1
|
Han R, Lin R, Zhou Y, Thomas HR. Here comes the sun: integration of light, temperature, and auxin during herbaceous plant grafting. PLANTA 2025; 261:124. [PMID: 40316852 DOI: 10.1007/s00425-025-04694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/08/2025] [Indexed: 05/04/2025]
Abstract
MAIN CONCLUSION Light and temperature can regulate auxin production which has been recently shown to be key during graft healing, suggesting that abiotic factors may be vital variables for future graft studies. Grafting is an important horticultural tool used to combine advantageous plant traits. Despite its broad usage, the mechanisms that underlie graft healing remain poorly understood. Recent work has highlighted the influence of high temperature-mediated auxin flow on graft success. Light and temperature sensing utilize partially overlapping mechanisms to regulate auxin biosynthesis, signaling, and transport. In this review, we explore the sensors and transcriptional regulators that modulate auxin response, specifically emphasizing how these components regulate graft success and vascular reconnection. We also discuss areas of graft biology regulated by auxin and underexplored areas of photobiology that may be key to a better understanding of graft mechanisms. This review underscores the importance of translating genetic findings from model systems into horticultural crops to expand our knowledge of economically valuable techniques like grafting.
Collapse
Affiliation(s)
- Ruiduo Han
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Rui Lin
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
- Yazhou Bay Science and Technology City, Hainan Institute, Zhejiang University, Sanya, 572025, China.
- Key Laboratory of Horticultural Plant Growth and Development, Agricultural and Rural Ministry of China, Zhejiang University, Hangzhou, 310058, China.
| | - Hannah Rae Thomas
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Frey C, Hernández-Barriuso A, Acebes JL, Encina A. Deciphering Antioxidant Responses in Tomato Autografts. Antioxidants (Basel) 2025; 14:234. [PMID: 40002418 PMCID: PMC11852250 DOI: 10.3390/antiox14020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/07/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Grafting is a horticultural technique that involves a healing process that requires grafted plants to develop physiological responses to overcome oxidative stress. In this study, oxidative damage, total antioxidant capacity and antioxidant enzymatic activities were analysed in functional and non-functional tomato autografts for eight days after grafting, considering scion and rootstock tissues separately. The results showed that oxidative damage, measured as lipid peroxidation, was controlled, especially in functional grafts. Scion tissues showed significant increases in total antioxidant capacity and activities of key antioxidant enzymes, including superoxide dismutase and catalase. Non-functional grafts showed elevated levels of class III peroxidase, potentially related to defensive suberisation and lignification. Principal component analysis revealed that antioxidant activities correlated dynamically with grafting stages, highlighting their critical role in stress mitigation. These results suggest that an efficient and asymmetric antioxidant response is essential for successful graft healing in tomato plants. Furthermore, different patterns in non-functional grafts underline the importance of redox balance in determining graft success.
Collapse
Affiliation(s)
- Carlos Frey
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24007 León, Spain; (C.F.); (A.H.-B.); (J.L.A.)
- Instituto de Biología Molecular, Genómica y Proteómica, Universidad de León, 24007 León, Spain
| | - Andrés Hernández-Barriuso
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24007 León, Spain; (C.F.); (A.H.-B.); (J.L.A.)
| | - José Luis Acebes
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24007 León, Spain; (C.F.); (A.H.-B.); (J.L.A.)
- Instituto de la Viña y el Vino, Universidad de León, 24009 León, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, 24007 León, Spain; (C.F.); (A.H.-B.); (J.L.A.)
- Instituto de Biología Molecular, Genómica y Proteómica, Universidad de León, 24007 León, Spain
| |
Collapse
|
3
|
Zhang A, Shang Q. Transcriptome Analysis of Early Lateral Root Formation in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:1620. [PMID: 38931052 PMCID: PMC11207605 DOI: 10.3390/plants13121620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/17/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
Lateral roots (LRs) receive signals from the inter-root environment and absorb water and nutrients from the soil. Auxin regulates LR formation, but the mechanism in tomato remains largely unknown. In this study, 'Ailsa Craig' tomato LRs appeared on the third day and were unevenly distributed in primary roots. According to the location of LR occurrence, roots were divided into three equal parts: the shootward part of the root (RB), the middle part of the root (RM), and the tip part of the root (RT). Transverse sections of roots from days 1 to 6 revealed that the number of RB cells and the root diameter were significantly increased compared with RM and RT. Using roots from days 1 to 3, we carried out transcriptome sequencing analysis. Identified genes were classified into 16 co-expression clusters based on K-means, and genes in four associated clusters were highly expressed in RB. These four clusters (3, 5, 8, and 16) were enriched in cellulose metabolism, microtubule, and peptide metabolism pathways, all closely related to LR development. The four clusters contain numerous transcription factors linked to LR development including transcription factors of LATERAL ORGAN BOUNDRIES (LOB) and MADS-box families. Additionally, auxin-related genes GATA23, ARF7, LBD16, EXP, IAA4, IAA7, PIN1, PIN2, YUC3, and YUC4 were highly expressed in RB tissue. Free IAA content in 3 d RB was notably higher, reaching 3.3-5.5 ng/g, relative to RB in 1 d and 2 d. The LR number was promoted by 0.1 μM of exogenous IAA and inhibited by exogenous NPA. We analyzed the root cell state and auxin signaling module during LR formation. At a certain stage of pericycle cell development, LR initiation is regulated by auxin signaling modules IAA14-ARF7/ARF19-LBD16-CDKA1 and IAA14-ARF7/ARF19-MUS/MUL-XTR6/EXP. Furthermore, as a key regulatory factor, auxin regulates the process of LR initiation and LR primordia (LRP) through different auxin signaling pathway modules.
