1
|
Riseh RS, Vazvani MG, Kennedy JF. β-glucan-induced disease resistance in plants: A review. Int J Biol Macromol 2023; 253:127043. [PMID: 37742892 DOI: 10.1016/j.ijbiomac.2023.127043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/06/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Systemic acquired resistance (SAR) and induced systemic resistance (ISR) are caused by various factors, including both pathogenic and non-pathogenic ones. β-glucan primarily originates from bacteria and fungi, some species of these organisms work as biological agents in causing diseases. When β-glucan enters plants, it triggers the defense system, leading to various reactions such as the production of proteins related to pathogenicity and defense enzymes. By extracting β-glucan from disturbed microorganisms and using it as an inducing agent, plant diseases can be effectively controlled by activating the plant's defense system. β-glucan plays a crucial role during the interaction between plants and pathogens. Therefore, modeling the plant-pathogen relationship and using the molecules involved in this interaction can help in controlling plant diseases, as pathogens have genes related to resistance against pathogenicity. Thus, it is reasonable to identify and use biological induction agents at a large scale by extracting these compounds.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Mozhgan Gholizadeh Vazvani
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
2
|
Nitrate reductase-dependent nitric oxide plays a key role on MeJA-induced ganoderic acid biosynthesis in Ganoderma lucidum. Appl Microbiol Biotechnol 2020; 104:10737-10753. [PMID: 33064185 DOI: 10.1007/s00253-020-10951-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
Ganoderma lucidum, which contains numerous biologically active compounds, is known worldwide as a medicinal basidiomycete. Because of its application for the prevention and treatment of various diseases, most of artificially cultivated G. lucidum is output to many countries as food, tea, and dietary supplements for further processing. Methyl jasmonate (MeJA) has been reported as a compound that can induce ganoderic acid (GA) biosynthesis, an important secondary metabolite of G. lucidum. Herein, MeJA was found to increase the intracellular level of nitric oxide (NO). In addition, upregulation of GA biosynthesis in the presence of MeJA was abolished when NO was depleted from the culture. This result demonstrated that MeJA-regulated GA biosynthesis might occur via NO signaling. To elucidate the underlying mechanism, we used gene-silenced strains of nitrate reductase (NR) and the inhibitor of NR to illustrate the role of NO in MeJA induction. The results indicated that the increase in GA biosynthesis induced by MeJA was activated by NR-generated NO. Furthermore, the findings indicated that the reduction of NO could induce GA levels in the control group, but NO could also activate GA biosynthesis upon MeJA treatment. Further results indicated that NR silencing reversed the increased enzymatic activity of NOX to generate ROS due to MeJA induction. Importantly, our results highlight the NR-generated NO functions in signaling crosstalk between reactive oxygen species and MeJA. These results provide a good opportunity to determine the potential pathway linking NO to the ROS signaling pathway in fungi treated with MeJA. KEY POINTS: • MeJA increased the intracellular level of nitric oxide (NO) in G. lucidum. • The increase in GA biosynthesis induced by MeJA is activated by NR-generated NO. • NO acts as a signaling molecule between reactive oxygen species (ROS) and MeJA.
