) and Deep Learning (DL), have become crucial for processing and interpreting data to accurately model plant stress responses such as genomic variation, gene and protein expression, and metabolite biosynthesis. In this review, we discuss the most recent ML and DL applications in plant stress science, focusing on their potential for improving the development of hormesis management protocols.
Collapse
Affiliation(s)
- Amanda Kim Rico-Chávez
- Unidad de Ingeniería en Biosistemas, Facultad de Ingeniería Campus Amazcala, Universidad Autónoma de Querétaro, Carretera Chichimequillas, s/n km 1, El Marqués CP 76265, Mexico; (A.K.R.-C.); (L.M.C.-M.)
| | - Jesus Alejandro Franco
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, UNAM, Querétaro CP 76230, Mexico;
| | - Arturo Alfonso Fernandez-Jaramillo
- Unidad Académica de Ingeniería Biomédica, Universidad Politécnica de Sinaloa, Carretera Municipal Libre Mazatlán Higueras km 3, Col. Genaro Estrada, Mazatlán CP 82199, Mexico;
| | - Luis Miguel Contreras-Medina
- Unidad de Ingeniería en Biosistemas, Facultad de Ingeniería Campus Amazcala, Universidad Autónoma de Querétaro, Carretera Chichimequillas, s/n km 1, El Marqués CP 76265, Mexico; (A.K.R.-C.); (L.M.C.-M.)
| | - Ramón Gerardo Guevara-González
- Unidad de Ingeniería en Biosistemas, Facultad de Ingeniería Campus Amazcala, Universidad Autónoma de Querétaro, Carretera Chichimequillas, s/n km 1, El Marqués CP 76265, Mexico; (A.K.R.-C.); (L.M.C.-M.)
- Correspondence: (R.G.G.-G.); (Q.H.-E.)
| | - Quetzalcoatl Hernandez-Escobedo
- Escuela Nacional de Estudios Superiores Unidad Juriquilla, UNAM, Querétaro CP 76230, Mexico;
- Correspondence: (R.G.G.-G.); (Q.H.-E.)
| |
Collapse
|
30
|
Influence of Climate Change on Metabolism and Biological Characteristics in Perennial Woody Fruit Crops in the Mediterranean Environment. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040273] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The changes in the state of the climate have a high impact on perennial fruit crops thus threatening food availability. Indeed, climatic factors affect several plant aspects, such as phenological stages, physiological processes, disease-pest frequency, yield, and qualitative composition of the plant tissues and derived products. To mitigate the effects of climatic parameters variability, plants implement several strategies of defense, by changing phenological trends, altering physiology, increasing carbon sequestration, and metabolites synthesis. This review was divided into two sections. The first provides data on climate change in the last years and a general consideration on their impact, mitigation, and resilience in the production of food crops. The second section reviews the consequences of climate change on the industry of two woody fruit crops models (evergreen and deciduous trees). The research focused on, citrus, olive, and loquat as evergreen trees examples; while grape, apple, pear, cherry, apricot, almond, peach, kiwi, fig, and persimmon as deciduous species. Perennial fruit crops originated by a complex of decisions valuable in a long period and involving economic and technical problems that farmers may quickly change in the case of annual crops. However, the low flexibility of woody crops is balanced by resilience in the long-life cycle.
Collapse
|
31
|
Reis ADP, Carvalho RF, Costa IB, Girio RJS, Gualberto R, Spers RC, Gaion LA. Hydrogen peroxide is involved in drought stress long-distance signaling controlling early stomatal closure in tomato plants. BRAZ J BIOL 2022; 82:e267343. [DOI: 10.1590/1519-6984.267343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/26/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract It has long been hypothesized that hydrogen peroxide (H2O2) may play an essential role in root-to-shoot long-distance signaling during drought conditions. Thus, to better understand the involvement of H2O2 in drought signaling, two experiments were carried out using tomato plants. In the first experiment, a split-root scheme was used, while in the second experiment, the tomato plants were grown in a single pot and subjected to drought stress. In both experiments, H2O2 and catalase were applied together with irrigation. Control plants continued to be irrigated according to the water loss. In the split-root experiment, it was verified that the application of H2O2 to roots induced a clear reduction in plant transpiration compared to untreated or catalase-treated plants. In the second experiment, we observed that H2O2-treated plants exhibited similar transpiration when compared to untreated and catalase-treated plants under drought stress. Similarly, no difference in water use efficiency was observed. Thus, we conclude that the increase in H2O2 in the root system can act as a long-distance signal leading to reduced transpiration even when there is no water limitation in the shoot. But it has little effect when there is a reduction in the shoot water potential.
