1
|
Tang G, Cheng X, Fan B, Jia Z, Liu K, Zhang S. ERD15 promotes peach and tomato ripening by activating polyamine catabolism. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112515. [PMID: 40239842 DOI: 10.1016/j.plantsci.2025.112515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 04/04/2025] [Accepted: 04/12/2025] [Indexed: 04/18/2025]
Abstract
Polyamine oxidase (PAO) is a key enzyme in polyamine (PA) catabolism and plays a vital role during fruit ripening. However, regulatory mechanisms that control PAO expression during maturation remain unclear. This study identifies the transcription factor PpeERD15 through yeast one-hybrid (Y1H) screening with the PpePAO1 promoter. ERD15 (early response to dehydration 15), a member of the early response to dehydration protein family, is known for its role in abiotic stress responses, but its function in fruit ripening remains largely unexplored. Subcellular localization analysis demonstrated that PpeERD15 was localized in both the nucleus and cytoplasm. Y1H and LUC assays confirmed that PpeERD15 directly binds the PpePAO1 promoter. Transient silencing of PpEDR15 in peach fruit downregulated PpePAO1 expression, promoted PA accumulation, inhibited ethylene production, increased fruit firmness, and delayed fruit ripening. Conversely, overexpression of PpeEDR15 upregulated PpePAO1, decreased PA content, promoted ethylene production, reduced fruit firmness, and accelerated fruit ripening. The role of homologous gene of ERD15 was also validated in tomato. This study discovered that PpeEDR15 regulates fruit ripening by promoting PA catabolism via PpePAO1 expression.
Collapse
Affiliation(s)
- Guangcai Tang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xin Cheng
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Bingli Fan
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Zhiqi Jia
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Keke Liu
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou 450046, China.
| | - Shiwen Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
2
|
Guccione E, Serna-Escolano V, Allegra A, Sortino G, Solivella-Poveda AM, Serrano M, Valero D, Zapata PJ, Giménez MJ. Involvement of ethylene production and polyamines in rind pitting of 'Fino' lemon fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109851. [PMID: 40174297 DOI: 10.1016/j.plaphy.2025.109851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/04/2025]
Abstract
Rind disorders in early cultivars of lemon fruits cause serious economic losses at market since these lemons are very sensitive to develop rind pitting during postharvest. Therefore, the aim of this study was to determine the involvement of ethylene and polyamines (PAs) in rind pitting of 'Fino' lemons grown with an intensive fertigation (IF) and standard fertigation (SF). Results after degreening treatment showed that lemons harvested from the IF system had ca. 48 %, 3.5-fold, 2.5-fold and 28 % more respiration rate, ethylene production, free and total 1-aminocyclopropane-1-carboxylic acid (ACC), respectively, than SF lemons. Furthermore, the concentrations of spermidine and spermine were ca. 30 % lower in IF lemons compared to SF ones, without differences in putrescine levels. After 7 days of storage at 8 °C, the highest values of rind pitting incidence and severity of damage were found in IF lemons. It was observed that lemons with rind pitting harvested from the IF system had the highest concentration of free-ACC and total-ACC, whereas the spermine content was ca. 3-fold higher in fruits without rind pitting independently of the fertigation system. Thus, the results showed that ethylene can be considered as a marker for the lemon fruit susceptibility to suffer rind pitting, while PAs have a protective role.
Collapse
Affiliation(s)
- Eugenia Guccione
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Viale delle Scienze ed. 4, ingresso H, Palermo 90128, Italy
| | - Vicente Serna-Escolano
- Institute for Agro-food and Agro-environmental Research and Innovation (CIAGRO), EPSO, Miguel Hernández University (UMH), Ctra. Beniel km. 3.2, 03312, Orihuela, Spain.