Collapse
|
3
|
Penicillium sp. YJM-2013 induces ginsenosides biosynthesis in Panax ginseng adventitious roots by inducing plant resistance responses. CHINESE HERBAL MEDICINES 2020; 12:257-264. [PMID: 36119014 PMCID: PMC9476754 DOI: 10.1016/j.chmed.2020.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/19/2019] [Accepted: 02/12/2020] [Indexed: 01/30/2023] Open
Abstract
Objective Fusarium oxysporum is a common pathogenic fungus in ginseng cultivation. Both pathogens and antagonistic fungi have been reported to induce plant resistance responses, thereby promoting the accumulation of secondary metabolites. The purpose of this experiment is to compare the advantages of one of the two fungi, in order to screen out more effective elicitors. The mechanism of fungal elicitor-induced plant resistance response is supplemented. Methods A gradient dilution and the dural culture were carried out to screen strains. The test strain was identified by morphology and 18 s rDNA. The effect of different concentrations (0, 50, 100, 200, 400 mg/L) of Penicillium sp. YJM-2013 and F. oxysporum on fresh weight and ginsenosides accumulation were tested. Signal molecules transduction, expression of transcription factors and functional genes were investigated to study the induction mechanism of fungal elicitors. Results Antagonistic fungi of F. oxysporum was identified as Penicillium sp. YJM-2013, which reduced root biomass. The total ginsenosides content of Panax ginseng adventitious roots reached the maximum (48.95 ± 0.97 mg/g) treated with Penicillium sp. YJM-2013 at 200 mg/L, higher than control by 2.59-fold, in which protopanoxadiol-type ginsenosides (PPD) were increased by 4.57 times. Moreover, Penicillium sp. YJM-2013 activated defense signaling molecules, up-regulated the expression of PgWRKY 1, 2, 3, 5, 7, 9 and functional genes in ginsenosides synthesis. Conclusion Compared with the pathogenic fungi F. oxysporum, antagonistic fungi Penicillium sp. YJM-2013 was more conducive to the accumulation of ginsenosides in P. ginseng adventitious roots. Penicillium sp. YJM-2013 promoted the accumulation of ginsenosides by intensifying the generation of signal molecules, activating the expression of transcription factors and functional genes.
Collapse
|
4
|
Liu X, Zhu H, Wang L, Bi S, Zhang Z, Meng S, Zhang Y, Wang H, Song C, Ma F. The effects of magnetic treatment on nitrogen absorption and distribution in seedlings of Populus × euramericana 'Neva' under NaCl stress. Sci Rep 2019; 9:10025. [PMID: 31296890 PMCID: PMC6624201 DOI: 10.1038/s41598-019-45719-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 06/05/2019] [Indexed: 01/08/2023] Open
Abstract
A potted experiment with Populus × euramericana ‘Neva’ was carried out to assess whether there are positive effects of magnetic treatment of saline water (MTSW) on nitrogen metabolism under controlled conditions in a greenhouse. Growth properties, nitrogen contents, enzyme activities and metabolite concentrations were determined based on field experiments and laboratory analysis after a 30-day treatment. The results were as follows: (1) Biomass accumulation, root morphological properties and total nitrogen content were improved by MTSW. (2) Magnetization led to a greater increase in nitrate-nitrogen (NO3−-N) content in roots than in leaves, accompanied by greater NO3− efflux and activated nitrate reductase. (3) MTSW led to a higher ammonium-nitrogen (NH4+-N) content and greater uptake of net NH4+ in the leaves than that in the roots. (4) Magnetization stimulated glutamine synthase, glutamate dehydrogenase and glutamate synthase activities, whereas the concentrations of glutathione and oxidized glutathione were increased in leaves but decreased in roots, and the total glutathione content was increased. Overall, these results indicated some beneficial impacts of MTSW on nitrogen translocation under field conditions, especially for equilibrating the distribution of NO3−-N and NH4+-N. Moreover, these findings confirmed the potential of using low-quality water for agriculture.
Collapse
Affiliation(s)
- Xiumei Liu
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, Shandong Agricultural University, Taian, 271018, Shandong, China.,Forestry College of Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Hong Zhu
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, Shandong Agricultural University, Taian, 271018, Shandong, China.,Forestry College of Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Lu Wang
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, Shandong Agricultural University, Taian, 271018, Shandong, China.,Yichun Research Institute of Forestry Science, Yichun, 153000, Heilongjiang, China
| | - Sisheng Bi
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, Shandong Agricultural University, Taian, 271018, Shandong, China.,Forestry College of Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Zhihao Zhang
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, Shandong Agricultural University, Taian, 271018, Shandong, China.,Forestry College of Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Shiyuan Meng
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, Shandong Agricultural University, Taian, 271018, Shandong, China.,Forestry College of Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Ying Zhang
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, Shandong Agricultural University, Taian, 271018, Shandong, China.,Forestry College of Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Huatian Wang
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, Shandong Agricultural University, Taian, 271018, Shandong, China.,Forestry College of Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Chengdong Song
- Taishan Research Institute of Forestry Science, Taian, 271000, Shandong, China
| | - Fengyun Ma
- Key Laboratory of State Forestry Administration for Silviculture of the lower Yellow River, Shandong Agricultural University, Taian, 271018, Shandong, China. .,Forestry College of Shandong Agricultural University, Taian, 271018, Shandong, China.