Collapse
Affiliation(s)
| | - Qingmao Shang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
4
|
Mo Z, Zhang Y, Hou M, Hu L, Zhai M, Xuan J. Transcriptional dynamics reveals the asymmetrical events underlying graft union formation in pecan (Carya illinoinensis). TREE PHYSIOLOGY 2024; 44:tpae040. [PMID: 38598328 DOI: 10.1093/treephys/tpae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Grafting is a widely used technique for pecan propagation; however, the background molecular events underlying grafting are still poorly understood. In our study, the graft partners during pecan [Carya illinoinensis (Wangenh.) K. Koch] graft union formation were separately sampled for RNA-seq, and the transcriptional dynamics were described via weighted gene co-expression network analysis. To reveal the main events underlying grafting, the correlations between modules and grafting traits were analyzed. Functional annotation showed that during the entire graft process, signal transduction was activated in the scion, while messenger RNA splicing was induced in the rootstock. At 2 days after grafting, the main processes occurring in the scion were associated with protein synthesis and processing, while the primary processes occurring in the rootstock were energy release-related. During the period of 7-14 days after grafting, defense response was a critical process taking place in the scion; however, the main process functioning in the rootstock was photosynthesis. From 22 to 32 days after grafting, the principal processes taking place in the scion were jasmonic acid biosynthesis and defense response, whereas the highly activated processes associated with the rootstock were auxin biosynthesis and plant-type secondary cell wall biogenesis. To further prove that the graft partners responded asymmetrically to stress, hydrogen peroxide contents as well as peroxidase and β-1,3-glucanase activities were detected, and the results showed that their levels were increased in the scion not the rootstock at certain time points after grafting. Our study reveals that the scion and rootstock might respond asymmetrically to grafting in pecan, and the scion was likely associated with stress response, while the rootstock was probably involved in energy supply and xylem bridge differentiation during graft union formation.
Collapse
Affiliation(s)
- Zhenghai Mo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
| | - Yan Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
| | - Mengxin Hou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
| | - Longjiao Hu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
| | - Min Zhai
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
| | - Jiping Xuan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
- Jiangsu Engineering Research Center for the Germplasm Innovation and Utilization of Pecan, NO. 1 Road, Qianhuhou Villiage, Xuanwu District, Nanjing 210014, China
| |
Collapse
|
5
|
Zhu Y, Hu S, Min J, Zhao Y, Yu H, Irfan M, Xu C. Transcriptomic analysis provides an insight into the function of CmGH9B3, a key gene of β-1, 4-glucanase, during the graft union healing of oriental melon scion grafted onto squash rootstock. Biotechnol J 2024; 19:e2400006. [PMID: 38581090 DOI: 10.1002/biot.202400006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/09/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024]
Abstract
The melon (Cucumis melo L.) is a globally cherished and economically significant crop. The grafting technique has been widely used in the vegetative propagation of melon to promote environmental tolerance and disease resistance. However, mechanisms governing graft healing and potential incompatibilities in melons following the grafting process remain unknown. To uncover the molecular mechanism of healing of grafted melon seedlings, melon wild type (Control) and TRV-CmGH9B3 lines were obtained and grafted onto the squash rootstocks (C. moschata). Anatomical differences indicated that the healing process of the TRV-CmGH9B3 plants was slower than that of the control. A total of 335 significantly differentially expressed genes (DEGs) were detected between two transcriptomes. Most of these DEGs were down-regulated in TRV-CmGH9B3 grafted seedlings. GO and KEGG analysis showed that many metabolic, physiological, and hormonal responses were involved in graft healing, including metabolic processes, plant hormone signaling, plant MAPK pathway, and sucrose starch pathway. During the healing process of TRV-CmGH9B3 grafted seedlings, gene synthesis related to hormone signal transduction (auxin, cytokinin, gibberellin, brassinolide) was delayed. At the same time, it was found that most of the DEGs related to the sucrose pathway were down-regulated in TRV-CmGH9B3 grafted seedlings. The results showed that sugar was also involved in the healing process of melon grafted onto squash. These results deepened our understanding of the molecular mechanism of GH9B3, a key gene of β-1, 4-glucanase. It also provided a reference for elucidating the gene mechanism and function analysis of CmGH9B3 in the process of graft union healing.