| | - Alessio Allegra
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Viale delle Scienze ed. 4, ingresso H, Palermo 90128, Italy
| | - Giuseppe Sortino
- Department of Agricultural, Food and Forest Sciences, Università degli Studi di Palermo, Viale delle Scienze ed. 4, ingresso H, Palermo 90128, Italy
| | - Ana M Solivella-Poveda
- Institute for Agro-food and Agro-environmental Research and Innovation (CIAGRO), EPSO, Miguel Hernández University (UMH), Ctra. Beniel km. 3.2, 03312, Orihuela, Spain
| | - María Serrano
- Institute for Agro-food and Agro-environmental Research and Innovation (CIAGRO), EPSO, Miguel Hernández University (UMH), Ctra. Beniel km. 3.2, 03312, Orihuela, Spain
| | - Daniel Valero
- Institute for Agro-food and Agro-environmental Research and Innovation (CIAGRO), EPSO, Miguel Hernández University (UMH), Ctra. Beniel km. 3.2, 03312, Orihuela, Spain
| | - Pedro J Zapata
- Institute for Agro-food and Agro-environmental Research and Innovation (CIAGRO), EPSO, Miguel Hernández University (UMH), Ctra. Beniel km. 3.2, 03312, Orihuela, Spain
| | - María J Giménez
- Institute for Agro-food and Agro-environmental Research and Innovation (CIAGRO), EPSO, Miguel Hernández University (UMH), Ctra. Beniel km. 3.2, 03312, Orihuela, Spain
| |
Collapse
|
3
|
Wang W, Chen Y, Jiang Y, Tang G, Guo L, Qiao G, Liu S, Tan B, Cheng J, Zhang L, Ye X, Wang X, Zhang H, Zheng X, Zhang S, Feng J. The basic helix-loop-helix transcription factor PpeUNE12 regulates peach ripening by promoting polyamine catabolism and anthocyanin synthesis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109537. [PMID: 39862454 DOI: 10.1016/j.plaphy.2025.109537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
The basic helix-loop-helix (bHLH) transcription factors (TFs) play important roles in various plant developmental and biological processes. However, the precise mechanisms by which bHLH TFs regulate fruit ripening warrant further investigation. Polyamine oxidase (PAO) is crucial for polyamine (PA) catabolism and plays crucial roles in fruit ripening. However, the regulatory mechanism of PAO gene expression during fruit ripening remains largely unexplored. In this study, we identified a peach bHLH TF, PpeUNE12, which directly binds to and activates the promoter of PpePAO1. Silencing PpeUNE12 substantially increased PA accumulation and delayed peach fruit ripening, while overexpressing PpeUNE12 decreased PA accumulation and accelerated peach fruit ripening. Additionally, anthocyanin content decreased in PpeUNE12-silenced fruits but increased in PpeUNE12-overexpressing peach fruits compared to the control. RNA-seq and RT-qPCR analyses revealed that the majority of genes involved in anthocyanin biosynthesis, including PpeF3H, PpeCHS, PpeDFR, PpeUFGT and PpeMYB10.1 exhibited down-regulation in fruits with silenced PpeUNE12, while these genes were up-regulated in fruits overexpressing PpeUNE12. Although PpeUNE12 exhibited no direct binding to the promoters of PpeUFGT and PpeMYB10.1, it substantially activated their activity. This investigation is the first to provide evidence that bHLH regulates fruit maturation via promoting both PA catabolism and anthocyanin synthesis. It reveals a novel mechanism of bHLH in regulating fruit ripening and enhances our comprehension of the regulatory mechanism of PA catabolism and anthocyanin synthesis during fruit maturation.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yang Chen
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
| | - Yabo Jiang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
| | - Guangcai Tang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
| | - Luyue Guo
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
| | - Gaozheng Qiao
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
| | - Shihao Liu
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Langlang Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaobei Wang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Haipeng Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shiwen Zhang
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, 218 Pingan Road, 450046, Zhengzhou, China; Henan Engineering and Technology Center for Peach Germplasm Innovation and Utilization, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
4
|
Liu T, Qu J, Fang Y, Yang H, Lai W, Pan L, Liu JH. Polyamines: The valuable bio-stimulants and endogenous signaling molecules for plant development and stress response. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:582-595. [PMID: 39601632 DOI: 10.1111/jipb.13796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 11/29/2024]
Abstract
Polyamines (PAs) are nitrogenous and polycationic compounds containing more than two amine residues. Numerous investigations have demonstrated that cellular PA homeostasis plays a key role in various developmental and physiological processes. The PA balance, which may be affected by many environmental factors, is finely maintained by the pathways of PA biosynthesis and degradation (catabolism). In this review, the advances in PA transport and distribution and their roles in plants were summarized and discussed. In addition, the interplay between PAs and phytohormones, NO, and H2O2 were detailed during plant growth, senescence, fruit repining, as well as response to biotic and abiotic stresses. Moreover, it was elucidated how environmental signals such as light, temperature, and humidity modulate PA accumulation during plant development. Notably, PA has been shown to exert a potential role in shaping the domestication of rice. The present review comprehensively summarizes these latest advances, highlighting the importance of PAs as endogenous signaling molecules in plants, and as well proposes future perspectives on PA research.