| |
Collapse
|
5
|
Belchí-Navarro S, Rubio MA, Pedreño MA, Almagro L. Production and localization of hydrogen peroxide and nitric oxide in grapevine cells elicited with cyclodextrins and methyl jasmonate. JOURNAL OF PLANT PHYSIOLOGY 2019; 237:80-86. [PMID: 31030109 DOI: 10.1016/j.jplph.2019.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 03/11/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
The use of methyl jasmonate, alone or in combination with cyclic oligosaccharides such as cyclodextrins, has proved to be a successful strategy for increasing the production of trans-resveratrol in Vitis vinifera cell cultures. However, understanding the intracellular signalling pathways involved in its production would improve the management of grapevine cells as biofactories of this high-value natural product. The results obtained herein confirm the involvement of hydrogen peroxide and nitric oxide in cyclodextrins and methyl jasmonate-induced trans-resveratrol production in grapevine cell cultures. In fact, methyl jasmonate led to maximal intracellular levels of hydrogen peroxide and nitric oxide after 24 h of treatment, but extracellular hydrogen peroxide was only detected in the culture medium when grapevine cells were treated with cyclodextrins. The results derived from the cytochemical detection of H2O2 in elicited grapevine cell cultures also suggested that the combined treatment with cyclodextrins and methyl jasmonate not only increased the production of H2O2 but also released cell wall fragments with electron-dense deposits. Moreover, nitric oxide was localized in all the cellular compartments, particularly in the nucleus and cytoplasmic organelles, whereas hydrogen peroxide was mainly found in cytoplasmic areas close to the cell wall, and in the nucleoplasm.
Collapse
Affiliation(s)
- Sarai Belchí-Navarro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| | - Marina Abellán Rubio
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| | - María Angeles Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain
| | - Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100, Murcia, Spain.
| |
Collapse
|
6
|
Starý T, Satková P, Piterková J, Mieslerová B, Luhová L, Mikulík J, Kašparovský T, Petřivalský M, Lochman J. The elicitin β-cryptogein's activity in tomato is mediated by jasmonic acid and ethylene signalling pathways independently of elicitin-sterol interactions. PLANTA 2019; 249:739-749. [PMID: 30374914 DOI: 10.1007/s00425-018-3036-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
The level of resistance induced in different tomato genotypes after β-CRY treatment correlated with the upregulation of defence genes, but not sterol binding and involved ethylene and jasmonic acid signalling. Elicitins, a family of small proteins secreted by Phytophthora and Pythium spp., are the most well-known microbe-associated molecular patterns of oomycetes, a lineage of fungus-like organisms that include many economically significant crop pathogens. The responses of tomato plants to elicitin INF1 produced by Phytophthora infestans have been studied extensively. Here, we present studies on the responses of three tomato genotypes to β-cryptogein (β-CRY), a potent elicitin secreted by Phytophthora cryptogea that induces hypersensitive response (HR) cell death in tobacco plants and confers greater resistance to oomycete infection than acidic elicitins like INF1. We also studied β-CRY mutants impaired in sterol binding (Val84Phe) and interaction with the binding site on tobacco plasma membrane (Leu41Phe), because sterol binding was suggested to be important in INF1-induced resistance. Treatment with β-CRY or the Val84Phe mutant induced resistance to powdery mildew caused by the pathogen Pseudoidium neolycopersici, but not the HR cell death observed in tobacco and potato plants. The level of resistance induced in different tomato genotypes correlated with the upregulation of defence genes including defensins, β-1,3-glucanases, heveins, chitinases, osmotins, and PR1 proteins. Treatment with the Leu41Phe mutant did not induce this upregulation, suggesting similar elicitin recognition in tomato and tobacco. However, here β-CRY activated ethylene and jasmonic acid signalling, but not salicylic acid signalling, demonstrating that elicitins activate different downstream signalling processes in different plant species. This could potentially be exploited to enhance the resistance of Phytophthora-susceptible crops.