Collapse
Affiliation(s)
- Yulei Zhu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
| | - Shengwei Hu
- Hermiston Agricultural Research and Extension Station, Oregon State University, Hermiston, Oregon, USA
| | - Jiahuan Min
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
| | - Yingtong Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
| | - Hanqi Yu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
| | - Muhammad Irfan
- Department of Biotechnology, Faculty of science, University of Sargodha Pakistan, Sargodha, Pakistan
| | - Chuanqiang Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Protected Horticulture (Ministry of Education), Shenyang, China
- Modern Protected Horticultural Engineering & Technology Center, Shenyang, China
- Key Laboratory of Horticultural Equipment (Ministry of Agriculture and Rural Affairs), Shenyang, China
| |
Collapse
|
6
|
Jia M, Ni Y, Zhao H, Liu X, Yan W, Zhao X, Wang J, He B, Liu H. Full-length transcriptome and RNA-Seq analyses reveal the resistance mechanism of sesame in response to Corynespora cassiicola. BMC PLANT BIOLOGY 2024; 24:64. [PMID: 38262910 PMCID: PMC10804834 DOI: 10.1186/s12870-024-04728-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 01/03/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Corynespora leaf spot is a common leaf disease occurring in sesame, and the disease causes leaf yellowing and even shedding, which affects the growth quality of sesame. At present, the mechanism of sesame resistance to this disease is still unclear. Understanding the resistance mechanism of sesame to Corynespora leaf spot is highly important for the control of infection. In this study, the leaves of the sesame resistant variety (R) and the sesame susceptible variety (S) were collected at 0-48 hpi for transcriptome sequencing, and used a combined third-generation long-read and next-generation short-read technology approach to identify some key genes and main pathways related to resistance. RESULTS The gene expression levels of the two sesame varieties were significantly different at 0, 6, 12, 24, 36 and 48 hpi, indicating that the up-regulation of differentially expressed genes in the R might enhanced the resistance. Moreover, combined with the phenotypic observations of sesame leaves inoculated at different time points, we found that 12 hpi was the key time point leading to the resistance difference between the two sesame varieties at the molecular level. The WGCNA identified two modules significantly associated with disease resistance, and screened out 10 key genes that were highly expressed in R but low expressed in S, which belonged to transcription factors (WRKY, AP2/ERF-ERF, and NAC types) and protein kinases (RLK-Pelle_DLSV, RLK-Pelle_SD-2b, and RLK-Pelle_WAK types). These genes could be the key response factors in the response of sesame to infection by Corynespora cassiicola. GO and KEGG enrichment analysis showed that specific modules could be enriched, which manifested as enrichment in biologically important pathways, such as plant signalling hormone transduction, plant-pathogen interaction, carbon metabolism, phenylpropanoid biosynthesis, glutathione metabolism, MAPK and other stress-related pathways. CONCLUSIONS This study provides an important resource of genes contributing to disease resistance and will deepen our understanding of the regulation of disease resistance, paving the way for further molecular breeding of sesame.
Collapse
Affiliation(s)
- Min Jia
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Yunxia Ni
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
| | - Hui Zhao
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Xintao Liu
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Wenqing Yan
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Xinbei Zhao
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Jing Wang
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Bipo He
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China
| | - Hongyan Liu
- Key Laboratory of IPM of Pests on Crop (Southern North China), Ministry of Agriculture, Key Laboratory of Crop Pest Control of Henan, Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
- Key Laboratory of Specific Oilseed Crops Genomics of Henan Province, Henan Sesame Research Center, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, 450002, China.