Collapse
Affiliation(s)
- Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jing Qu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yinyin Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Haishan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wenting Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Luyi Pan
- Instrumental Analysis and Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Ji-Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
5
|
Yang H, Fang Y, Liang Z, Qin T, Liu J, Liu T. Polyamines: pleiotropic molecules regulating plant development and enhancing crop yield and quality. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3194-3201. [PMID: 39024414 PMCID: PMC11500986 DOI: 10.1111/pbi.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/04/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Polyamines (PAs) are pleiotropic bioorganic molecules. Cellular PA contents are determined by a balance between PA synthesis and degradation. PAs have been extensively demonstrated to play vital roles in the modulation of plant developmental processes and adaptation to various environmental stresses. In this review, the latest advances on the diverse roles of PAs in a range of developmental processes, such as morphogenesis, organogenesis, growth and development, and fruit ripening, are summarized and discussed. Besides, the crosstalk between PAs and phytohormones or other signalling molecules, including H2O2 and NO, involved in these processes is dwelled on. In addition, the attempts made to improve the yield and quality of grain and vegetable crops through altering the PA catabolism are enumerated. Finally, several other vital questions that remain unanswered are proposed and discussed. These include the mechanisms underlying the cooperative regulation of developmental processes by PAs and their interplaying partners like phytohormones, H2O2 and NO; PA transport for maintaining homeostasis; and utilization of PA anabolism/catabolism for generating high-yield and good-quality crops. This review aims to gain new insights into the pleiotropic role of PAs in the modulation of plant growth and development, which provides an alternative approach for manipulating and engineering valuable crop varieties that can be used in the future.
Collapse
Affiliation(s)
- Haishan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Yinyin Fang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Zhiman Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Tian Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| | - Ji‐Hong Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry SciencesHuazhong Agricultural UniversityWuhanChina
- Hubei Hongshan LaboratoryWuhanChina
| | - Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresourcesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory for the Development Biology and Environmental Adaptation of Agricultural Organisms, College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
| |
Collapse
|
6
|
Polyamine Oxidase-Generated Reactive Oxygen Species in Plant Development and Adaptation: The Polyamine Oxidase-NADPH Oxidase Nexus. Antioxidants (Basel) 2022; 11:antiox11122488. [PMID: 36552696 PMCID: PMC9774701 DOI: 10.3390/antiox11122488] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Metabolism and regulation of cellular polyamine levels are crucial for living cells to maintain their homeostasis and function. Polyamine oxidases (PAOs) terminally catabolize polyamines or catalyse the back-conversion reactions when spermine is converted to spermidine and Spd to putrescine. Hydrogen peroxide (H2O2) is a by-product of both the catabolic and back-conversion processes. Pharmacological and genetic approaches have started to uncover the roles of PAO-generated H2O2 in various plant developmental and adaptation processes such as cell differentiation, senescence, programmed cell death, and abiotic and biotic stress responses. Many of these studies have revealed that the superoxide-generating Respiratory Burst Oxidase Homolog (RBOH) NADPH oxidases control the same processes either upstream or downstream of PAO action. Therefore, it is reasonable to suppose that the two enzymes co-ordinately control the cellular homeostasis of reactive oxygen species. The intricate relationship between PAOs and RBOHs is also discussed, posing the hypothesis that these enzymes indirectly control each other's abundance/function via H2O2.
Collapse
|
7
|
Cao X, Wen Z, Shang C, Cai X, Hou Q, Qiao G. Copper Amine Oxidase (CuAO)-Mediated Polyamine Catabolism Plays Potential Roles in Sweet Cherry (Prunus avium L.) Fruit Development and Ripening. Int J Mol Sci 2022; 23:ijms232012112. [PMID: 36292969 PMCID: PMC9603101 DOI: 10.3390/ijms232012112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Copper amine oxidases (CuAOs) play important roles in PA catabolism, plant growth and development, and abiotic stress response. In order to better understand how PA affects cherry fruit, four potential PavCuAO genes (PavCuAO1–PavCuAO4) that are dispersed over two chromosomes were identified in the sweet cherry genome. Based on phylogenetic analysis, they were classified into three subclasses. RNA-seq analysis showed that the PavCuAO genes were tissue-specific and mostly highly expressed in flowers and young leaves. Many cis-elements associated with phytohormones and stress responses were predicted in the 2 kb upstream region of the promoter. The PavCuAOs transcript levels were increased in response to abscisic acid (ABA) and gibberellin 3 (GA3) treatments, as well as abiotic stresses (NaCl, PEG, and cold). Quantitative fluorescence analysis and high-performance liquid chromatography confirmed that the Put content fell, and the PavCuAO4 mRNA level rose as the sweet cherry fruit ripened. After genetically transforming Arabidopsis with PavCuAO4, the Put content in transgenic plants decreased significantly, and the expression of the ABA synthesis gene NCED was also significantly increased. At the same time, excessive H2O2 was produced in PavCuAO4 transiently expressed tobacco leaves. The above results strongly proved that PavCuAO4 can decompose Put and may promote fruit ripening by increasing the content of ABA and H2O2 while suppressing total free PA levels in the fruit.