Collapse
Affiliation(s)
- Tomáš Starý
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Pavla Satková
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Jana Piterková
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Barbora Mieslerová
- Department of Botany, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Jaromír Mikulík
- Laboratory of Growth Regulators, Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Institute of Experimental Botany ASCR, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Tomáš Kašparovský
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137, Brno, Czech Republic.
| |
Collapse
|
7
|
Baldé A, Neves D, García-Breijo FJ, Pais MS, Cravador A. De novo assembly of Phlomis purpurea after challenging with Phytophthora cinnamomi. BMC Genomics 2017; 18:700. [PMID: 28877668 PMCID: PMC5585901 DOI: 10.1186/s12864-017-4042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 08/09/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phlomis plants are a source of biological active substances with potential applications in the control of phytopathogens. Phlomis purpurea (Lamiaceae) is autochthonous of southern Iberian Peninsula and Morocco and was found to be resistant to Phytophthora cinnamomi. Phlomis purpurea has revealed antagonistic effect in the rhizosphere of Quercus suber and Q. ilex against P. cinnamomi. Phlomis purpurea roots produce bioactive compounds exhibiting antitumor and anti-Phytophthora activities with potential to protect susceptible plants. Although these important capacities of P. purpurea have been demonstrated, there is no transcriptomic or genomic information available in public databases that could bring insights on the genes underlying this anti-oomycete activity. RESULTS Using Illumina technology we obtained a de novo assembly of P. purpurea transcriptome and differential transcript abundance to identify putative defence related genes in challenged versus non-challenged plants. A total of 1,272,600,000 reads from 18 cDNA libraries were merged and assembled into 215,739 transcript contigs. BLASTX alignment to Nr NCBI database identified 124,386 unique annotated transcripts (57.7%) with significant hits. Functional annotation identified 83,550 out of 124,386 unique transcripts, which were mapped to 141 pathways. 39% of unigenes were assigned GO terms. Their functions cover biological processes, cellular component and molecular functions. Genes associated with response to stimuli, cellular and primary metabolic processes, catalytic and transporter functions were among those identified. Differential transcript abundance analysis using DESeq revealed significant differences among libraries depending on post-challenge times. Comparative cyto-histological studies of P. purpurea roots challenged with P. cinnamomi zoospores and controls revealed specific morphological features (exodermal strips and epi-cuticular layer), that may provide a constitutive efficient barrier against pathogen penetration. Genes involved in cutin biosynthesis and in exodermal Casparian strips formation were up-regulated. CONCLUSIONS The de novo assembly of transcriptome using short reads for a non-model plant, P. purpurea, revealed many unique transcripts useful for further gene expression, biological function, genomics and functional genomics studies. The data presented suggest a combination of a constitutive resistance and an increased transcriptional response from P. purpurea when challenged with the pathogen. This knowledge opens new perspectives for the understanding of defence responses underlying pathogenic oomycete/plant interaction upon challenge with P. cinnamomi.
Collapse
Affiliation(s)
- Aladje Baldé
- Plant Molecular Biology and Biotechnology Lab, Center for Biosystems (BioSys), Functional and Integrative Genomics (BioFIG), Edifício C2, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
- Present Address: Universidade Jean Piaget, Bissau, Guinea-Bissau
| | - Dina Neves
- Faculdade de Ciências e Tecnologia, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Francisco J. García-Breijo
- Departamento de Ecosistemas Agroforestales, Universidad Politécnica de Valencia, Camino de Vera s/n, 46022 Valencia, Spain
| | - Maria Salomé Pais
- Plant Molecular Biology and Biotechnology Lab, Center for Biosystems (BioSys), Functional and Integrative Genomics (BioFIG), Edifício C2, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Alfredo Cravador
- Centre for Mediterranean Bioresources and Food (MeditBio), FCT, Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
8
|
Zhai X, Jia M, Chen L, Zheng CJ, Rahman K, Han T, Qin LP. The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants. Crit Rev Microbiol 2016; 43:238-261. [PMID: 27936989 DOI: 10.1080/1040841x.2016.1201041] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A wide range of external stress stimuli trigger plant cells to undergo complex network of reactions that ultimately lead to the synthesis and accumulation of secondary metabolites. Accumulation of such metabolites often occurs in plants subjected to stresses including various elicitors or signal molecules. Throughout evolution, endophytic fungi, an important constituent in the environment of medicinal plants, have known to form long-term stable and mutually beneficial symbiosis with medicinal plants. The endophytic fungal elicitor can rapidly and specifically induce the expression of specific genes in medicinal plants which can result in the activation of a series of specific secondary metabolic pathways resulting in the significant accumulation of active ingredients. Here we summarize the progress made on the mechanisms of fungal elicitor including elicitor signal recognition, signal transduction, gene expression and activation of the key enzymes and its application. This review provides guidance on studies which may be conducted to promote the efficient synthesis and accumulation of active ingredients by the endogenous fungal elicitor in medicinal plant cells, and provides new ideas and methods of studying the regulation of secondary metabolism in medicinal plants.