Collapse
|
32
|
Rha CS, Jang EK, Hong YD, Park WS. Supervised Statistical Learning Prediction of Soybean Varieties and Cultivation Sites Using Rapid UPLC-MS Separation, Method Validation, and Targeted Metabolomic Analysis of 31 Phenolic Compounds in the Leaves. Metabolites 2021; 11:884. [PMID: 34940642 PMCID: PMC8704512 DOI: 10.3390/metabo11120884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 02/02/2023] Open
Abstract
Soybean (Glycine max; SB) leaf (SL) is an abundant non-conventional edible resource that possesses value-adding bioactive compounds. We predicted the attributes of SB based on the metabolomes of an SL using targeted metabolomics. The SB was planted in two cities, and SLs were regularly obtained from the SB plant. Nine flavonol glycosides were purified from SLs, and a validated simultaneous quantification method was used to establish rapid separation by ultrahigh-performance liquid chromatography-mass detection. Changes in 31 targeted compounds were monitored, and the compounds were discriminated by various supervised machine learning (ML) models. Isoflavones, quercetin derivatives, and flavonol derivatives were discriminators for cultivation days, varieties, and cultivation sites, respectively, using the combined criteria of supervised ML models. The neural model exhibited higher prediction power of the factors with high fitness and low misclassification rates while other models showed lower. We propose that a set of phytochemicals of SL is a useful predictor for discriminating characteristics of edible plants.
Collapse
Affiliation(s)
- Chan-Su Rha
- AMOREPACIFIC R&D Center, Yongin 17074, Korea; (Y.D.H.); (W.S.P.)
| | - Eun Kyu Jang
- Gyeonggi-do Agricultural Research & Extension Services, Hwaseong 18388, Korea;
| | - Yong Deog Hong
- AMOREPACIFIC R&D Center, Yongin 17074, Korea; (Y.D.H.); (W.S.P.)
| | - Won Seok Park
- AMOREPACIFIC R&D Center, Yongin 17074, Korea; (Y.D.H.); (W.S.P.)
| |
Collapse
|
33
|
Zenda T, Liu S, Dong A, Li J, Wang Y, Liu X, Wang N, Duan H. Omics-Facilitated Crop Improvement for Climate Resilience and Superior Nutritive Value. FRONTIERS IN PLANT SCIENCE 2021; 12:774994. [PMID: 34925418 PMCID: PMC8672198 DOI: 10.3389/fpls.2021.774994] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/08/2021] [Indexed: 05/17/2023]
Abstract
Novel crop improvement approaches, including those that facilitate for the exploitation of crop wild relatives and underutilized species harboring the much-needed natural allelic variation are indispensable if we are to develop climate-smart crops with enhanced abiotic and biotic stress tolerance, higher nutritive value, and superior traits of agronomic importance. Top among these approaches are the "omics" technologies, including genomics, transcriptomics, proteomics, metabolomics, phenomics, and their integration, whose deployment has been vital in revealing several key genes, proteins and metabolic pathways underlying numerous traits of agronomic importance, and aiding marker-assisted breeding in major crop species. Here, citing several relevant examples, we appraise our understanding on the recent developments in omics technologies and how they are driving our quest to breed climate resilient crops. Large-scale genome resequencing, pan-genomes and genome-wide association studies are aiding the identification and analysis of species-level genome variations, whilst RNA-sequencing driven transcriptomics has provided unprecedented opportunities for conducting crop abiotic and biotic stress response studies. Meanwhile, single cell transcriptomics is slowly becoming an indispensable tool for decoding cell-specific stress responses, although several technical and experimental design challenges still need to be resolved. Additionally, the refinement of the conventional techniques and advent of modern, high-resolution proteomics technologies necessitated a gradual shift from the general descriptive studies of plant protein abundances to large scale analysis of protein-metabolite interactions. Especially, metabolomics is currently receiving special attention, owing to the role metabolites play as metabolic intermediates and close links to the phenotypic expression. Further, high throughput phenomics applications are driving the targeting of new research domains such as root system architecture analysis, and exploration of plant root-associated microbes for improved crop health and climate resilience. Overall, coupling these multi-omics technologies to modern plant breeding and genetic engineering methods ensures an all-encompassing approach to developing nutritionally-rich and climate-smart crops whose productivity can sustainably and sufficiently meet the current and future food, nutrition and energy demands.