| |
Collapse
|
7
|
Feng M, Zhang A, Nguyen V, Bisht A, Almqvist C, De Veylder L, Carlsbecker A, Melnyk CW. A conserved graft formation process in Norway spruce and Arabidopsis identifies the PAT gene family as central regulators of wound healing. NATURE PLANTS 2024; 10:53-65. [PMID: 38168607 PMCID: PMC10808061 DOI: 10.1038/s41477-023-01568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024]
Abstract
The widespread use of plant grafting enables eudicots and gymnosperms to join with closely related species and grow as one. Gymnosperms have dominated forests for over 200 million years, and despite their economic and ecological relevance, we know little about how they graft. Here we developed a micrografting method in conifers using young tissues that allowed efficient grafting with closely related species and between distantly related genera. Conifer graft junctions rapidly connected vasculature and differentially expressed thousands of genes including auxin and cell-wall-related genes. By comparing these genes to those induced during Arabidopsis thaliana graft formation, we found a common activation of cambium, cell division, phloem and xylem-related genes. A gene regulatory network analysis in Norway spruce (Picea abies) predicted that PHYTOCHROME A SIGNAL TRANSDUCTION 1 (PAT1) acted as a core regulator of graft healing. This gene was strongly up-regulated during both spruce and Arabidopsis grafting, and Arabidopsis mutants lacking PAT genes failed to attach tissues or successfully graft. Complementing Arabidopsis PAT mutants with the spruce PAT1 homolog rescued tissue attachment and enhanced callus formation. Together, our data show an ability for young tissues to graft with distantly related species and identifies the PAT gene family as conserved regulators of graft healing and tissue regeneration.
Collapse
Affiliation(s)
- Ming Feng
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ai Zhang
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Van Nguyen
- Department of Organismal Biology, Physiological Botany, Evolutionary Biology Centre and Linnean Centre for Plant Biology, Uppsala University, Uppsala, Sweden
| | - Anchal Bisht
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Curt Almqvist
- Skogforsk (The Forestry Research Institute of Sweden), Uppsala Science Park, Uppsala, Sweden
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Annelie Carlsbecker
- Department of Organismal Biology, Physiological Botany, Evolutionary Biology Centre and Linnean Centre for Plant Biology, Uppsala University, Uppsala, Sweden
| | - Charles W Melnyk
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
8
|
Feng M, Augstein F, Kareem A, Melnyk CW. Plant grafting: Molecular mechanisms and applications. MOLECULAR PLANT 2024; 17:75-91. [PMID: 38102831 DOI: 10.1016/j.molp.2023.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/17/2023]
Abstract
People have grafted plants since antiquity for propagation, to increase yields, and to improve stress tolerance. This cutting and joining of tissues activates an incredible regenerative ability as different plants fuse and grow as one. For over a hundred years, people have studied the scientific basis for how plants graft. Today, new techniques and a deepening knowledge of the molecular basis for graft formation have allowed a range of previously ungraftable combinations to emerge. Here, we review recent developments in our understanding of graft formation, including the attachment and vascular formation steps. We analyze why plants graft and how biotic and abiotic factors influence successful grafting. We also discuss the ability and inability of plants to graft, and how grafting has transformed both horticulture and fundamental plant science. As our knowledge about plant grafting improves, new combinations and techniques will emerge to allow an expanded use of grafting for horticultural applications and to address fundamental research questions.
Collapse
Affiliation(s)
- Ming Feng
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Frauke Augstein
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Abdul Kareem
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden
| | - Charles W Melnyk
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, Almas allé 5, 756 51 Uppsala, Sweden.
| |
Collapse
|
9
|
Frey C, Martínez-Romera N, Encina A, Acebes JL. Immunohistochemical dynamics of cell wall matrix polymers during tomato autograft healing. PLANT MOLECULAR BIOLOGY 2023; 113:353-365. [PMID: 37079121 PMCID: PMC10730687 DOI: 10.1007/s11103-023-01351-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
A large part of the production of tomato plants is grafted. Although it has recently been described that cell walls play an important role in tomato graft healing, the spatiotemporal dynamics of cell wall changes in this critical process remains largely unknown. The aim of this work was to immunolocalize changes in the major cell wall matrix components of autograft union tissues throughout the course of healing, from 1 to 20 days after grafting (DAG). Homogalacturonan was de novo synthetized and deposited in the cut edges, displaying the low methyl-esterified homogalacturonan a stronger labelling. Labelling of galactan side chains of rhamnogalacturonan increased until 8 DAG, although remarkably a set of cells at the graft union did not show labelling for this epitope. Changes in xylan immunolocalization were associated to the xylem vasculature development throughout, while those of xyloglucan revealed early synthesis at the cut edges. Arabinogalactan proteins increased up to 8 DAG and showed scion-rootstock asymmetry, with a higher extent in the scion. The combination of these changes appears to be related with the success of the autograft, specifically facilitating the adhesion phase between scion-rootstock tissues. This knowledge paves the way for improved grafting using methods that facilitate appropriate changes in the time and space dynamics of these cell wall compounds.
