1
|
Bayer EM, Benitez-Alfonso Y. Plasmodesmata: Channels Under Pressure. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:291-317. [PMID: 38424063 DOI: 10.1146/annurev-arplant-070623-093110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Multicellularity has emerged multiple times in evolution, enabling groups of cells to share a living space and reducing the burden of solitary tasks. While unicellular organisms exhibit individuality and independence, cooperation among cells in multicellular organisms brings specialization and flexibility. However, multicellularity also necessitates intercellular dependence and relies on intercellular communication. In plants, this communication is facilitated by plasmodesmata: intercellular bridges that allow the direct (cytoplasm-to-cytoplasm) transfer of information between cells. Plasmodesmata transport essential molecules that regulate plant growth, development, and stress responses. They are embedded in the extracellular matrix but exhibit flexibility, adapting intercellular flux to meet the plant's needs.In this review, we delve into the formation and functionality of plasmodesmata and examine the capacity of the plant communication network to respond to developmental and environmental cues. We illustrate how environmental pressure shapes cellular interactions and aids the plant in adapting its growth.
Collapse
Affiliation(s)
- Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire (LBM), CNRS UMR5200, Université de Bordeaux, Villenave D'Ornon, France;
| | - Yoselin Benitez-Alfonso
- School of Biology, Centre for Plant Sciences, and Astbury Centre, University of Leeds, Leeds, United Kingdom;
| |
Collapse
|
2
|
Słupianek A, Myśkow E, Kasprowicz-Maluśki A, Dolzblasz A, Żytkowiak R, Turzańska M, Sokołowska K. Seasonal dynamics of cell-to-cell transport in angiosperm wood. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1331-1346. [PMID: 37996075 PMCID: PMC10901208 DOI: 10.1093/jxb/erad469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Abstract
This study describes the seasonal changes in cell-to-cell transport in three selected angiosperm tree species, Acer pseudoplatanus (maple), Fraxinus excelsior (ash), and Populus tremula × tremuloides (poplar), with an emphasis on the living wood component, xylem parenchyma cells (XPCs). We performed anatomical studies, dye loading through the vascular system, measurements of non-structural carbohydrate content, immunocytochemistry, inhibitory assays and quantitative real-time PCR to analyse the transport mechanisms and seasonal variations in wood. The abundance of membrane dye in wood varied seasonally along with seasonally changing tree phenology, cambial activity, and non-structural carbohydrate content. Moreover, dyes internalized in vessel-associated cells and 'trapped' in the endomembrane system are transported farther between other XPCs via plasmodesmata. Finally, various transport mechanisms based on clathrin-mediated and clathrin-independent endocytosis, and membrane transporters, operate in wood, and their involvement is species and/or season dependent. Our study highlights the importance of XPCs in seasonally changing cell-to-cell transport in both ring-porous (ash) and diffuse-porous (maple, poplar) tree species, and demonstrates the involvement of both endocytosis and plasmodesmata in intercellular communication in angiosperm wood.
Collapse
Affiliation(s)
- Aleksandra Słupianek
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Elżbieta Myśkow
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Anna Kasprowicz-Maluśki
- Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, Poznań 61-614, Poland
| | - Alicja Dolzblasz
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Roma Żytkowiak
- Institute of Dendrology, Polish Academy of Sciences, Parkowa 5, 62-035 Kórnik, Poland
| | - Magdalena Turzańska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| | - Katarzyna Sokołowska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328 Wrocław, Poland
| |
Collapse
|
3
|
Bian J, Su X, Yuan X, Zhang Y, Lin J, Li X. Endoplasmic reticulum membrane contact sites: cross-talk between membrane-bound organelles in plant cells. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2956-2967. [PMID: 36847172 DOI: 10.1093/jxb/erad068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/20/2023] [Indexed: 05/21/2023]
Abstract
Eukaryotic cells contain organelles surrounded by monolayer or bilayer membranes. Organelles take part in highly dynamic and organized interactions at membrane contact sites, which play vital roles during development and response to stress. The endoplasmic reticulum extends throughout the cell and acts as an architectural scaffold to maintain the spatial distribution of other membrane-bound organelles. In this review, we highlight the structural organization, dynamics, and physiological functions of membrane contact sites between the endoplasmic reticulum and various membrane-bound organelles, especially recent advances in plants. We briefly introduce how the combined use of dynamic and static imaging techniques can enable monitoring of the cross-talk between organelles via membrane contact sites. Finally, we discuss future directions for research fields related to membrane contact.
Collapse
Affiliation(s)
- Jiahui Bian
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiao Su
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoyan Yuan
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuan Zhang
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinxing Lin
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Botany, Chinese Academy of Sciences, Beijing 100083, China
| | - Xiaojuan Li
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
- Institute of Tree Development and Genome Editing, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
4
|
Sphingolipids at Plasmodesmata: Structural Components and Functional Modulators. Int J Mol Sci 2022; 23:ijms23105677. [PMID: 35628487 PMCID: PMC9145688 DOI: 10.3390/ijms23105677] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/16/2022] Open
Abstract
Plasmodesmata (PD) are plant-specific channels connecting adjacent cells to mediate intercellular communication of molecules essential for plant development and defense. The typical PD are organized by the close apposition of the plasma membrane (PM), the desmotubule derived from the endoplasmic reticulum (ER), and spoke-like elements linking the two membranes. The plasmodesmal PM (PD-PM) is characterized by the formation of unique microdomains enriched with sphingolipids, sterols, and specific proteins, identified by lipidomics and proteomics. These components modulate PD to adapt to the dynamic changes of developmental processes and environmental stimuli. In this review, we focus on highlighting the functions of sphingolipid species in plasmodesmata, including membrane microdomain organization, architecture transformation, callose deposition and permeability control, and signaling regulation. We also briefly discuss the difference between sphingolipids and sterols, and we propose potential unresolved questions that are of help for further understanding the correspondence between plasmodesmal structure and function.
Collapse
|