1
|
Quadrini L, Orlandini S, Laschi S, Ciccone C, Catelani F, Palchetti I. Development of a flow biocatalytic-based platform for electrochemical monitoring of urea in wastewater. Talanta 2025; 289:127755. [PMID: 39985929 DOI: 10.1016/j.talanta.2025.127755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/12/2025] [Accepted: 02/15/2025] [Indexed: 02/24/2025]
Abstract
The early evaluation of urea content in water and wastewater is of utmost importance for preventing pollution and improving remediation technologies, also related to urea conversion into a valuable energy product. In this work, a customized urease-based potentiometric platform for the detection of urea in wastewater samples was developed. Amino-functionalized glass beads were used as support material for urease immobilization in a customized bioreactor; then, using an online flow measurement setup, the NH4+ produced by the enzymatic reaction was measured by means of a potentiometric sensor housed in a customized flow cell. Operational and analytical parameters were optimized to achieve the best bioreactor performance. An in-depth study of the composition of the measurement buffer was also carried out; its influence on the sensitivity and detection limits was investigated, demonstrating that a careful selection of its concentration needs to be performed based on the type of samples to be analyzed (LOD = 8.9 ∙ 10-6 M). Finally, at the optimized operative conditions, the full system was applied to the determination of urea in spiked wastewater samples. Using the standard addition method, an average percentage of recovery of 102 ± 5 % was obtained for the analyzed samples despite the interferents present, demonstrating a possible application of the developed setup for remote online urea monitoring in wastewaters.
Collapse
Affiliation(s)
- Lorenzo Quadrini
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, FI, Italy
| | - Serena Orlandini
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, FI, Italy
| | - Serena Laschi
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, FI, Italy
| | | | | | - Ilaria Palchetti
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, FI, Italy.
| |
Collapse
|
2
|
Choi SJ, Crane L, Kang S, Boyer TH, Perreault F. Removal of urea in ultrapure water system by urease-coated reverse osmosis membrane. WATER RESEARCH X 2024; 22:100211. [PMID: 38298331 PMCID: PMC10825517 DOI: 10.1016/j.wroa.2024.100211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/23/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024]
Abstract
Among the various substances found in the feed source for the production of ultrapure water (UPW), urea is challenging to remove because it is a small molecular weight molecule that is not easily oxidized and does not carry a charge under neutral pH conditions. Urease enzyme, found in various organisms such as plants and bacteria, catalyze the hydrolysis of urea into carbon dioxide and ammonia. In this study, urease was immobilized on the polyamide layer of a reverse osmosis (RO) membrane to remove urea in UPW systems. The removal efficiency of urea by urease-coated RO membrane showed up to 27.9 % higher urea removal efficiency compared to the pristine membrane. This increase in urea removal can be attributed to both physical and biological effects from the urease coating on the membrane. Firstly, urease on the membrane surface can act as an additional physical barrier for urea to pass through. Secondly, urea can be hydrolyzed by the enzyme when it passes through the urease-coated RO membrane. In a two-pass RO system typical for UPW production, the removal of urea by a urease-coated membrane would be enhanced by twofold. This overall method can significantly increase the removal efficiency of urea in UPW systems, especially when considering the compounded removal by the urease coating, rejection by RO, and additional reactions by other treatment processes. Moreover, urea in UPW systems can be removed without the installment of additional processes by simply coating urease on the existing RO membranes.
Collapse
Affiliation(s)
- Seung-Ju Choi
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Lucas Crane
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Treavor H. Boyer
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
| | - François Perreault
- School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287-3005, USA
- Department of Chemistry, University of Quebec in Montreal, CP 8888, Succ. Centre-Ville, Montreal, QC H3C 3P8, Canada
| |
Collapse
|
3
|
Li Y, Koopal LK, Chai Y, Tan W, Wu C, Tang X, Chen Y. Spectroscopic investigation of conformational changes in urease caused by interaction with humic acid. Colloids Surf B Biointerfaces 2022; 215:112510. [PMID: 35462231 DOI: 10.1016/j.colsurfb.2022.112510] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/06/2022] [Accepted: 04/16/2022] [Indexed: 01/16/2023]
Abstract
Urease in soil interacts with humic acid (HA), which results in a change of the enzymatic activity and stability. However, knowledge on the conformational change of urease in the presence of HA is still lacking. Therefore, the structure of urease (net zero charge at pH 5.2) interacting with HA and the microenvironments of the tyrosine (Tyr) and tryptophane (Trp) residues were investigated at pH 6.7 and 8.0 and 0.5 and 50 mmol L-1 KCl using spectroscopic techniques. Fluorescence intensity of urease was progressively inhibited by HA with increasing mass ratio f of HA/urease. Moreover, quenching of urease fluorescence by HA was strongest at pH 6.7 (and 50 mmol L-1 KCl) where the hydrophobic attraction was counteracted by only a weak electrostatic repulsion. HA exerted only a minor effect on the positions of the maximum excitation bands for Tyr and Trp residues, indicating insignificant changes in the microenvironment of these residues in the presence of HA. At pH 6.7, the amide I and amide II bands were inhibited by HA. Curve-fitting of the amide I band of urease in complexes indicated that the percentages of α-helix, β-sheet and β-turn were changed. At pH 8 HA had little effect on the circular dichroism and attenuated total reflectance Fourier transform infrared spectra of urease. At this pH the interaction between urease and HA was weak due to the relatively strong electrostatic repulsion and the conformational change was insignificant. The present results increase our understanding of negatively charged protein behavior in natural environments dominated by humic substances.