Collapse
Affiliation(s)
- Xuejiao Cao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Zhuang Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Chunqiong Shang
- Institute for Forest Resources & Environment of Guizhou/College of Forestry, Guizhou University, Guiyang 550025, China
| | - Xiaowei Cai
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang 550025, China
- Correspondence: or
| |
Collapse
|
8
|
Yin Z, Dong T, Huang W, Du M, Chen D, Fernie AR, Yi G, Yan S. Spatially resolved metabolomics reveals variety-specific metabolic changes in banana pulp during postharvest senescence. Food Chem X 2022; 15:100371. [PMID: 35769331 PMCID: PMC9234350 DOI: 10.1016/j.fochx.2022.100371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/01/2022] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Both post-ripening stages and banana varieties contribute to metabolite variation. AuNP-assisted LDI-MSI was firstly used in mapping functional metabolites in pulps. AAs and monoamines exclusively accumulated in the middle region near the seed zone. Monosaccharides locate in whole pulps but enrich in the intermediate microregion. Di/trisaccharides exhibit different accumulation patterns as monosaccharides.
Banana is one of most popular fruits globally due to health-promoting and disease-preventing effects, yet little is known about in situ metabolic changes across banana varieties. Here, we integrated gold nanoparticle (AuNP)-assisted laser desorption/ionization mass spectrometry imaging (LDI-MSI) and metabolomics to investigate the spatiotemporal distribution and levels of metabolites within Brazil and Dongguan banana pulps during postharvest senescence. Metabolomics results indicated that both postripening stages and banana varieties contribute to metabolite levels. Benefiting from improved ionization efficiency of small-molecule metabolites and less peak interference, we visualized the spatiotemporal distribution of sugars, amino acids (AAs) and monoamines within pulps using AuNP-assisted LDI-MSI for the first time, revealing that AAs and monoamines exclusively accumulated in the middle region near the seed zone. Monosaccharides and di/trisaccharides were generally distributed across entire pulps but exhibited different accumulation patterns. These findings provide a guide for breeding new varieties and improving extraction efficiency of bioactive compounds.
Collapse
Affiliation(s)
- Zhibin Yin
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Tao Dong
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Mingyi Du
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Dong Chen
- Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Muhlenberg 1, Potsdam-Golm 14476, Germany
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization (Ministry of Agriculture and Rural Affairs), Guangdong Province Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou, 510640, China
- Corresponding authors.
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Corresponding authors.
| |
Collapse
|
9
|
Soares F, Pimentel D, Erban A, Neves C, Reis P, Pereira M, Rego C, Gama-Carvalho M, Kopka J, Fortes AM. Virulence-related metabolism is activated in Botrytis cinerea mostly in the interaction with tolerant green grapes that remain largely unaffected in contrast with susceptible green grapes. HORTICULTURE RESEARCH 2022; 9:uhac217. [PMID: 36479580 PMCID: PMC9720446 DOI: 10.1093/hr/uhac217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/15/2022] [Indexed: 06/17/2023]
Abstract
Botrytis cinerea is responsible for the gray mold disease, severely affecting Vitis vinifera grapevine and hundreds of other economically important crops. However, many mechanisms of this fruit-pathogen interaction remain unknown. The combined analysis of the transcriptome and metabolome of green fruits infected with B. cinerea from susceptible and tolerant genotypes was never performed in any fleshy fruit, mostly because green fruits are widely accepted to be resistant to this fungus. In this work, peppercorn-sized fruits were infected in the field or mock-treated, and berries were collected at green (EL32) stage from a susceptible (Trincadeira) and a tolerant (Syrah) variety. RNAseq and GC-MS data suggested that Syrah exhibited a pre-activated/basal defense relying on specific signaling pathways, hormonal regulation, namely jasmonate and ethylene metabolisms, and linked to phenylpropanoid metabolism. In addition, putative defensive metabolites such as shikimic, ursolic/ oleanolic, and trans-4-hydroxy cinnamic acids, and epigallocatechin were more abundant in Syrah than Trincadeira before infection. On the other hand, Trincadeira underwent relevant metabolic reprogramming upon infection but was unable to contain disease progression. RNA-seq analysis of the fungus in planta revealed an opposite scenario with higher gene expression activity within B. cinerea during infection of the tolerant cultivar and less activity in infected Trincadeira berries. The results suggested an activated virulence state during interaction with the tolerant cultivar without visible disease symptoms. Together, this study brings novel insights related to early infection strategies of B. cinerea and the green berry defense against necrotrophic fungi.