Collapse
Affiliation(s)
- Carlos Frey
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, 24007, León, Spain
| | - Nerea Martínez-Romera
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, 24007, León, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, 24007, León, Spain.
| | - José L Acebes
- Área de Fisiología Vegetal, Departamento de Ingeniería y Ciencias Agrarias, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus Vegazana, 24007, León, Spain.
| |
Collapse
|
10
|
Nie W, Wen D. Study on the Applications and Regulatory Mechanisms of Grafting on Vegetables. PLANTS (BASEL, SWITZERLAND) 2023; 12:2822. [PMID: 37570976 PMCID: PMC10420990 DOI: 10.3390/plants12152822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/22/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Grafting can overcome problems with soil sensitivity, enhance plant stress tolerance, improve product quality, and increase crop yield and value. This paper reviews the various mechanisms of vegetable grafting, the graft survival process and its influencing factors, the practical applications of grafting, and the molecular regulation of grafting in vegetables. The importance of germplasm and rootstock interactions, the mechanization of vegetable grafting, and future aspects, including intelligence and digitalization, are discussed.
Collapse
Affiliation(s)
- Wenjing Nie
- Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetables, Institute of Vegetable Research, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
- Yantai Key Laboratory for Evaluation and Utilization of Silkworm Functional Substances, Shandong Institute of Sericulture, Yantai 264001, China
| | - Dan Wen
- Huang-Huai-Hai Region Scientific Observation and Experimental Station of Vegetables, Ministry of Agriculture and Rural Affairs, Shandong Key Laboratory of Greenhouse Vegetable Biology, Shandong Branch of National Improvement Center for Vegetables, Institute of Vegetable Research, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
| |
Collapse
|
11
|
Duan X, Chen L, Liu Y, Chen H, Wang F, Hu Y. Integrated physicochemical, hormonal, and transcriptomic analysis reveals the underlying mechanism of callus formation in Pinellia ternata hydroponic cuttings. FRONTIERS IN PLANT SCIENCE 2023; 14:1189499. [PMID: 37409296 PMCID: PMC10319145 DOI: 10.3389/fpls.2023.1189499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/30/2023] [Indexed: 07/07/2023]
Abstract
Introduction P. ternata is a perennial herb of the family Araceae that grows in China and has various medicinal properties and applications. At present, the artificial cultivation of P. ternata is constrained by seedling propagation. To address the problems of low seedling breeding propagation efficiency and high cost, our group has developed a highly efficient cultivation technology for "hydroponic cuttings of P. ternata "for the first time. P. ternata is used as the source material and is grown in a hydroponic system, increasing the seedling production rate 10-fold compared with the traditional cultivation mode. However, the callus formation mechanism in cuttings from hydroponic cultivation is still remains unclear. Methods In order to better understand the biological process of callus formation in cuttings from hydroponic P. ternata, anatomical characterization, endogenous hormone content determination and transcriptome sequencing were performed on five callus stages from early growth to early senescence. Results Regarding the four major hormones during the callus developmental stages of P. ternata hydroponic cuttings, cytokinins showed an increasing trend during callus formation. IAA(indole-3-acetic acid) and abscisic acid contents increased at 8d and then decreased, while jasmonic acid content gradually decreased. A total of 254137 unigenes were identified by transcriptome sequencing in five callus formation stages. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the differentially expressed genes (DEGs) that differentially expressed unigenes were involved in various plant hormone signaling and hormone synthesis-related pathways. The expression patterns of 7 genes were validated using quantitative real-time PCR. Discussion This study presented integrated transcriptomic and metabolic analysis approach to obtain insights into the underlying biosynthetic mechanisms and function of key hormones involved in the callus formation process from hydroponic P. ternata cuttings.
Collapse
Affiliation(s)
| | | | | | - Hongping Chen
- *Correspondence: Hongping Chen, ; Fu Wang, ; Yuan Hu,
| | - Fu Wang
- *Correspondence: Hongping Chen, ; Fu Wang, ; Yuan Hu,
| | - Yuan Hu
- *Correspondence: Hongping Chen, ; Fu Wang, ; Yuan Hu,
| |
Collapse
|
12
|
Xu C, Wu F, Guo J, Hou S, Wu X, Xin Y. Transcriptomic analysis and physiological characteristics of exogenous naphthylacetic acid application to regulate the healing process of oriental melon grafted onto squash. PeerJ 2022; 10:e13980. [PMID: 36128197 PMCID: PMC9482769 DOI: 10.7717/peerj.13980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/10/2022] [Indexed: 01/19/2023] Open
Abstract
The plant graft healing process is an intricate development influenced by numerous endogenous and environmental factors. This process involves the histological changes, physiological and biochemical reactions, signal transduction, and hormone exchanges in the grafting junction. Studies have shown that applying exogenous plant growth regulators can effectively promote the graft healing process and improve the quality of grafted plantlets. However, the physiological and molecular mechanism of graft healing formation remains unclear. In our present study, transcriptome changes in the melon and cucurbita genomes were analyzed between control and NAA treatment, and we provided the first view of complex networks to regulate graft healing under exogenous NAA application. The results showed that the exogenous NAA application could accelerate the graft healing process of oriental melon scion grafted onto squash rootstock through histological observation, increase the SOD, POD, PAL, and PPO activities during graft union development and enhance the contents of IAA, GA3, and ZR except for the IL stage. The DEGs were identified in the plant hormone signal-transduction, phenylpropanoid biosynthesis, and phenylalanine metabolism through transcriptome analysis of CK vs. NAA at the IL, CA, and VB stage by KEGG pathway enrichment analysis. Moreover, the exogenous NAA application significantly promoted the expression of genes involved in the hormone signal-transduction pathway, ROS scavenging system, and vascular bundle formation.