Collapse
Affiliation(s)
- Yan Li
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; National Agricultural Experimental Station for Soil Quality, Jiaxing 314000, China
| | - Luuk K Koopal
- Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Yanjun Chai
- Key Laboratory of Recycling and Ecological Treatment of Waste Biomass of Zhejiang Province, School of Environment and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, China
| | - Wenfeng Tan
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Chunyan Wu
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; National Agricultural Experimental Station for Soil Quality, Jiaxing 314000, China
| | - Xu Tang
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; National Agricultural Experimental Station for Soil Quality, Jiaxing 314000, China
| | - Yi Chen
- Institute of Environment Resource and Soil Fertilizer, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; National Agricultural Experimental Station for Soil Quality, Jiaxing 314000, China.
| |
Collapse
|
4
|
Valles M, Pujals S, Albertazzi L, Sánchez S. Enzyme Purification Improves the Enzyme Loading, Self-Propulsion, and Endurance Performance of Micromotors. ACS NANO 2022; 16:5615-5626. [PMID: 35341250 PMCID: PMC9047656 DOI: 10.1021/acsnano.1c10520] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/16/2022] [Indexed: 05/12/2023]
Abstract
Enzyme-powered micro- and nanomotors make use of biocatalysis to self-propel in aqueous media and hold immense promise for active and targeted drug delivery. Most (if not all) of these micro- and nanomotors described to date are fabricated using a commercially available enzyme, despite claims that some commercial preparations may not have a sufficiently high degree of purity for downstream applications. In this study, the purity of a commercial urease, an enzyme frequently used to power the motion of micro- and nanomotors, was evaluated and found to be impure. After separating the hexameric urease from the protein impurities by size-exclusion chromatography, the hexameric urease was subsequently characterized and used to functionalize hollow silica microcapsules. Micromotors loaded with purified urease were found to be 2.5 times more motile than the same micromotors loaded with unpurified urease, reaching average speeds of 5.5 μm/s. After comparing a number of parameters, such as enzyme distribution, protein loading, and motor reusability, between micromotors functionalized with purified vs unpurified urease, it was concluded that protein purification was essential for optimal performance of the enzyme-powered micromotor.
Collapse
Affiliation(s)
- Morgane Valles
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Sílvia Pujals
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
| | - Lorenzo Albertazzi
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Department
of Biomedical Engineering, Institute for Complex Molecular Systems
(ICMS), Eindhoven University of Technology, 5612AZ Eindhoven, The Netherlands
| | - Samuel Sánchez
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 10-12, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
5
|
Biosensor based on coupled enzyme reactions for determination of arginase activity. Bioelectrochemistry 2022; 146:108137. [DOI: 10.1016/j.bioelechem.2022.108137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/04/2022] [Accepted: 04/18/2022] [Indexed: 11/21/2022]
|
6
|
Miele Y, Jones SJ, Rossi F, Beales PA, Taylor AF. Collective Behavior of Urease pH Clocks in Nano- and Microvesicles Controlled by Fast Ammonia Transport. J Phys Chem Lett 2022; 13:1979-1984. [PMID: 35188399 PMCID: PMC9007528 DOI: 10.1021/acs.jpclett.2c00069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The transmission of chemical signals via an extracellular solution plays a vital role in collective behavior in cellular biological systems and may be exploited in applications of lipid vesicles such as drug delivery. Here, we investigated chemical communication in synthetic micro- and nanovesicles containing urease in a solution of urea and acid. We combined experiments with simulations to demonstrate that the fast transport of ammonia to the external solution governs the pH-time profile and synchronizes the timing of the pH clock reaction in a heterogeneous population of vesicles. This study shows how the rate of production and emission of a small basic product controls pH changes in active vesicles with a distribution of sizes and enzyme amounts, which may be useful in bioreactor or healthcare applications.
Collapse
Affiliation(s)
- Ylenia Miele
- Department
of Chemistry and Biology, University of
Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Salerno, Italy
| | - Stephen J. Jones
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Federico Rossi
- Department
of Earth, Environmental and Physical Sciences, University of Siena, Pian dei Mantellini 44, 53100 Siena, Italy
| | - Paul A. Beales
- School
of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, U.K.
| | - Annette F. Taylor
- Chemical
and Biological Engineering, University of
Sheffield, Sheffield S1 3JD, U.K.
| |
Collapse
|
7
|
Urbanowicz M, Sadowska K, Paziewska-Nowak A, Sołdatowska A, Pijanowska DG. Highly Stable Potentiometric (Bio)Sensor for Urea and Urease Activity Determination. MEMBRANES 2021; 11:membranes11110898. [PMID: 34832127 PMCID: PMC8623495 DOI: 10.3390/membranes11110898] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 11/23/2022]
Abstract
There is growing interest for bioanalytical tools that might be designed for a specific user, primarily for research purposes. In this perspective, a new, highly stable potentiometric sensor based on glassy carbon/polyazulene/NH4+-selective membrane was developed and utilized for urease activity determination. Urease–urea interaction studies were carried out and the Michaelis–Menten constant was established for this enzymatic reaction. Biofunctionalization of the ammonium ion-selective sensor with urease lead to urea biosensor with remarkably good potential stability (drift coefficient ~0.9 mV/h) and short response time (t95% = 36 s). The prepared biosensor showed the Nernstian response (S = 52.4 ± 0.7 mV/dec) in the urea concentration range from 0.01 to 20 mM, stable for the experimental time of 60 days. In addition, some insights into electrical properties of the ion-to-electron transducing layer resulting from impedance spectroscopy measurements are presented. Based on the RCQ equivalent circuits comparison, it can be drawn that the polyazulene (PAz) layer shows the least capacitive behavior, which might result in good time stability of the sensor in respect to response as well as potential E0. Both the polyazulene-based solid-contact ion selective electrodes and urea biosensors were successfully used in trial studies for determination of ammonium ion and urea in human saliva samples. The accuracy of ammonium ion and urea levels determination by potentiometric method was confirmed by two reference spectrophotometric methods.
Collapse
|
8
|
Nordin N, Bordonali L, Davoodi H, Ratnawati ND, Gygli G, Korvink JG, Badilita V, MacKinnon N. Real‐Time NMR Monitoring of Spatially Segregated Enzymatic Reactions in Multilayered Hydrogel Assemblies**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Nurdiana Nordin
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
- Department of Chemistry Faculty of Science University of Malaya Kuala Lumpur Malaysia
| | - Lorenzo Bordonali
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Hossein Davoodi
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Novindi Dwi Ratnawati
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Gudrun Gygli
- Institute of Biological Interfaces-1 Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Jan G. Korvink
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Vlad Badilita
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| | - Neil MacKinnon
- Institute of Microstructure Technology Karlsruhe Institute of Technology Eggenstein-Leopoldshafen Germany
| |
Collapse
|
9
|
Nordin N, Bordonali L, Davoodi H, Ratnawati ND, Gygli G, Korvink JG, Badilita V, MacKinnon N. Real-Time NMR Monitoring of Spatially Segregated Enzymatic Reactions in Multilayered Hydrogel Assemblies*. Angew Chem Int Ed Engl 2021; 60:19176-19182. [PMID: 34132012 PMCID: PMC8457052 DOI: 10.1002/anie.202103585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 05/11/2021] [Indexed: 11/16/2022]
Abstract
Compartmentalized chemical reactions at the microscale are important in biotechnology, yet monitoring the molecular content at these small scales is challenging. To address this challenge, we integrate a compact, reconfigurable reaction cell featuring electrochemical functionality with high‐resolution NMR spectroscopy. We demonstrate the operation of this system by monitoring the activity of enzymes immobilized in chemically distinct layers within a multi‐layered chitosan hydrogel assembly. As a benchmark, we observed the parallel activities of urease (Urs), catalase (Cat), and glucose oxidase (GOx) by monitoring reagent and product concentrations in real‐time. Simultaneous monitoring of an independent enzymatic process (Urs) together with a cooperative process (GOx + Cat) was achieved, with chemical conversion modulation of the GOx + Cat process demonstrated by varying the order in which the hydrogel was assembled.