Collapse
Affiliation(s)
- Flávio Soares
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Diana Pimentel
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Catarina Neves
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Pedro Reis
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Marcelo Pereira
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Cecilia Rego
- LEAF—Linking Landscape, Environment, Agriculture and Food-Research Center, Associated Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisbon, Portugal
| | - Margarida Gama-Carvalho
- BioISI - Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisboa, Portugal
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | | |
Collapse
|
10
|
Zhang J, Liang L, Xiao J, Xie Y, Zhu L, Xue X, Xu L, Zhou P, Ran J, Huang Z, Sun G, Lai Y, Sun B, Tang Y, Li H. Genome-Wide Identification of Polyamine Oxidase (PAO) Family Genes: Roles of CaPAO2 and CaPAO4 in the Cold Tolerance of Pepper ( Capsicum annuum L.). Int J Mol Sci 2022; 23:ijms23179999. [PMID: 36077395 PMCID: PMC9456136 DOI: 10.3390/ijms23179999] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Polyamine oxidases (PAOs), which are flavin adenine dinucleotide-dependent enzymes, catalyze polyamine (PA) catabolism, producing hydrogen peroxide (H2O2). Several PAO family members have been identified in plants, but their expression in pepper plants remains unclear. Here, six PAO genes were identified in the ‘Zunla-1’ pepper genome (named CaPAO1–CaPAO6 according to their chromosomal positions). The PAO proteins were divided into four subfamilies according to phylogenetics: CaPAO1 belongs to subfamily I; CaPAO3 and CaPAO5 belong to subfamily III; and CaPAO2, CaPAO4, and CaPAO6 belong to subfamily IV (none belong to subfamily II). CaPAO2, CaPAO4, and CaPAO6 were ubiquitously and highly expressed in all tissues, CaPAO1 was mainly expressed in flowers, whereas CaPAO3 and CaPAO5 were expressed at very low levels in all tissues. RNA-seq analysis revealed that CaPAO2 and CaPAO4 were notably upregulated by cold stress. CaPAO2 and CaPAO4 were localized in the peroxisome, and spermine was the preferred substrate for PA catabolism. CaPAO2 and CaPAO4 overexpression in Arabidopsis thaliana significantly enhanced freezing-stress tolerance by increasing antioxidant enzyme activity and decreasing malondialdehyde, H2O2, and superoxide accumulation, accompanied by the upregulation of cold-responsive genes (AtCOR15A, AtRD29A, AtCOR47, and AtKIN1). Thus, we identified candidate PAO genes for breeding cold-stress-tolerant transgenic pepper cultivars.
Collapse
Affiliation(s)
- Jianwei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Le Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiachang Xiao
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yongdong Xie
- Institute for Processing and Storage of Agricultural Products, Chengdu Academy of Agricultural and Forest Sciences, Chengdu 611130, China
| | - Li Zhu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinru Xue
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Linyu Xu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Peihan Zhou
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jianzhao Ran
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Guochao Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yunsong Lai
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Bo Sun
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
- Institute of Pomology and Olericulture, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
11
|
Cheng X, Pang F, Tian W, Tang X, Wu L, Hu X, Zhu H. Transcriptome analysis provides insights into the molecular mechanism of GhSAMDC 1 involving in rapid vegetative growth and early flowering in tobacco. Sci Rep 2022; 12:13612. [PMID: 35948667 PMCID: PMC9365820 DOI: 10.1038/s41598-022-18064-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
In previous study, ectopic expression of GhSAMDC1 improved vegetative growth and early flowering in tobacco, which had been explained through changes of polyamine content, polyamines and flowering relate genes expression. To further disclose the transcript changes of ectopic expression of GhSAMDC1 in tobacco, the leaves from wild type and two transgenic lines at seedling (30 days old), bolting (60 days old) and flowering (90 days old) stages were performed for transcriptome analysis. Compared to wild type, a total of 938 differentially expressed genes (DEGs) were found to be up- or down-regulated in the two transgenic plants. GO and KEGG analysis revealed that tobacco of wild-type and transgenic lines were controlled by a complex gene network, which regulated multiple metabolic pathways. Phytohormone detection indicate GhSAMDC1 affect endogenous phytohormone content, ABA and JA content are remarkably increased in transgenic plants. Furthermore, transcript factor analysis indicated 18 transcript factor families, including stress response, development and flowering related transcript factor families, especially AP2-EREBP, WRKY, HSF and Tify are the most over-represented in those transcript factor families. In conclusion, transcriptome analysis provides insights into the molecular mechanism of GhSAMDC1 involving rapid vegetative growth and early flowering in tobacco.