Collapse
Affiliation(s)
- Chuanqiang Xu
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, China,College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Fang Wu
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, China,College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jieying Guo
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, China,College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Shuan Hou
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, China,College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiaofang Wu
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, China,College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Ying Xin
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China,Key Laboratory of Protected Horticulture (Shenyang Agricultural University) Ministry of Education, Shenyang, China,College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
13
|
Han Q, Song H, Yang C, Zhang S, Korpelainen H, Li C. Integrated DNA methylation, transcriptome and physiological analyses reveal new insights into superiority of poplars formed by interspecific grafting. TREE PHYSIOLOGY 2022; 42:1481-1500. [PMID: 35134240 DOI: 10.1093/treephys/tpac013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Plant grafting has a long history and it is extensively employed to improve plant performance. In our previous research, reciprocal grafts of Populus cathayana Rehder (C) and Populus deltoides Bart. Ex Marsh (D) were generated. The results showed that interspecific grafting combinations (scion/rootstock: C/D and D/C) grew better than intraspecific grafting combinations (C/C and D/D). To further understand differences in molecular mechanisms between interspecific and intraspecific grafting, we performed an integrated analysis, including bisulfite sequencing, RNA sequencing and measurements of physiological indicators, to investigate leaves of different grafting combinations. We found that the difference at the genome-wide methylation level was greater in D/C vs D/D than in C/D vs C/C, but no difference was detected at the transcription level in D/C vs D/D. Furthermore, the grafting superiority of D/C vs D/D was not as strong as that of C/D vs C/C. These results may be associated with the different methylation forms, mCHH (71.76%) and mCG (57.16%), that accounted for the highest percentages in C/D vs C/C and D/C vs D/D, respectively. In addition, the interspecific grafting superiority was found mainly related to the process of photosynthesis, phytohormone signal transduction, biosynthesis of secondary metabolites, cell wall and transcriptional regulation based on both physiological and molecular results. Overall, the results indicated that the physiological and molecular phenotypes of grafted plants are affected by the interaction between scion and rootstock. Thus, our study provides a theoretical basis for developing suitable scion-rootstock combinations for grafted plants.
Collapse
Affiliation(s)
- Qingquan Han
- Institute of Physical Education, Ludong University, Yantai 264025, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Haifeng Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Congcong Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu 610065, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, PO Box 27, Helsinki FI-00014, Finland
| | - Chunyang Li
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Serivichyaswat PT, Bartusch K, Leso M, Musseau C, Iwase A, Chen Y, Sugimoto K, Quint M, Melnyk CW. High temperature perception in leaves promotes vascular regeneration and graft formation in distant tissues. Development 2022; 149:274539. [PMID: 35217857 PMCID: PMC8959136 DOI: 10.1242/dev.200079] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/21/2022] [Indexed: 12/14/2022]
Abstract
ABSTRACT
Cellular regeneration in response to wounding is fundamental to maintain tissue integrity. Various internal factors including hormones and transcription factors mediate healing, but little is known about the role of external factors. To understand how the environment affects regeneration, we investigated the effects of temperature upon the horticulturally relevant process of plant grafting. We found that elevated temperatures accelerated vascular regeneration in Arabidopsis thaliana and tomato grafts. Leaves were crucial for this effect, as blocking auxin transport or mutating PHYTOCHROME INTERACTING FACTOR 4 (PIF4) or YUCCA2/5/8/9 in the cotyledons abolished the temperature enhancement. However, these perturbations did not affect grafting at ambient temperatures, and temperature enhancement of callus formation and tissue adhesion did not require PIF4, suggesting leaf-derived auxin specifically enhanced vascular regeneration in response to elevated temperatures. We also found that elevated temperatures accelerated the formation of inter-plant vascular connections between the parasitic plant Phtheirospermum japonicum and host Arabidopsis, and this effect required shoot-derived auxin from the parasite. Taken together, our results identify a pathway whereby local temperature perception mediates long distance auxin signaling to modify regeneration, grafting and parasitism.
This article has an associated ‘The people behind the papers’ interview.