Collapse
Affiliation(s)
- Nurdiana Nordin
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.,Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Lorenzo Bordonali
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Hossein Davoodi
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Novindi Dwi Ratnawati
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Gudrun Gygli
- Institute of Biological Interfaces-1, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Jan G Korvink
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Vlad Badilita
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Neil MacKinnon
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
10
|
Akkas T, Zakharyuta A, Taralp A, Ow-Yang CW. Cross-linked enzyme lyophilisates (CLELs) of urease: A new method to immobilize ureases. Enzyme Microb Technol 2020; 132:109390. [DOI: 10.1016/j.enzmictec.2019.109390] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 12/31/2022]
|
11
|
Alptekin Ö. Üreazın modifiye edilmiş florisile kovalent immobilizasyonu ve serbest ve immobilize üreazın karakterizasyonu. CUKUROVA MEDICAL JOURNAL 2019. [DOI: 10.17826/cumj.453980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
12
|
Mazzei L, Cianci M, Benini S, Ciurli S. The Impact of pH on Catalytically Critical Protein Conformational Changes: The Case of the Urease, a Nickel Enzyme. Chemistry 2019; 25:12145-12158. [DOI: 10.1002/chem.201902320] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/01/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Luca Mazzei
- Laboratory of Bioinorganic ChemistryDepartment of Pharmacy and BiotechnologyUniversity of Bologna Bologna Italy
| | - Michele Cianci
- Department of Agricultural, Food and Environmental SciencesPolytechnic University of Marche Ancona Italy
| | - Stefano Benini
- Bioorganic Chemistry and Bio-Crystallography LaboratoryFaculty of Science and TechnologyFree University of Bolzano Bolzano Italy
| | - Stefano Ciurli
- Laboratory of Bioinorganic ChemistryDepartment of Pharmacy and BiotechnologyUniversity of Bologna Bologna Italy
| |
Collapse
|
13
|
Alba MD, Cota A, Osuna FJ, Pavón E, Perdigón AC, Raffin F. Bionanocomposites based on chitosan intercalation in designed swelling high-charged micas. Sci Rep 2019; 9:10265. [PMID: 31311956 PMCID: PMC6635363 DOI: 10.1038/s41598-019-46495-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/28/2019] [Indexed: 11/09/2022] Open
Abstract
Bionanocomposites based on layered inorganic components, as clays, and polymers of biological origin, as chitosan, have a major impact in medical and environmental fields, being economical and environmentally friendly materials. Na-Mn micas (n = 2 and 4) with controlled surface charge, high cation exchange capacity and swelling behaviour, are attractive inorganic composite components that exhibit improved adsorption properties compared to other inorganic solids which makes them potentially useful for bionanocomposites. The goal of this research was to explore the potential use of those synthetic brittle micas to form eco-friendly bionanocomposites with chitosan biopolymer. Hence, chitosan-mica bionanocomposites were prepared by ion-exchange reaction between chitosan solution and synthetic high charge mica. X-ray diffraction, Fourier transform infrared spectroscopy, thermal analysis, MAS-NMR spectroscopy and zeta-potential have been employed for bionanocomposites characterization. The results showed that the adsorption of chitosan is effective, although a chitosan portion remains in the outer surface being hydrogen-bonded to the tetrahedral sheet of the silicate.
Collapse
Affiliation(s)
- María D Alba
- Instituto Ciencia de los Materiales de Sevilla, ICMS, (CSIC-US), Avda. Americo Vespucio, 49, 41092, Sevilla, Spain.
| | - Agustín Cota
- Laboratorio de Rayos X, CITIUS, (Universidad de Sevilla), Avda. Reina Mercedes, 4, 41012, Sevilla, Spain
| | - Francisco J Osuna
- Instituto Ciencia de los Materiales de Sevilla, ICMS, (CSIC-US), Avda. Americo Vespucio, 49, 41092, Sevilla, Spain
| | - Esperanza Pavón
- Instituto Ciencia de los Materiales de Sevilla, ICMS, (CSIC-US), Avda. Americo Vespucio, 49, 41092, Sevilla, Spain
| | - Ana C Perdigón
- Departamento de Química e Ingeniería de Procesos y Recursos, Universidad Cantabria. Avda. Los Castros s/n, 39005, Santander, Spain
| | - Florian Raffin
- École Nationale Supérieure de Chimie de Lille (E.N.S.C.L). Cité Scientifique - Bât 7. Avenue Mendeleïev CS 90108, 59652 Villeneuve D'ascq, Cedex, France
| |
Collapse
|
14
|
Robidillo CJT, Aghajamali M, Faramus A, Sinelnikov R, Veinot JGC. Interfacing enzymes with silicon nanocrystals through the thiol-ene reaction. NANOSCALE 2018; 10:18706-18719. [PMID: 30270384 DOI: 10.1039/c8nr05368e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This study reports the preparation of functional bioinorganic hybrids, through application of the thiol-ene reaction, that exhibit catalytic activity and photoluminescent properties from enzymes and freestanding silicon nanocrystals. Thermal hydrosilylation of 1,7-octadiene and alkene-terminated poly(ethylene oxide)methyl ether with hydride-terminated silicon nanocrystals afforded nanocrystals functionalized with alkene residues and poly(ethylene oxide) moieties. These silicon nanocrystals were conjugated with representative enzymes through the photochemical thiol-ene reaction to afford bioinorganic hybrids that are dispersible and photostable in buffer, and that exhibit photoluminescence (λmax = 630 nm) and catalytic activity. They were characterized using Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), dynamic light scattering analysis (DLS), absorption spectroscopy, steady-state and time-resolved photoluminescence spectroscopy, and pertinent enzyme activity assays. The general derivatization approach presented for interfacing enzymes with biocompatible silicon nanocrystals has far reaching implications for many applications ranging from sensors to therapeutic agents. The bioinorganic hybrids presented herein have potential applications in the chemical detection of nitrophenyl esters and urea. They can also be employed in enzyme-based theranostics as they combine long-lived silicon nanocrystal photoluminescence with substrate-specific enzymatic activity.