Collapse
Affiliation(s)
- Xinqi Cheng
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Fangqin Pang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Wengang Tian
- College of Agronomy, Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Xinxin Tang
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Lan Wu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Xiaoming Hu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China.,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China
| | - Huaguo Zhu
- College of Biology and Agricultural Resources, Huanggang Normal University, Huanggang, 438000, Hubei, China. .,Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang, 438000, Hubei, China.
| |
Collapse
|
12
|
Ginzberg I, Faigenboim A. Ripening of Pomegranate Skin as Revealed by Developmental Transcriptomics. Cells 2022; 11:cells11142215. [PMID: 35883658 PMCID: PMC9320897 DOI: 10.3390/cells11142215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/11/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
The appearance of pomegranate (Punica granatum L.) fruit is highly important for its marketing. The primary concerns are obtaining sufficient red pigment accumulation and minimal cracking of the fruit skin (the outer red layer of the peel). We analyzed the skin transcriptome of pomegranate cv. Wonderful at distinct time points of fruit development to characterize the processes that occur in the skin during fruit ripening and which may reflect on processes in the whole fruit, such as the non-climacteric nature of pomegranate. The data suggested a ripening mechanism in pomegranate skin that differs from that in strawberry—the model plant for non-climacteric fruit where abscisic acid is the growth regulator that drives ripening—involving ethylene, polyamine, and jasmonic acid pathways. The biosynthetic pathways of important metabolites in pomegranate—hydrolyzable tannins and anthocyanins—were co-upregulated at the ripening stage, in line with the visual enhancement of red coloration. Interestingly, cuticle- and cell-wall-related genes that showed differential expression between the developmental stages were mainly upregulated in the skin of early fruit, with lower expression at mid-growth and ripening stages. Nevertheless, lignification may be involved in skin hardening in the mature fruit.
Collapse
|
13
|
Mydy LS, Chigumba DN, Kersten RD. Plant Copper Metalloenzymes As Prospects for New Metabolism Involving Aromatic Compounds. FRONTIERS IN PLANT SCIENCE 2021; 12:692108. [PMID: 34925392 PMCID: PMC8672867 DOI: 10.3389/fpls.2021.692108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/11/2021] [Indexed: 06/14/2023]
Abstract
Copper is an important transition metal cofactor in plant metabolism, which enables diverse biocatalysis in aerobic environments. Multiple classes of plant metalloenzymes evolved and underwent genetic expansions during the evolution of terrestrial plants and, to date, several representatives of these copper enzyme classes have characterized mechanisms. In this review, we give an updated overview of chemistry, structure, mechanism, function and phylogenetic distribution of plant copper metalloenzymes with an emphasis on biosynthesis of aromatic compounds such as phenylpropanoids (lignin, lignan, flavonoids) and cyclic peptides with macrocyclizations via aromatic amino acids. We also review a recent addition to plant copper enzymology in a copper-dependent peptide cyclase called the BURP domain. Given growing plant genetic resources, a large pool of copper biocatalysts remains to be characterized from plants as plant genomes contain on average more than 70 copper enzyme genes. A major challenge in characterization of copper biocatalysts from plant genomes is the identification of endogenous substrates and catalyzed reactions. We highlight some recent and future trends in filling these knowledge gaps in plant metabolism and the potential for genomic discovery of copper-based enzymology from plants.
Collapse
Affiliation(s)
| | | | - Roland D. Kersten
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
14
|
Kamiab F, Tavassolian I, Hosseinifarahi M. Biologia futura: the role of polyamine in plant science. Biol Futur 2021; 71:183-194. [PMID: 34554509 DOI: 10.1007/s42977-020-00027-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 06/10/2020] [Indexed: 12/27/2022]
Abstract
Polyamines (PAs) are positively charged amines such as putrescine, spermidine and spermine that ubiquitously exist in all organisms. They have been considered as a new type of plant biostimulants, with pivotal roles in many physiological processes. Polyamine levels are controlled by intricate regulatory feedback mechanisms. PAs are directly or indirectly regulated through interaction with signaling metabolites (H202, NO), aminobutyric acid (GABA), phytohormones (abscisic acid, gibberellins, ethylene, cytokinins, auxin, jasmonic acid and brassinosteroids) and nitrogen metabolism (maintaining the balance of C:N in plants). Exogenous applications of PAs enhance the stress resistance, flowering and fruit set, synthesis of bioactive compounds and extension of agricultural crops shelf life. Up-regulation of PAs biosynthesis by genetic manipulation can be a novel strategy to increase the productivity of agricultural crops. Recently, the role of PAs in symbiosis relationships between plants and beneficial microorganisms has been confirmed. PA metabolism has also been targeted to design new harmless fungicides.