Collapse
Affiliation(s)
- Tinashe Zenda
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
- Department of Crop Science, Faculty of Agriculture and Environmental Science, Bindura University of Science Education, Bindura, Zimbabwe
| | - Songtao Liu
- Academy of Agriculture and Forestry Sciences, Hebei North University, Zhangjiakou, China
| | - Anyi Dong
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Jiao Li
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Yafei Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Xinyue Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Nan Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| | - Huijun Duan
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, China
- Department of Crop Genetics and Breeding, College of Agronomy, Hebei Agricultural University, Baoding, China
| |
Collapse
|
34
|
Joshi J, Hasnain G, Logue T, Lynch M, Wu S, Guan JC, Alseekh S, Fernie AR, Hanson AD, McCarty DR. A Core Metabolome Response of Maize Leaves Subjected to Long-Duration Abiotic Stresses. Metabolites 2021; 11:metabo11110797. [PMID: 34822455 PMCID: PMC8625080 DOI: 10.3390/metabo11110797] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Abiotic stresses reduce crop growth and yield in part by disrupting metabolic homeostasis and triggering responses that change the metabolome. Experiments designed to understand the mechanisms underlying these metabolomic responses have usually not used agriculturally relevant stress regimes. We therefore subjected maize plants to drought, salt, or heat stresses that mimic field conditions and analyzed leaf responses at metabolome and transcriptome levels. Shared features of stress metabolomes included synthesis of raffinose, a compatible solute implicated in tolerance to dehydration. In addition, a marked accumulation of amino acids including proline, arginine, and γ-aminobutyrate combined with depletion of key glycolysis and tricarboxylic acid cycle intermediates indicated a shift in balance of carbon and nitrogen metabolism in stressed leaves. Involvement of the γ-aminobutyrate shunt in this process is consistent with its previously proposed role as a workaround for stress-induced thiamin-deficiency. Although convergent metabolome shifts were correlated with gene expression changes in affected pathways, patterns of differential gene regulation induced by the three stresses indicated distinct signaling mechanisms highlighting the plasticity of plant metabolic responses to abiotic stress.
Collapse
Affiliation(s)
- Jaya Joshi
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA; (J.J.); (T.L.); (M.L.); (S.W.); (J.-C.G.); (A.D.H.)
| | - Ghulam Hasnain
- Department of Biology, University of North Georgia, Oakwood, GA 30566, USA;
| | - Taylor Logue
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA; (J.J.); (T.L.); (M.L.); (S.W.); (J.-C.G.); (A.D.H.)
| | - Madeline Lynch
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA; (J.J.); (T.L.); (M.L.); (S.W.); (J.-C.G.); (A.D.H.)
| | - Shan Wu
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA; (J.J.); (T.L.); (M.L.); (S.W.); (J.-C.G.); (A.D.H.)
| | - Jiahn-Chou Guan
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA; (J.J.); (T.L.); (M.L.); (S.W.); (J.-C.G.); (A.D.H.)
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (S.A.); (A.R.F.)
- Center for Plant Systems Biology, 4000 Plovdiv, Bulgaria
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; (S.A.); (A.R.F.)
- Center for Plant Systems Biology, 4000 Plovdiv, Bulgaria
| | - Andrew D. Hanson
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA; (J.J.); (T.L.); (M.L.); (S.W.); (J.-C.G.); (A.D.H.)
| | - Donald R. McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA; (J.J.); (T.L.); (M.L.); (S.W.); (J.-C.G.); (A.D.H.)
- Correspondence:
| |
Collapse
|
35
|
Unravelling the Anticancer Mechanisms of Traditional Herbal Medicines with Metabolomics. Molecules 2021; 26:molecules26216541. [PMID: 34770949 PMCID: PMC8587539 DOI: 10.3390/molecules26216541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022] Open
Abstract
Metabolite profiling of cancer cells presents many opportunities for anticancer drug discovery. The Chinese, Indian, and African flora, in particular, offers a diverse source of anticancer therapeutics as documented in traditional folklores. In-depth scientific information relating to mechanisms of action, quality control, and safety profile will promote their extensive usage in cancer therapy. Metabolomics may be a more holistic strategy to gain valuable insights into the anticancer mechanisms of action of plants but this has remained largely unexplored. This review, therefore, presents the available metabolomics studies on the anticancer effects of herbal medicines commonly used in Africa and Asia. In addition, we present some scientifically understudied ‘candidate plants’ for cancer metabolomics studies and highlight the relevance of metabolomics in addressing other challenges facing the drug development of anticancer herbs. Finally, we discussed the challenges of using metabolomics to uncover the underlying mechanisms of potential anticancer herbs and the progress made in this regard.