Collapse
Affiliation(s)
- Xin Zhai
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Min Jia
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Ling Chen
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Cheng-Jian Zheng
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Khalid Rahman
- b Department of Physiological Biochemistry, Faculty of Science, School of Pharmacy and Biomolecular Sciences , Liverpool John Moores University , Liverpool , UK
| | - Ting Han
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| | - Lu-Ping Qin
- a Department of Pharmacognosy, School of Pharmacy , Second Military Medical University , Shanghai , China
| |
Collapse
|
9
|
De Bleye C, Dumont E, Dispas A, Hubert C, Sacré PY, Netchacovitch L, De Muyt B, Kevers C, Dommes J, Hubert P, Ziemons E. Monitoring of anatabine release by methyl jasmonate elicited BY-2 cells using surface-enhanced Raman scattering. Talanta 2016; 160:754-760. [PMID: 27591672 DOI: 10.1016/j.talanta.2016.08.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/04/2016] [Accepted: 08/05/2016] [Indexed: 11/24/2022]
Abstract
A new application of surface-enhanced Raman scattering (SERS) in the field of plant material analysis is proposed in this study. The aim was to monitor the release of anatabine by methyl jasmonate (MeJa) elicited Bright Yellow-2 (BY-2) cells. Gold nanoparticles (AuNps) were used as SERS substrate. The first step was to study the SERS activity of anatabine in a complex matrix comprising the culture medium and BY-2 cells. The second step was the calibration. This one was successfully performed directly in the culture medium in order to take into account the matrix effect, by spiking the medium with different concentrations of anatabine, leading to solutions ranging from 250 to 5000µgL(-1). A univariate analysis was performed, the intensity of a band situated at 1028cm(-1), related to anatabine, was plotted against the anatabine concentration. A linear relationship was observed with a R(2) of 0.9951. During the monitoring study, after the MeJa elicitation, samples were collected from the culture medium containing BY-2 cells at 0, 24h, 48h, 72h and 96h and were analysed using SERS. Finally, the amount of anatabine released in the culture medium was determined using the response function, reaching a plateau after 72h of 82µg of anatabine released/g of fresh weight (FW) MeJa elicited BY-2 cells.
Collapse
Affiliation(s)
- C De Bleye
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium.