Collapse
Affiliation(s)
- Fereshteh Kamiab
- Department of Horticulture, Faculty of Agriculture, Rafsanjan Branch, Islamic Azad University, Rafsanjan, Iran.
| | - Iraj Tavassolian
- Research and Technology Institute of Plant Production, Shahid Bahonar University of Kerman, Kerman, Iran.,Department of Horticulture, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mehdi Hosseinifarahi
- Department of Horticultural Science, Yasooj Branch, Islamic Azad University, Yasooj, Iran
| |
Collapse
|
15
|
Chang BM, Keller M. Cuticle and skin cell walls have common and unique roles in grape berry splitting. HORTICULTURE RESEARCH 2021; 8:168. [PMID: 34333518 PMCID: PMC8325674 DOI: 10.1038/s41438-021-00602-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 05/16/2023]
Abstract
The skin protects a fruit from environmental stresses and supports the fruit's structure. Failure of the skin leads to fruit splitting and may compromise commercial production for fruit growers. The mechanical properties of the cuticle and skin cell walls might influence the splitting susceptibility of fleshy fruits. Thin shell theory and fracture mechanics were utilized in this study to target the potential factors contributing to splitting susceptibility. The study analyzed the structure of the cuticle and epidermis in ripening grape berries and examined the temporal dynamics of berry splitting. Cuticular waxes were partially removed, and skin cell walls were manipulated using wall stiffening and loosening solutions that altered reactions involving hydrogen peroxide. A more than twofold difference in cuticle thickness among grape cultivars did not account for their differences in splitting resistance. However, while removing predominantly epicuticular wax did not alter the berries' splitting resistance, their surface appearance and increasing yield strength following partial wax removal support the notion that cuticular waxes contribute to berry mechanical properties. Immersing berries in H2O2-based cell wall loosening solutions increased the splitting probability and accelerated berry splitting, whereas cell wall stiffening solutions decreased the splitting probability and delayed berry splitting. These results showed that both cuticle and skin cell walls contribute to the mechanical properties of grape berries and to their splitting resistance. The results also suggest that the two current explanations for fruit splitting, the critical turgor model and the zipper model, should be viewed as complementary rather than incompatible.
Collapse
Affiliation(s)
- Ben-Min Chang
- Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA
| | - Markus Keller
- Department of Horticulture, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA, USA.
| |
Collapse
|
16
|
Burbidge CA, Ford CM, Melino VJ, Wong DCJ, Jia Y, Jenkins CLD, Soole KL, Castellarin SD, Darriet P, Rienth M, Bonghi C, Walker RP, Famiani F, Sweetman C. Biosynthesis and Cellular Functions of Tartaric Acid in Grapevines. FRONTIERS IN PLANT SCIENCE 2021; 12:643024. [PMID: 33747023 PMCID: PMC7970118 DOI: 10.3389/fpls.2021.643024] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/09/2021] [Indexed: 05/29/2023]
Abstract
Tartaric acid (TA) is an obscure end point to the catabolism of ascorbic acid (Asc). Here, it is proposed as a "specialized primary metabolite", originating from carbohydrate metabolism but with restricted distribution within the plant kingdom and lack of known function in primary metabolic pathways. Grapes fall into the list of high TA-accumulators, with biosynthesis occurring in both leaf and berry. Very little is known of the TA biosynthetic pathway enzymes in any plant species, although recently some progress has been made in this space. New technologies in grapevine research such as the development of global co-expression network analysis tools and genome-wide association studies, should enable more rapid progress. There is also a lack of information regarding roles for this organic acid in plant metabolism. Therefore this review aims to briefly summarize current knowledge about the key intermediates and enzymes of TA biosynthesis in grapes and the regulation of its precursor, ascorbate, followed by speculative discussion around the potential roles of TA based on current knowledge of Asc metabolism, TA biosynthetic enzymes and other aspects of fruit metabolism.