Collapse
|
15
|
Jing ZW, Luo M, Jia YY, Li C, Zhou SY, Mei QB, Zhang BL. Anti-Helicobacterpylori effectiveness and targeted delivery performance of amoxicillin-UCCs-2/TPP nanoparticles based on ureido-modified chitosan derivative. Int J Biol Macromol 2018; 115:367-374. [PMID: 29660462 DOI: 10.1016/j.ijbiomac.2018.04.070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 02/07/2023]
Abstract
The amoxicillin-UCCs-2/TPP nanoparticles constructed with ureido-modified chitosan derivative UCCs-2 and sodium tripolyphosphate (TPP) played an important role to deliver drug to achieve more efficacious and specific eradication of Helicobacterpylori (H. pylori) in vitro. In this study, the anti-H. pylori effectiveness in vivo and uptake mechanism was investigated in details, including the effect of temperature, pH values and the addition of competitive substrate urea on uptake. Compared with unmodified nanoparticles, a more efficacious and specific anti-H. pylori activities were obtained in vivo by using this biological chitosan derivative UCCs-2. Histological staining and immunological analysis verified that the amoxicillin-UCCs-2/TPP nanoparticles could diminish the proinflammatory cytokines levels and alleviate the inflammatory damages caused by H. pylori infection. The uredio-modified nanoparticles also have favorable gastric retention property, which is beneficial for the oral drug delivery to targeted eradicate H. pylori infection in stomach. These findings suggest that this targeted drug delivery system may serve for specific treatment of H. pylori infection both in vitro and in vivo, which can also be used as promising nanocarriers for other therapeutic reagents to target H. pylori.
Collapse
Affiliation(s)
- Zi-Wei Jing
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Min Luo
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Yi-Yang Jia
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China
| | - Chen Li
- Key Laboratory of Gastrointestinal Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Si-Yuan Zhou
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Gastrointestinal Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Qi-Bing Mei
- Key Laboratory of Gastrointestinal Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Bang-Le Zhang
- Department of Pharmaceutics, School of Pharmacy, Fourth Military Medical University, Xi'an 710032, China; Key Laboratory of Gastrointestinal Pharmacology of the State Administration of Traditional Chinese Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
16
|
Bánsági T, Taylor AF. Switches induced by quorum sensing in a model of enzyme-loaded microparticles. J R Soc Interface 2018. [PMID: 29514986 DOI: 10.1098/rsif.2017.0945] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Quorum sensing refers to the ability of bacteria and other single-celled organisms to respond to changes in cell density or number with population-wide changes in behaviour. Here, simulations were performed to investigate quorum sensing in groups of diffusively coupled enzyme microparticles using a well-characterized autocatalytic reaction which raises the pH of the medium: hydrolysis of urea by urease. The enzyme urease is found in both plants and microorganisms, and has been widely exploited in engineering processes. We demonstrate how increases in group size can be used to achieve a sigmoidal switch in pH at high enzyme loading, oscillations in pH at intermediate enzyme loading and a bistable, hysteretic switch at low enzyme loading. Thus, quorum sensing can be exploited to obtain different types of response in the same system, depending on the enzyme concentration. The implications for microorganisms in colonies are discussed, and the results could help in the design of synthetic quorum sensing for biotechnology applications such as drug delivery.
Collapse
Affiliation(s)
- Tamás Bánsági
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Annette F Taylor
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
17
|
Krajewska B. Urease-aided calcium carbonate mineralization for engineering applications: A review. J Adv Res 2017; 13:59-67. [PMID: 30094083 PMCID: PMC6077181 DOI: 10.1016/j.jare.2017.10.009] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 12/21/2022] Open
Abstract
Inducing calcium carbonate precipitation is another important function of urease in nature. The process takes advantage of the supply of carbonate ions derived from urea hydrolysis and of an increase in pH generated by the reaction, effects that in the presence of Ca2+ ions lead to the precipitation of CaCO3. Further to its importance in nature, if performed in a biomimetic manner, the urease-aided CaCO3 mineralization offers enormous potential in innovative engineering applications as an eco-friendly technique operative under mild conditions, to be used for remediation and cementation/deposition in field applications in situ. These include among others, the strengthening and consolidation of soil/sand, the protection and restoration of stone and concrete structures, conservation of stone cultural heritage materials, cleaning waste- and groundwater of toxic metals and radionuclides, and plugging geological formations for the enhancement of oil recovery and geologic CO2 sequestration. In view of the potential of this newly emerging interdisciplinary branch of engineering, this article presents the principles of urease-aided calcium carbonate mineralization apposed to other biomineralization processes, and reviews the advantages and limitations of the technique compared to the conventional techniques presently in use. Further, it presents areas of its existing and potential applications, notably in geotechnical, construction and environmental engineering, and its future perspectives.
Collapse
|
18
|
Mazzei L, Cianci M, Contaldo U, Musiani F, Ciurli S. Urease Inhibition in the Presence of N-(n-Butyl)thiophosphoric Triamide, a Suicide Substrate: Structure and Kinetics. Biochemistry 2017; 56:5391-5404. [DOI: 10.1021/acs.biochem.7b00750] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luca Mazzei
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michele Cianci
- Department
of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Umberto Contaldo
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Francesco Musiani
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Stefano Ciurli
- Laboratory
of Bioinorganic Chemistry, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| |
Collapse
|
19
|
|
20
|
Chen ZJ, Chen YN, Xu CN, Zhao SS, Cao QY, Qian SS, Qin J, Zhu HL. Synthesis, crystal structures, molecular docking, and in vitro biological activities evaluation of transition metal complexes with 4-(3,4-dichlorophenyl) piperazine-1-carboxylic acid. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.03.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
21
|
Yang DD, Chen YN, Wu YS, Wang R, Chen ZJ, Qin J, Qian SS, Zhu HL. Synthesis, crystal structures, molecular docking, and in vitro biological activities of transition metals with 4-(2,3-dichlorophenyl)piperazine-1-carboxylic acid. Bioorg Med Chem Lett 2016; 26:3295-3299. [DOI: 10.1016/j.bmcl.2016.05.051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/20/2016] [Accepted: 05/18/2016] [Indexed: 12/20/2022]
|
22
|
A combined temperature-pH study of urease kinetics. Assigning pKa values to ionizable groups of the active site involved in the catalytic reaction. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.11.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Jiang XY, Sheng LQ, Song CF, Du NN, Xu HJ, Liu ZD, Chen SS. Mechanism, kinetics, and antimicrobial activities of 2-hydroxy-1-naphthaldehyde semicarbazone as a new Jack bean urease inhibitor. NEW J CHEM 2016. [DOI: 10.1039/c5nj01601k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new inhibitor of jack bean urease, 2-hydroxy-1-naphthaldehyde semicarbazone, was synthesized and employed to investigate the inhibitory mechanism of HNDSC on jack bean urease by kinetic and fluorescence titration assay, and its antibacterial activities were also investigated.