| | - E Dumont
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - A Dispas
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - C Hubert
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - P-Y Sacré
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - L Netchacovitch
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - B De Muyt
- University of Liege (ULg), CEDEVIT (ASBL), Plant and Biology Institute, Plant Molecular Biology and Biotechnology Unit, Sart-Tilman, Quartier Vallée 1, Chemin de la Vallée 4, B22, B-4000 Liege, Belgium
| | - C Kevers
- University of Liege (ULg), CEDEVIT (ASBL), Plant and Biology Institute, Plant Molecular Biology and Biotechnology Unit, Sart-Tilman, Quartier Vallée 1, Chemin de la Vallée 4, B22, B-4000 Liege, Belgium
| | - J Dommes
- University of Liege (ULg), CEDEVIT (ASBL), Plant and Biology Institute, Plant Molecular Biology and Biotechnology Unit, Sart-Tilman, Quartier Vallée 1, Chemin de la Vallée 4, B22, B-4000 Liege, Belgium
| | - Ph Hubert
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| | - E Ziemons
- University of Liege (ULg), CIRM, Department of Pharmacy, Laboratory of Analytical Chemistry, CHU, Quartier Hôpital, Avenue Hippocrate 15, B36, B-4000 Liege, Belgium
| |
Collapse
|
10
|
Sandor R, Der C, Grosjean K, Anca I, Noirot E, Leborgne-Castel N, Lochman J, Simon-Plas F, Gerbeau-Pissot P. Plasma membrane order and fluidity are diversely triggered by elicitors of plant defence. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5173-85. [PMID: 27604805 PMCID: PMC5014163 DOI: 10.1093/jxb/erw284] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although plants are exposed to a great number of pathogens, they usually defend themselves by triggering mechanisms able to limit disease development. Alongside signalling events common to most such incompatible interactions, modifications of plasma membrane (PM) physical properties could be new players in the cell transduction cascade. Different pairs of elicitors (cryptogein, oligogalacturonides, and flagellin) and plant cells (tobacco and Arabidopsis) were used to address the issue of possible modifications of plant PM biophysical properties induced by elicitors and their links to other events of the defence signalling cascade. We observed an increase of PM order whatever the elicitor/plant cell pair used, provided that a signalling cascade was induced. Such membrane modification is dependent on the NADPH oxidase-mediated reactive oxygen species production. Moreover, cryptogein, which is the sole elicitor able to trap sterols, is also the only one able to trigger an increase in PM fluidity. The use of cryptogein variants with altered sterol-binding properties confirms the strong correlation between sterol removal from the PM and PM fluidity enhancement. These results propose PM dynamics as a player in early signalling processes triggered by elicitors of plant defence.
Collapse
Affiliation(s)
- Roman Sandor
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Christophe Der
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Kevin Grosjean
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Iulia Anca
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Elodie Noirot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Nathalie Leborgne-Castel
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Patricia Gerbeau-Pissot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
11
|
Miras-Moreno B, Almagro L, Pedreño MA, Sabater-Jara AB. Enhanced accumulation of phytosterols and phenolic compounds in cyclodextrin-elicited cell suspension culture of Daucus carota. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 250:154-164. [PMID: 27457992 DOI: 10.1016/j.plantsci.2016.06.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Revised: 05/27/2016] [Accepted: 06/10/2016] [Indexed: 06/06/2023]
Abstract
In this work, suspension-cultured cells of Daucus carota were used to evaluate the effect of β-cyclodextrins on the production of isoprenoid and phenolic compounds. The results showed that the phytosterols and phenolic compounds were accumulated in the extracellular medium (15100μgL(-1) and 477.46μgL(-1), respectively) in the presence of cyclodextrins. Unlike the phytosterol and phenolic compound content, β-carotene (1138.03μgL(-1)), lutein (25949.54μgL(-1)) and α-tocopherol (8063.82μgL(-1)) chlorophyll a (1625.13μgL(-1)) and b (9.958 (9958.33μgL(-1)) were mainly accumulated inside the cells. Therefore, cyclodextrins were able to induce the cytosolic mevalonate pathway, increasing the biosynthesis of phytosterols and phenolic compounds, and accumulate them outside the cells. However, in the absence of these cyclic oligosaccharidic elicitors, carrot cells mainly accumulated carotenoids through the methylerythritol 4-phosphate pathway. Therefore, the use of cyclodextrins would allow the extracellular accumulation of both phytosterols and phenolic compounds by diverting the carbon flux towards the cytosolic mevalonate/phenylpropanoid pathway.
Collapse
Affiliation(s)
- Begoña Miras-Moreno
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - Lorena Almagro
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia, Spain.