Collapse
|
36
|
Exploitation of Drought Tolerance-Related Genes for Crop Improvement. Int J Mol Sci 2021; 22:ijms221910265. [PMID: 34638606 PMCID: PMC8508643 DOI: 10.3390/ijms221910265] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/15/2021] [Accepted: 09/15/2021] [Indexed: 12/03/2022] Open
Abstract
Drought has become a major threat to food security, because it affects crop growth and development. Drought tolerance is an important quantitative trait, which is regulated by hundreds of genes in crop plants. In recent decades, scientists have made considerable progress to uncover the genetic and molecular mechanisms of drought tolerance, especially in model plants. This review summarizes the evaluation criteria for drought tolerance, methods for gene mining, characterization of genes related to drought tolerance, and explores the approaches to enhance crop drought tolerance. Collectively, this review illustrates the application prospect of these genes in improving the drought tolerance breeding of crop plants.
Collapse
|
37
|
Song Y, Liu J, Wang J, Liu F. Growth, Stoichiometry, and Palatability of Suaeda salsa From Different Habitats Are Demonstrated by Differentially Expressed Proteins and Their Enriched Pathways. FRONTIERS IN PLANT SCIENCE 2021; 12:733882. [PMID: 34539722 PMCID: PMC8440984 DOI: 10.3389/fpls.2021.733882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
Suaeda salsa (L.) Pall., a medicinal and edible plant, has green and red-violet ecotypes that exhibit different phenotypes, tastes, and growth characteristics. However, few studies have focused on these differences from the aspect of differentially expressed proteins under the conditions of different habitats in the field. In this study, two ecotypes of S. salsa from the intertidal (control) and supratidal (treatment) habitats of the Yellow River Delta were selected. A total of 30 individual leaves were mixed into six samples (three biological replicates for each) and subjected to protein extraction by using tandem mass tag-labeled quantitative proteomic technology. A total of 4771 proteins were quantitated. They included 317 differentially expressed proteins (2.0-fold change, p < 0.05), among which 143 were upregulated and the remaining 174 were downregulated. These differentially expressed proteins mainly participated in biological processes, such as response to stimulus, stress, and biotic stimulus; in molecular functions, such as methyltransferase activity, transferase activity, one-C group transfer, and tetrapyrrole binding; and in cell components, such as non-membrane-bound organelles, intracellular non-membrane-bound organelles, chromosomes, and photosystems. The differentially expressed proteins were mainly enriched in eight pathways, among which the ribosome, phenylpropanoid biosynthesis, and photosynthesis pathways had higher protein numbers than the other pathways. The upregulation of differentially expressed proteins related to the ribosome and photosynthesis increased the relative growth rate and reduced the N:P ratio of S. salsa from the supratidal habitat, thereby improving its palatability. By contrast, most of the differentially expressed proteins involved in phenylpropanoid biosynthesis were downregulated in S. salsa from the intertidal habitat. This result indicated that S. salsa from the intertidal habitat might accumulate flavonoids, lignin, and other secondary metabolites in its leaves that confer a bitter taste. However, these secondary metabolites might increase the medicinal value of S. salsa from the intertidal habitat. This work could provide a theoretical basis and data support for the sustainable and high-value utilization of medicinal and edible plants from coastal wetlands.
Collapse
Affiliation(s)
- Ye Song
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Jinan Fruit Research Institute, All China Federation of Supply and Marketing Co-Operatives, Jinan, China
| | - Jiayuan Liu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| | - Jianzhong Wang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Fude Liu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin, China
| |
Collapse
|
38
|
Păucean A, Mureșan V, Maria-Man S, Chiș MS, Mureșan AE, Șerban LR, Pop A, Muste S. Metabolomics as a Tool to Elucidate the Sensory, Nutritional and Safety Quality of Wheat Bread-A Review. Int J Mol Sci 2021; 22:ijms22168945. [PMID: 34445648 PMCID: PMC8396194 DOI: 10.3390/ijms22168945] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/20/2023] Open
Abstract
Wheat (Triticum aestivum) is one of the most extensively cultivated and used staple crops in human nutrition, while wheat bread is annually consumed in more than nine billion kilograms over the world. Consumers’ purchase decisions on wheat bread are largely influenced by its nutritional and sensorial characteristics. In the last decades, metabolomics is considered an effective tool for elucidating the information on metabolites; however, the deep investigations on metabolites still remain a difficult and longtime action. This review gives emphasis on the achievements in wheat bread metabolomics by highlighting targeted and untargeted analyses used in this field. The metabolomics approaches are discussed in terms of quality, processing and safety of wheat and bread, while the molecular mechanisms involved in the sensorial and nutritional characteristics of wheat bread are pointed out. These aspects are of crucial importance in the context of new consumers’ demands on healthy bakery products rich in bioactive compounds but, equally, with good sensorial acceptance. Moreover, metabolomics is a potential tool for assessing the changes in nutrient composition from breeding to processing, while monitoring and understanding the transformations of metabolites with bioactive properties, as well as the formation of compounds like toxins during wheat storage.
Collapse
|