Collapse
Affiliation(s)
- Xue-Yue Jiang
- School of Chemistry and Material Engineering
- Fuyang Normal College
- Fuyang
- China
| | - Liang-Quan Sheng
- School of Chemistry and Material Engineering
- Fuyang Normal College
- Fuyang
- China
- College of Chemistry and Chemical Engineering
| | - Chong-Fu Song
- School of Chemistry and Material Engineering
- Fuyang Normal College
- Fuyang
- China
| | - Na-Na Du
- School of Chemistry and Material Engineering
- Fuyang Normal College
- Fuyang
- China
| | - Hua-Jie Xu
- School of Chemistry and Material Engineering
- Fuyang Normal College
- Fuyang
- China
| | - Zhao-Di Liu
- School of Chemistry and Material Engineering
- Fuyang Normal College
- Fuyang
- China
| | - Shui-Sheng Chen
- School of Chemistry and Material Engineering
- Fuyang Normal College
- Fuyang
- China
| |
Collapse
|
24
|
Affiliation(s)
- Michael J Maroney
- Department of Chemistry, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | | |
Collapse
|
25
|
Dong X, Guo T, Li Y, Cui Y, Wang Q. Synthesis, structure and urease inhibition studies of Schiff base copper(II) complexes with planar four-coordinate copper(II) centers. J Inorg Biochem 2013; 127:82-9. [DOI: 10.1016/j.jinorgbio.2013.07.036] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Revised: 07/27/2013] [Accepted: 07/27/2013] [Indexed: 12/21/2022]
|
26
|
Activity and stability of urease entrapped in thermosensitive poly(N-isopropylacrylamide-co-poly(ethyleneglycol)-methacrylate) hydrogel. Bioprocess Biosyst Eng 2013; 37:235-43. [PMID: 23771178 DOI: 10.1007/s00449-013-0990-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 05/29/2013] [Indexed: 12/27/2022]
Abstract
Urease was entrapped in thermally responsive poly(N-isopropylacrylamide-co-poly(ethyleneglycol)-methacrylate), p[NIPAM-p(PEG)-MA], copolymer hydrogels. The copolymer membrane shows temperature-responsive properties similar to conventional p(NIPAM) hydrogels, which reversibly swell below and de-swell above the lower critical solution temperature of p(NIPAM) hydrogel at around 32 °C. The retained activities of the entrapped urease (in p[NIPAM-p(PEG)-MA]-4 hydrogels) were between 83 and 53% compared to that of the same quantity of free enzyme. Due to the thermo-responsive character of the hydrogel matrix, the maximum activity was achieved at around 25 °C with the immobilized urease. Optimum pH was the same for both free and entrapped enzyme. Operational, thermal and storage stabilities of the enzyme were found to increase with entrapment of urease in the thermoresponsive hydrogel matrixes. As for reusability, the immobilized urease retained 89% of its activity after ten repeated uses.
Collapse
|
27
|
Li Y, Tan W, Koopal LK, Wang M, Liu F, Norde W. Influence of soil humic and fulvic acid on the activity and stability of lysozyme and urease. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5050-5056. [PMID: 23614609 DOI: 10.1021/es3053027] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Humic substances (HS), including humic acids (HA) and fulvic acids (FA), are important components of soil systems. HS form strong complexes with oppositely charged proteins, which will lead to changes in the enzyme activity. The effect of soil HS on the activity and stability of two enzymes was investigated as a function of pH, ionic strength, and mass ratio HS/enzyme. Humic acid (JGHA) and fulvic acid (JGFA) are negatively charged, lysozyme is net positive at pH values below 10.4, and urease is net positive below pH 5.2 or net negative above pH 5.2. The enzyme activities in the HS-enzyme complexes were suppressed when the enzymes were oppositely charged to the HS. The largest activity suppression was observed around the mass ratio HS/enzyme where the HS-protein complex was at its isoelectric point (IEP). At the IEP strong aggregation of the complexes led to encapsulation of the enzyme. The ionic strength was important; an increase decreased complex formation, but increased aggregation. Due to the larger hydrophobicity of JGHA than JGFA, the reduction in enzyme activity was stronger for JGHA. The enzyme stability also decreased maximally at mass ratio around the IEP of the complex when HS and protein were oppositely charged. When urease and HS were both negatively charged no complexes were formed, but the presence of JGHA or JGFA improved the activity and stability of the enzyme.
Collapse
Affiliation(s)
- Yan Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, P R China
| | | | | | | | | | | |
Collapse
|
28
|
Wrobel MM, Bánsági T, Scott SK, Taylor AF, Bounds CO, Carranza A, Pojman JA. pH wave-front propagation in the urea-urease reaction. Biophys J 2013; 103:610-615. [PMID: 22947878 DOI: 10.1016/j.bpj.2012.06.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/06/2012] [Accepted: 06/14/2012] [Indexed: 11/27/2022] Open
Abstract
The urease-catalyzed hydrolysis of urea displays feedback that results in a switch from acid (pH ~3) to base (pH ~9) after a controllable period of time (from 10 to >5000 s). Here we show that the spatially distributed reaction can support pH wave fronts propagating with a speed of the order of 0.1-1 mm min(-1). The experimental results were reproduced qualitatively in reaction-diffusion simulations including a Michaelis-Menten expression for the urease reaction with a bell-shaped rate-pH dependence. However, this model fails to predict that at lower enzyme concentrations, the unstirred reaction does not always support fronts when the well-stirred reaction still rapidly switches to high pH.