| | - M A Pedreño
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| | - Ana Belén Sabater-Jara
- Department of Plant Biology, Faculty of Biology, University of Murcia, Campus de Espinardo, E-30100 Murcia, Spain
| |
Collapse
|
12
|
Xu Z, Lei P, Feng X, Xu X, Liang J, Chi B, Xu H. Calcium involved in the poly(γ-glutamic acid)-mediated promotion of Chinese cabbage nitrogen metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 80:144-52. [PMID: 24762787 DOI: 10.1016/j.plaphy.2014.03.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/31/2014] [Indexed: 05/02/2023]
Abstract
Plant growth can reportedly be promoted by poly(γ-glutamic acid) (γ-PGA). However, the underlying mechanism is unknown. To reveal the mechanism of γ-PGA, we designed an experiment that investigated the effect of γ-PGA on the nitrogen metabolism of Chinese cabbage hydroponic cultured at different calcium (Ca) levels and varied exogenous Ca(2+) inhibitors. The results showed that nitrate reductase (NR), glutamine synthetase (GS), glutamate synthase, and glutamate dehydrogenase activities in leaves and roots were obviously enhanced by γ-PGA at the normal Ca(2+) level (4.0 mM). Meanwhile, γ-PGA increased the content of total nitrogen, soluble protein, and soluble amino acids in leaves. However, the promotional effect of γ-PGA on fresh weight weakened when Ca(2+) was inadequate. Moreover, γ-PGA not only induced the influx of extracellular Ca(2+) and Ca(2+) in organelles into cytoplasm, but also increased the Ca(2+)-ATPase level to modify Ca(2+) homeostasis in plant cells. In addition, exogenous Ca(2+) inhibitors significantly suppressed the γ-PGA-mediated promotion of cytoplasmic free Ca(2+) level, calmodulin (CaM) content, GS and glutamate dehydrogenase activities. In summary, γ-PGA accelerated the nitrogen metabolism of plants through the Ca(2+)/CaM signaling pathway, thereby improving the growth of the plant.
Collapse
Affiliation(s)
- Zongqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, PR China; College of Food Science and Light Industry, Nanjing University of Technology, Nanjing 211816, PR China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, PR China; College of Food Science and Light Industry, Nanjing University of Technology, Nanjing 211816, PR China
| | - Xiaohai Feng
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, PR China; College of Food Science and Light Industry, Nanjing University of Technology, Nanjing 211816, PR China; Nanjing Xuankai Bio-Technology Co., Ltd., Nanjing 211816, PR China.
| | - Xianju Xu
- Institute of Agricultural Resource and Environmental Sciences, Jiangsu Academy of Agricultural Sciences, 210014, PR China
| | - Jinfeng Liang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, PR China; College of Food Science and Light Industry, Nanjing University of Technology, Nanjing 211816, PR China; Nanjing Xuankai Bio-Technology Co., Ltd., Nanjing 211816, PR China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, PR China; College of Food Science and Light Industry, Nanjing University of Technology, Nanjing 211816, PR China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing University of Technology, Nanjing 210009, PR China; College of Food Science and Light Industry, Nanjing University of Technology, Nanjing 211816, PR China; Nanjing Xuankai Bio-Technology Co., Ltd., Nanjing 211816, PR China.
| |
Collapse
|
13
|
Benouaret R, Goujon E, Goupil P. Grape marc extract causes early perception events, defence reactions and hypersensitive response in cultured tobacco cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 77:84-9. [PMID: 24561714 DOI: 10.1016/j.plaphy.2014.01.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/28/2014] [Indexed: 05/20/2023]
Abstract
Grape marc extract (GME) showed elicitor activity on suspension-cultured cells of tobacco. The BY-2 cells reacted to GME (0.25% and 0.125%) with a long-sustained pH rise in their growth medium. Using EGTA or LaCl3, we showed that extracellular alkalinization depended on Ca(2+) mobilization. The tobacco BY-2 cells challenged with GME promoted cell death and the upregulation of defence-related genes such as PR3, PAL and CCoAOMT. Cell death rate was quantified using an experimental calibrated Evans Blue assay. The GME-induced cell death was dose-dependent and occurred in 24 h. Longer exposure increased the extent of tobacco cell death. To investigate a potential hypersensitive reaction, we tested the effect of various inhibitors of protein synthesis (cycloheximide) and proteases (aprotinin, pepstatin and E-64) on GME-induced cell death. All these chemicals reduced GME-induced cell death rate in 30 min. Overall, our findings indicate that GME elicits early perception events, defence reactions and cell death requiring protein synthesis and proteases.