Collapse
Affiliation(s)
- Phanu T. Serivichyaswat
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| | - Kai Bartusch
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, 8092 Zürich, Switzerland
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120 Halle (Saale), Germany
| | - Martina Leso
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| | - Constance Musseau
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| | - Akira Iwase
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Yu Chen
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Tokyo 113-8654, Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
- Department of Biological Sciences, Faculty of Science, The University of Tokyo, Tokyo 113-8654, Japan
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Faculty of Natural Sciences III, Martin Luther University Halle-Wittenberg, Betty-Heimann-Str. 5, 06120 Halle (Saale), Germany
| | - Charles W. Melnyk
- Department of Plant Biology, Swedish University of Agricultural Sciences, Ulls gränd 1, 765 51 Uppsala, Sweden
| |
Collapse
|
15
|
Bantis F, Tsiolas G, Mouchtaropoulou E, Tsompanoglou I, Polidoros AN, Argiriou A, Koukounaras A. Comparative Transcriptome Analysis in Homo- and Hetero-Grafted Cucurbit Seedlings. FRONTIERS IN PLANT SCIENCE 2021; 12:691069. [PMID: 34777405 PMCID: PMC8582762 DOI: 10.3389/fpls.2021.691069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
Watermelon (Citrullus lanatus) is a valuable horticultural crop with nutritional benefits grown worldwide. It is almost exclusively cultivated as grafted scions onto interspecific squash rootstock (Cucurbita maxima × Cucurbita moschata) to improve the growth and yield and to address the problems of soilborne diseases and abiotic stress factors. This study aimed to examine the effect of grafting (homo- and hetero-grafting) on the transcriptome level of the seedlings. Therefore, we compared homo-grafted watermelon (WW) with non-grafted watermelon control (W), homo-grafted squash (SS) with non-grafted squash control (S), hetero-grafted watermelon onto squash (WS) with SS, and WS with WW. Different numbers of differentially expressed genes (DEGs) were identified in each comparison. In total, 318 significant DEGs were detected between the transcriptomes of hetero-grafts and homo-grafts at 16 h after grafting. Overall, a significantly higher number of downregulated transcripts was detected among the DEGs. Only one gene showing increased expression related to the cytokinin synthesis was common in three out of four comparisons involving WS, SS, and S. The highest number of differentially expressed (DE) transcripts (433) was detected in the comparison between SS and S, followed by the 127 transcripts between WW and W. The study provides a description of the transcriptomic nature of homo- and hetero-grafted early responses, while the results provide a start point for the elucidation of the molecular mechanisms and candidate genes for the functional analyses of hetero-graft and homo-graft systems in Cucurbitaceae and generally in the plants.
Collapse
Affiliation(s)
- Filippos Bantis
- School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - George Tsiolas
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
| | | | - Ioanna Tsompanoglou
- School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexios N. Polidoros
- School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anagnostis Argiriou
- Centre for Research and Technology Hellas, Institute of Applied Biosciences, Thessaloniki, Greece
- Department of Food Science and Nutrition, University of the Aegean, Myrina, Greece
| | | |
Collapse
|
16
|
Yousef AF, Ali MM, Rizwan HM, Gad AG, Liang D, Binqi L, Kalaji HM, Wróbel J, Xu Y, Chen F. Light quality and quantity affect graft union formation of tomato plants. Sci Rep 2021; 11:9870. [PMID: 33972562 PMCID: PMC8110817 DOI: 10.1038/s41598-021-88971-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
It is already known that there are many factors responsible for the successful formation of a graft union. However, the role of light has been little studied. In an anatomical study, Scanning Electronic Microscope (SEM) was used to explore the effects of different light-emitting diodes (LEDs) on graft union formation in grafted tomato. In addition, the expression genes related to Auxin hormone signaling pathway (SAUR67, AUX1, ARF30, and LAX3) was investigated. The obtained results showed that the concrescence process occurred faster under R7:B3 light conditions, as compared to blue (B) and white fluorescent (WFL) lights. Red light application caused a delay in the vascular tissue differentiation, which may lead to callus development on both sides, causing junctional failure and resulting in ineffective graft junctional arrangement. The expression of genes related to Auxin hormone significantly increased by R7:B3 application. We suggest that LED spectra affects the graft development of tomato plants and can improve the performance of grafted tomato seedlings.
Collapse
Affiliation(s)
- Ahmed Fathy Yousef
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Department of Horticulture, College of Agriculture, University of Al-Azhar (Branch Assiut), Assiut, 71524, Egypt
| | - Muhammad Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hafiz Muhammad Rizwan
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ahmed Gomaa Gad
- Plant Pathology Department, Faculty of Agriculture, Alexandria University, El-Shatby, Alexandria, 21545, Egypt
| | - Dangdi Liang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Li Binqi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hazem M Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw, University of Life Sciences SGGW, 159 Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Jacek Wróbel
- Department of Bioengineering, West Pomeranian University of Technology in Szczecin, 17 Słowackiego Street, 71-434, Szczecin, Poland
| | - Yong Xu
- College of Mechanical and Electronic Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- Institute of Machine Learning and Intelligent Science, Fujian University of Technology, 33 Xuefu South Road, Fuzhou, 350118, China.