Collapse
Affiliation(s)
| | - Tamás Bánsági
- School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Stephen K Scott
- School of Chemistry, University of Leeds, Leeds, United Kingdom
| | - Annette F Taylor
- School of Chemistry, University of Leeds, Leeds, United Kingdom.
| | - Chris O Bounds
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana
| | - Arturo Carranza
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana
| | - John A Pojman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
29
|
Abstract
Complexation reaction between Yb3+and human serum albumin is examined using isothermal titration calorimetry (ITC). The extension solvation theory was used to reproduce the enthalpies of HAS + Yb3+interactions over the whole range of Yb3+concentrations. The binding parameters recovered from this model were attributed to the structural change of HSA. The results show that Yb3+ions bind to HSA with three equivalent affinity sites. It was found that in the high concentrations of the ytterbium ions, the HSA structure was destabilized.
Collapse
|
30
|
Du N, Chen M, Liu Z, Sheng L, Xu H, Chen S. Kinetics and mechanism of jack bean urease inhibition by Hg2+. Chem Cent J 2012; 6:154. [PMID: 23228101 PMCID: PMC3537586 DOI: 10.1186/1752-153x-6-154] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/30/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Jack bean urease (EC 3.5.1.5) is a metalloenzyme, which catalyzes the hydrolysis of urea to produce ammonia and carbon dioxide. The heavy metal ions are common inhibitors to control the rate of the enzymatic urea hydrolysis, which take the Hg2+ as the representative. Hg2+ affects the enzyme activity causing loss of the biological function of the enzyme, which threatens the survival of many microorganism and plants. However, inhibitory kinetics of urease by the low concentration Hg2+ has not been explored fully. In this study, the inhibitory effect of the low concentration Hg2+ on jack bean urease was investigated in order to elucidate the mechanism of Hg2+ inhibition. RESULTS According to the kinetic parameters for the enzyme obtained from Lineweaver-Burk plot, it is shown that the Km is equal to 4.6±0.3 mM and Vm is equal to 29.8±1.7 μmol NH3/min mg. The results show that the inhibition of jack bean urease by Hg2+ at low concentration is a reversible reaction. Equilibrium constants have been determined for Hg2+ binding with the enzyme or the enzyme-substrate complexes (Ki =0.012 μM). The results show that the Hg2+ is a noncompetitive inhibitor. In addition, the kinetics of enzyme inhibition by the low concentration Hg2+ has been studied using the kinetic method of the substrate reaction. The results suggest that the enzyme first reversibly and quickly binds Hg2+ and then undergoes a slow reversible course to inactivation. Furthermore, the rate constant of the forward reactions (k+0) is much larger than the rate constant of the reverse reactions (k-0). By combining with the fact that the enzyme activity is almost completely lost at high concentration, the enzyme is completely inactivated when the Hg2+ concentration is high enough. CONCLUSIONS These results suggest that Hg2+ has great impacts on the urease activity and the established inhibition kinetics model is suitable.
Collapse
Affiliation(s)
- Nana Du
- Fuyang Normal College, College of Chemistry and Chemical Engineering, Fuyang, 236037, People’s Republic of China
| | - Mingming Chen
- Fuyang Normal College, College of Chemistry and Chemical Engineering, Fuyang, 236037, People’s Republic of China
- Anhui University, College of Chemistry and Chemical Engineering, Hefei, 230039, People’s Republic of China
| | - Zhaodi Liu
- Fuyang Normal College, College of Chemistry and Chemical Engineering, Fuyang, 236037, People’s Republic of China
| | - Liangquan Sheng
- Fuyang Normal College, College of Chemistry and Chemical Engineering, Fuyang, 236037, People’s Republic of China
- Anhui University, College of Chemistry and Chemical Engineering, Hefei, 230039, People’s Republic of China
| | - Huajie Xu
- Fuyang Normal College, College of Chemistry and Chemical Engineering, Fuyang, 236037, People’s Republic of China
| | - Shuisheng Chen
- Fuyang Normal College, College of Chemistry and Chemical Engineering, Fuyang, 236037, People’s Republic of China
| |
Collapse
|
31
|
Temperature- and pressure-dependent stopped-flow kinetic studies of jack bean urease. Implications for the catalytic mechanism. J Biol Inorg Chem 2012; 17:1123-34. [PMID: 22890689 PMCID: PMC3442171 DOI: 10.1007/s00775-012-0926-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/14/2012] [Indexed: 12/03/2022]
Abstract
Abstract Urease, a Ni-containing metalloenzyme, features an activity that has profound medical and agricultural implications. The mechanism of this activity, however, has not been as yet thoroughly established. Accordingly, to improve its understanding, in this study we analyzed the steady-state kinetic parameters of the enzyme (jack bean), KM and kcat, measured at different temperatures and pressures. Such an analysis is useful as it provides information on the molecular nature of the intermediate and transition states of the catalytic reaction. We measured the parameters in a noninteracting buffer using a stopped-flow technique in the temperature range 15–35 °C and in the pressure range 5–132 MPa, the pressure-dependent measurements being the first of their kind performed for urease. While temperature enhanced the activity of urease, pressure inhibited the enzyme; the inhibition was biphasic. Analyzing KM provided the characteristics of the formation of the ES complex, and analyzing kcat, the characteristics of the activation of ES. From the temperature-dependent measurements, the energetic parameters were derived, i.e. thermodynamic ΔHo and ΔSo for ES formation, and kinetic ΔH≠ and ΔS≠ for ES activation, while from the pressure-dependent measurements, the binding ΔVb and activation \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ \Updelta V_{\rm cat}^{ \ne } $$\end{document} volumes were determined. The thermodynamic and activation parameters obtained are discussed in terms of the current proposals for the mechanism of the urease reaction, and they are found to support the mechanism proposed by Benini et al. (Structure 7:205–216; 1999), in which the Ni–Ni bridging hydroxide—not the terminal hydroxide—is the nucleophile in the catalytic reaction. Graphical abstract ![]()
Collapse
|
32
|
Nikoleli GP, Israr MQ, Tzamtzis N, Nikolelis DP, Willander M, Psaroudakis N. Structural Characterization of Graphene Nanosheets for Miniaturization of Potentiometric Urea Lipid Film Based Biosensors. ELECTROANAL 2012. [DOI: 10.1002/elan.201200104] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Zhu H, Sun X, Lu J, Wang M, Fang Y, Ge W. The effect of plum juice on the prevention of struvite calculus formationin vitro. BJU Int 2012; 110:E362-7. [DOI: 10.1111/j.1464-410x.2012.11090.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
Rezaei Behbehani G, Saboury AA, Sabbaghy F. A Calorimetric Study on the Interaction of Zinc and Cadmium Ions with Jack Bean Urease. CHINESE J CHEM 2011. [DOI: 10.1002/cjoc.201190102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
35
|
Krajewska B. Hydrogen peroxide-induced inactivation of urease: Mechanism, kinetics and inhibitory potency. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2010.11.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
36
|