Collapse
Affiliation(s)
- R Benouaret
- Clermont Université, Université Blaise Pascal, UMR INRA 547 PIAF, 24 avenue des Landais, BP 10448, 63000 Clermont-Ferrand, France
| | - E Goujon
- Clermont Université, Université Blaise Pascal, UMR INRA 547 PIAF, 24 avenue des Landais, BP 10448, 63000 Clermont-Ferrand, France
| | - P Goupil
- Clermont Université, Université Blaise Pascal, UMR INRA 547 PIAF, 24 avenue des Landais, BP 10448, 63000 Clermont-Ferrand, France.
| |
Collapse
|
14
|
Sabater-Jara AB, Almagro L, Belchí-Navarro S, Martínez-Esteso MJ, Youssef SM, Casado-Vela J, Vera-Urbina JC, Sellés-Marchart S, Bru-Martínez R, Pedreño MA. Suspension-cultured plant cells as a tool to analyze the extracellular proteome. Methods Mol Biol 2013; 1072:407-33. [PMID: 24136538 DOI: 10.1007/978-1-62703-631-3_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
Suspension-cultured cells (SCC) are generally considered the most suitable cell systems to carry out scientific studies, including the extracellular proteome (secretome). SCC are initiated by transferring friable callus fragments into flasks containing liquid culture medium for cell biomass growth, and they are maintained in an orbital shaker to supply the sufficient oxygen that allows cell growth. SCC increase rapidly during the exponential phase and after 10-20 days (depending on the cell culture nature), the growth rate starts to decrease due to limitation of nutrients, and to maintain for decades these kinds of cell cultures is needed to transfer a portion of these SCC into a fresh culture medium. Despite the central role played by extracellular proteins in most processes that control growth and development, the secretome has been less well characterized than other subcellular compartments, meaning that our understanding of the cell wall physiology is still very limited. Useful proteomic tools have emerged in recent years to unravel metabolic network that occurs in cell walls. With the recent progress made in mass spectrometry technology, it has become feasible to identify proteins from a given organ, tissue, cells, or even a subcellular compartment. Compared with other methods used to isolate cell wall proteins, the spent medium of SCC provides a convenient, continuous, and reliable and unique source of extracellular proteins. Therefore, this biological system could be used as a large-scale cell culture from which these proteins can be secreted, easily separated from cells without cell disruption, and so, without any cytosolic contamination, easily recovered from the extracellular medium. This nondestructive cell wall proteome approach discloses a set of proteins that are specifically expressed in the remodelling of the cell wall architecture and stress defense.
Collapse
Affiliation(s)
- Ana B Sabater-Jara
- Plant Peroxidases Group, Department of Plant Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Belchí-Navarro S, Almagro L, Sabater-Jara AB, Fernández-Pérez F, Bru R, Pedreño MA. Induction of trans-resveratrol and extracellular pathogenesis-related proteins in elicited suspension cultured cells of Vitis vinifera cv Monastrell. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:258-64. [PMID: 23127362 DOI: 10.1016/j.jplph.2012.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/04/2012] [Accepted: 10/07/2012] [Indexed: 05/08/2023]
Abstract
Suspension-cultured cells of Vitis vinifera cv Monastrell were used to investigate the effects of methyljasmonate, ethylene and salicylic acid separately or in combination with cyclodextrins on both trans-resveratrol production and the induction of defense responses. The results showed that the addition of methyljasmonate or ethylene to suspension-cultured cells jointly treated with cyclodextrins and salicylic acid provoked a decrease of trans-resveratrol levels suggesting that salicylic acid has a negative and antagonistic effect with methyljasmonate or ethylene on trans-resveratrol production. Likewise, the exogenous application of these compounds induced the accumulation of pathogenesis-related proteins. Analysis of the extracellular proteome showed the presence of amino acid sequences homologous to an specific β-1,3-glucanase, class III peroxidases and a β-1,4-mannanase, which suggests that these signal molecules could play a role in mediating defense-related gene product expression in V. vinifera cv Monastrell. Apart from these inducible proteins, other proteins were found in both the control and elicited cell cultures of V. vinifera. These included class IV chitinase, polygalacturonase inhibitor protein and reticuline oxidase-like protein, suggesting that their expression is constitutive being involved in the modification of the cell wall architecture during cell culture growth and in the prevention of pathogen attack.
Collapse
Affiliation(s)
- Sarai Belchí-Navarro
- Department of Plant Biology, University of Murcia, Campus Universitario de Espinardo, E-30100 Murcia, Spain
| | | | | | | | | | | |
Collapse
|