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
17
|
Miao L, Li SZ, Shi AK, Li YS, He CX, Yan Y, Wang J, Sun MT, Yu XC. Genome-wide analysis of the AINTEGUMENTA-like (AIL) transcription factor gene family in pumpkin (Cucurbita moschata Duch.) and CmoANT1.2 response in graft union healing. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:706-715. [PMID: 33799182 DOI: 10.1016/j.plaphy.2021.03.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
AINTEGUMENTA-like (AIL) proteins are members of the APETALA 2/ETHYLENE RESPONSE FACTOR (AP2/ERF) domain family of transcription factors involved in plant growth, development, and abiotic stress responses. However, the biological functions of AIL members in pumpkin (Cucurbita moschata Duch.) remain unknown. In this study, we identified 12 AIL genes in the pumpkin genome encoding proteins predicted to be localized in the nucleus. Phylogenetic analysis showed that the AIL gene family could be classified into six major subfamilies, with each member encoding two AP2/ERF domains separated by a linker region. CmoAIL genes were expressed at varying levels in the examined tissues, and CmoANT genes showed different expression patterns under auxin (IAA), 1-naphthylphthalamic acid (NPA), and abscisic acid (ABA) treatments. Ectopic overexpression of CmoANT1.2 in Arabidopsis increased organ size and promoted growth of grafted plants by accelerating graft union formation. However, there was no significant difference at the graft junction for WT/WT and WT/ANT under IAA or NPA treatments. Taken together, the results of this study provide critical information about CmoAIL genes and their encoded proteins, and suggest future work should investigate the functions of CmoANT1.2 in the grafting process in pumpkin.
Collapse
Affiliation(s)
- Li Miao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shu-Zhen Li
- College of Life Science, Gannan Normal University, Ganzhou 341000, China
| | - Ao-Kun Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan-Su Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chao-Xing He
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Yan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min-Tao Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xian-Chang Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
18
|
Xie L, Tian J, Peng L, Cui Q, Liu Y, Liu J, Li F, Zhang S, Gao J. Conserved Regulatory Pathways for Stock-Scion Healing Revealed by Comparative Analysis of Arabidopsis and Tomato Grafting Transcriptomes. FRONTIERS IN PLANT SCIENCE 2021; 12:810465. [PMID: 35281699 PMCID: PMC8908109 DOI: 10.3389/fpls.2021.810465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/28/2021] [Indexed: 05/02/2023]
Abstract
Many plants can successfully join root and shoot sections at cut surfaces when severed at the stem. Graft healing is complex and conserved in diverse taxonomic groups with different vascular structures. Herein, we compared transcriptome data from autografted and separated stem sections of Arabidopsis thaliana and tomato (Solanum lycopersicum) to explore changes related to graft healing. Using orthologous gene pairs identified between the two species, temperal expression patterns of evolutionary associated genes in grafted top and bottom, separated top and bottom, and intact stems were exhibited. Genes with expression preference indicate functional diversification of genes related to anatomical structure and cellular development in the two species. Expression profiles of the variable genes revealed common pathways operating during graft healing, including phenylpropanoid metabolism, response to oxygen-containing compounds, xylan, and cell wall biogenesis, mitosis and the cell cycle, carboxylic acid catabolism, and meristem structural organization. In addition, vascular differentiation related NAC domain transcription factors and genome-wide members in Arabidopsis and tomato were used for phylogenetic and expression analysis. Expression differences were largely consistent with sequence differences, reflecting high similarity for protein-coding and regulatory regions of individual clades. NAC proteins mainly clustered in accordance with their reported functions in xylem differentiation or cambium formation. The putative conserved mechanisms suggested by conserved genes and functions could help to expand graft healing theory to a wider range of species, and temporal fluctuations in common pathways imply conserved biological processes during graft healing.
Collapse
Affiliation(s)
- Lulu Xie
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianfan Tian
- Shouguang Vegetables Research and Development Center, Chinese Academy of Agricultural Sciences, Shouguang, China
| | - Lixin Peng
- Shouguang Vegetables Research and Development Center, Chinese Academy of Agricultural Sciences, Shouguang, China
| | - Qingqing Cui
- Institute of Modern Agricultural Research, Dalian University, Dalian, China
| | - Yang Liu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiyang Liu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fu Li
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Siyuan Zhang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianchang Gao
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation (Ministry of Agriculture), Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Shouguang Vegetables Research and Development Center, Chinese Academy of Agricultural Sciences, Shouguang, China
- *Correspondence: Jianchang Gao,
| |
Collapse
|