Zee YLM, Gahan LR, Schenk G. A Potentially Polymerizable Heterodinuclear FeIIIZnII Purple Acid Phosphatase Mimic. Synthesis, Characterization, and Phosphate Ester Hydrolysis Studies. Aust J Chem 2011. [DOI: 10.1071/ch10424] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
An analogue of the purple acid phosphatase biomimetic 2-((bis(pyridin-2-ylmethyl)amino)methyl)-6-(((2-hydroxybenzyl)(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol has been synthesized. The analogue, 2-((bis(pyridin-2-ylmethyl)amino)methyl)-6-(((2-hydroxy-4-(4-vinylbenzyloxy)benzyl)(pyridin-2-ylmethyl)amino)methyl)-4-methylphenol (H2BPBPMPV) possesses a pendant olefin suitable for copolymerization. Complexation with FeIII/ZnII resulted in the complex [FeIIIZnII(BPBPMPV)(CH3COO)2](ClO4), characterized with mass spectrometry, microanalysis, UV/vis, and IR spectrometry. The catalytic activity of the complex toward bis-(2,4-dinitrophenyl) phosphate was determined, resulting in Km of 4.1 ± 0.6 mM, with kcat 3.8 ± 0.2 × 10–3 s–1 and a bell-shaped pH–rate profile with pKa values of 4.31, 5.66, 8.96, the profile exhibiting residual activity above pH 9.5.
Collapse
|
37
|
Hu G, Pojman JA, Scott SK, Wrobel MM, Taylor AF. Base-Catalyzed Feedback in the Urea−Urease Reaction. J Phys Chem B 2010; 114:14059-63. [DOI: 10.1021/jp106532d] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gang Hu
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States, and School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - John A. Pojman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States, and School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Stephen K. Scott
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States, and School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Magdalena M. Wrobel
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States, and School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Annette F. Taylor
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States, and School of Chemistry, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
38
|
Kantacha A, Buchholz R, Smith SJ, Schenk G, Gahan LR. Phosphate ester cleavage promoted by a tetrameric iron(III) complex. J Biol Inorg Chem 2010; 16:25-32. [DOI: 10.1007/s00775-010-0696-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 08/12/2010] [Indexed: 11/28/2022]
|
39
|
Affiliation(s)
- Barbara Krajewska
- Jagiellonian University, Faculty of Chemistry, 30-060 Kraków, Ingardena 3, Poland
| | - Małgorzata Brindell
- Jagiellonian University, Faculty of Chemistry, 30-060 Kraków, Ingardena 3, Poland
| |
Collapse
|
40
|
Stern E, Vacic A, Li C, Ishikawa FN, Zhou C, Reed MA, Fahmy TM. A nanoelectronic enzyme-linked immunosorbent assay for detection of proteins in physiological solutions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:232-8. [PMID: 19882688 PMCID: PMC2838924 DOI: 10.1002/smll.200901551] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Semiconducting nanowires are promising ultrasensitive, label-free sensors for small molecules, DNA, proteins, and cellular function. Nanowire field-effect transistors (FETs) function by sensing the charge of a bound molecule. However, solutions of physiological ionic strength compromise the detection of specific binding events due to ionic (Debye) screening. A general solution to this limitation with the development of a hybrid nanoelectronic enzyme-linked immunosorbent assay (ne-ELISA) that combines the power of enzymatic conversion of a bound substrate with electronic detection is demonstrated. This novel configuration produces a local enzyme-mediated pH change proportional to the bound ligand concentration. It is shown that nanowire FETs configured as pH sensors can be used for the quantitative detection of interleukin-2 in physiologically buffered solution at concentrations as low as 1.6 pg mL(-1). By successfully bypassing the Debye screening inherent in physiological fluids, the ne-ELISA promises wide applicability for ligand detection in a range of relevant solutions.
Collapse
Affiliation(s)
- Eric Stern
- Department of Biomedical, School of Engineering, Yale University, 15 Prospect St, New Haven, CT 06511, USA
| | - Aleksandar Vacic
- Department of Electrical, School of Engineering, Yale University, 15 Prospect St, New Haven, CT 06511, USA
| | - Chao Li
- Department of Electrical Engineering, University of Southern California, 3737 Watts Way, Los Angeles, CA 90089, USA
| | - Fumiaki N. Ishikawa
- Department of Electrical Engineering, University of Southern California, 3737 Watts Way, Los Angeles, CA 90089, USA
| | - Chongwu Zhou
- Department of Electrical Engineering, University of Southern California 3737 Watts Way, Los Angeles, CA 90089, USA
| | - Mark A. Reed
- Department of Electrical, School of Engineering, Yale University, 15 Prospect St, New Haven, CT 06511, USA
- Department of Applied Physics, School of Engineering, Yale University 15 Prospect St, New Haven, CT 06511, USA
| | - Tarek M. Fahmy
- Department of Biomedical, School of Engineering, Yale University, 15 Prospect St, New Haven, CT 06511, USA
- Department of Chemical Engineering, School of Engineering, Yale University, 15 Prospect St, New Haven, CT 06511, USA
| |
Collapse
|
41
|
A Structural and Calorimetric Study on the Interaction Between Jack Bean Urease and Cyanide Ion. J SOLUTION CHEM 2009. [DOI: 10.1007/s10953-009-9471-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
42
|
Rezaei Behbehani G, Saboury A, Mohebbian M, Tahmasbi Sarvestani S, Poorheravi M. Thermodynamic study of CN− ion inhibition of Jack bean urease using the extended solvation theory. CHINESE CHEM LETT 2009. [DOI: 10.1016/j.cclet.2009.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
|
44
|
Ciofani G, Cascone MG, Serino LP, Lazzeri L. Urease loaded alginate microspheres for blood purification. J Microencapsul 2008; 25:569-76. [DOI: 10.1080/02652040802081227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
45
|
Urea enzymatic hydrolysis reaction: optimization by response surface methodology based on potentiometric measurements. Bioelectrochemistry 2008; 74:176-82. [PMID: 18835542 DOI: 10.1016/j.bioelechem.2008.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Revised: 07/22/2008] [Accepted: 07/29/2008] [Indexed: 11/22/2022]
Abstract
The enzymatic hydrolysis reaction of urea by urease is optimized in this work by the chemometric response surface methodology (RSM), based on an initial rate potentiometric measurement using an NH(4)(+) ion-selective electrode (ISE). In this investigation, the ranges of critical variables determined by a preliminary "one at a time" (OVAT) procedure were used as input for the subsequent RSM chemometric analysis. The RSM quadratic response was found to be quite appropriate for modeling and optimization of the hydrolysis reaction as illustrated by the relatively high value of the determination coefficient (R(2)=90.1%), along with the satisfactory results obtained by the analysis of variance (ANOVA). All the evaluated analytical characteristics of the optimized method such as: the linear calibration curve, the upper and lower detection limits, the within-day precisions at low and at high levels, the assay recovery in pool serum media, along with the activation kinetic parameters, were also reported. Further, in order to check the quality of the optimization and the validity of the model, the assay of urea, both in aqueous laboratory and human serum samples, were performed. It has to be noted that the kinetic initial rate measurement method used in this work, permitted to overcome the general problem of NH(4)(+) ISE low selectivity against Na(+) and K(+) interfering ions in real samples.
Collapse
|
46
|
Marlier JF, Fogle EJ, Cleland WW. A heavy-atom isotope effect and kinetic investigation of the hydrolysis of semicarbazide by urease from jack bean (Canavalia ensiformis). Biochemistry 2008; 47:11158-63. [PMID: 18817416 DOI: 10.1021/bi801338c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A kinetic investigation of the hydrolysis of semicarbazide by urease gives a relatively flat log V/ K versus pH plot between pH 5 and 8. A log V m versus pH plot shows a shift of the optimum V m toward lower pH when compared to urea. These results are explained in terms of the binding of the outer N of the NHNH 2 group in semicarbazide to an active site residue with a relatively low p K a ( approximately 6). Heavy-atom isotope effects for both leaving groups have been determined. For the NHNH 2 side, (15) k obs = 1.0045, whereas for the NH 2 side, (15) k obs = 1.0010. This is evidence that the NHNH 2 group leaves prior to the NH 2 group. Using previously published data from the urease-catalyzed hydrolysis of formamide, the commitment factors for semicarbazide and urea hydrolysis are estimated to be 2.7 and 1.2, respectively. The carbonyl-C isotope effect ( (13) k obs) equals 1.0357, which is consistent with the transition state occurring during either formation or breakdown of the tetrahedral intermediate.
Collapse
Affiliation(s)
- John F Marlier
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, California 93407, USA.
| | | | | |
Collapse
|
47
|
Follmer C. Insights into the role and structure of plant ureases. PHYTOCHEMISTRY 2008; 69:18-28. [PMID: 17706733 DOI: 10.1016/j.phytochem.2007.06.034] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/11/2007] [Accepted: 06/28/2007] [Indexed: 05/11/2023]
Abstract
The broad distribution of ureases in leguminous seeds, as well as the accumulation pattern of the protein during seed maturation, are suggestive of an important physiological role for this enzyme. Since the isolation and characterization of jack bean urease by Sumner in 1926, many investigations have been dedicated to the structural and biological features of this enzyme; nevertheless, many questions still remain. It has been reported that ureases from plants (jack bean and soybean seeds) display biological properties unrelated to their ureolytic activity, notably a high insecticidal activity against Coleoptera (beetles) and Hemiptera (bugs), suggesting that ureases might be involved in plant defense. Besides the insecticidal activity, canatoxin, a jack bean urease isoform, causes convulsions and death in mice and rats, induces indirect hemagglutination (hemilectin activity) and promotes exocytosis in several cell types. Not only plant ureases but also some microbial ureases (found in Bacillus pasteurii and Helicobacter pylori) are able to induce activation of platelets in a process mediated by lipoxygenase-derived metabolites. This review summarizes the biological and structural properties of plant ureases, compares them with those displayed by bacterial ureases, and discusses the significance of these findings.
Collapse
Affiliation(s)
- Cristian Follmer
- Departamento de Físico-Química, Instituto de Química, Universidade Federal do Rio de Janeiro, CT, Bloco A S410, Rio de Janeiro 21941-909, Brazil.
| |
Collapse
|
48
|
Krajewska B, Zaborska W. Jack bean urease: The effect of active-site binding inhibitors on the reactivity of enzyme thiol groups. Bioorg Chem 2007; 35:355-65. [PMID: 17418881 DOI: 10.1016/j.bioorg.2007.02.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 02/24/2007] [Accepted: 02/27/2007] [Indexed: 10/23/2022]
Abstract
In view of the complexity of the role of the active site flap cysteine in the urease catalysis, in this work we studied how the presence of typical active-site binding inhibitors of urease, phenylphosphorodiamidate (PPD), acetohydroxamic acid (AHA), boric acid and fluoride, affects the reactivity of enzyme thiol groups, the active site flap thiol in particular. For that the inhibitor-urease complexes were prepared with excess inhibitors and had their thiol groups titrated with DTNB. The effects observed were analyzed in terms of the structures of the inhibitor-urease complexes reported in the literature. We found that the effectiveness in preventing the active site cysteine from the modification by disulfides, varied among the inhibitors studied, even though they all bind to the active site. The variations were accounted for by different extents of geometrical distortion in the active site that the inhibitors introduced upon binding, leaving the flap either open in AHA-, boric acid- and fluoride-inhibited urease, like in the native enzyme or closed in PPD-inhibited urease. Among the inhibitors, only PPD was found to be able to thoroughly protect the flap cysteines from the further reaction with disulfides, this apparently resulting from the closed conformation of the flap. Accordingly, in practical terms PPD may be regarded as the most suitable inhibitor for active-site protection experiments in inhibition studies of urease.
Collapse
Affiliation(s)
- Barbara Krajewska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Kraków, Poland.
| | | |
Collapse
|