Collapse
Affiliation(s)
| | | | | | - Darren Chern Jan Wong
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Acton, ACT, Australia
| | - Yong Jia
- Western Barley Genetic Alliance, Murdoch University, Perth, WA, Australia
| | | | - Kathleen Lydia Soole
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Simone Diego Castellarin
- Wine Research Centre, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, Canada
| | - Philippe Darriet
- Université Bordeaux, Unité de recherche OEnologie, EA 4577, USC 1366 INRAE, Institut des Sciences de la Vigne et du Vin, Villenave d’Ornon, France
| | - Markus Rienth
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Oenology, Nyon, Switzerland
| | - Claudio Bonghi
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, Legnaro, Italy
| | - Robert Peter Walker
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Franco Famiani
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università degli Studi di Perugia, Perugia, Italy
| | - Crystal Sweetman
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
17
|
Gao F, Mei X, Li Y, Guo J, Shen Y. Update on the Roles of Polyamines in Fleshy Fruit Ripening, Senescence, and Quality. FRONTIERS IN PLANT SCIENCE 2021; 12:610313. [PMID: 33664757 PMCID: PMC7922164 DOI: 10.3389/fpls.2021.610313] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 01/19/2021] [Indexed: 05/17/2023]
Abstract
Ripening of fleshy fruits involves complex physiological, biochemical, and molecular processes that coincide with various changes of the fruit, including texture, color, flavor, and aroma. The processes of ripening are controlled by ethylene in climacteric fruits and abscisic acid (ABA) in non-climacteric fruits. Increasing evidence is also uncovering an essential role for polyamines (PAs) in fruit ripening, especially in climacteric fruits. However, until recently breakthroughs have been made in understanding PA roles in the ripening of non-climacteric fruits. In this review, we compare the mechanisms underlying PA biosynthesis, metabolism, and action during ripening in climacteric and non-climacteric fruits at the physiological and molecular levels. The PA putrescine (Put) has a role opposite to that of spermidine/spermine (Spd/Spm) in cellular metabolism. Arginine decarboxylase (ADC) is crucial to Put biosynthesis in both climacteric and non-climacteric fruits. S-adenosylmethionine decarboxylase (SAMDC) catalyzes the conversion of Put to Spd/Spm, which marks a metabolic transition that is concomitant with the onset of fruit ripening, induced by Spd in climacteric fruits and by Spm in non-climacteric fruits. Once PA catabolism is activated by polyamine oxidase (PAO), fruit ripening and senescence are facilitated by the coordination of mechanisms that involve PAs, hydrogen peroxide (H2O2), ABA, ethylene, nitric oxide (NO), and calcium ions (Ca2+). Notably, a signal derived from PAO5-mediated PA metabolism has recently been identified in strawberry, a model system for non-climacteric fruits, providing a deeper understanding of the regulatory roles played by PAs in fleshy fruit ripening.
Collapse
Affiliation(s)
- Fan Gao
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Resources and Environment, Beijing University of Agriculture, Beijing, China
| | - Xurong Mei
- Water Resources and Dryland Farming Laboratory, Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuzhong Li
- Water Resources and Dryland Farming Laboratory, Institute of Agricultural Environment and Sustainable Development, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaxuan Guo
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Resources and Environment, Beijing University of Agriculture, Beijing, China
- *Correspondence: Jiaxuan Guo,
| | - Yuanyue Shen
- Key Laboratory for Northern Urban Agriculture of Ministry of Agriculture and Rural Affairs, Department of Resources and Environment, Beijing University of Agriculture, Beijing, China
- Yuanyue Shen, ;
| |
Collapse
|
18
|
Ribalta-Pizarro C, Muñoz P, Munné-Bosch S. Tissue-Specific Hormonal Variations in Grapes of Irrigated and Non-irrigated Grapevines ( Vitis vinifera cv. "Merlot") Growing Under Mediterranean Field Conditions. FRONTIERS IN PLANT SCIENCE 2021; 12:621587. [PMID: 33597962 PMCID: PMC7882616 DOI: 10.3389/fpls.2021.621587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/07/2021] [Indexed: 05/10/2023]
Abstract
Agricultural practices in grapevines management include water restrictions due to its positive effect on wine quality, especially when applied at fruit ripening. Although the effects of water stress in some groups of phytohormones have already been described in leaves and whole grapes, information regarding tissue-specific variations in hormones during ripening in grapes is scarce. Field-grown grapevines from the cv. "Merlot" were subjected to two differential water supplies, including only rainfed, non-irrigated vines (T0) and vines additionally irrigated with 25Lweek-1 vine-1 (T1). Tissue-specific variations in the hormonal profiling of grapes [including changes in the contents of abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), the ethylene precursor 1-amino-cyclopropane-1-carboxylic acid (ACC), the auxin indole-3-acetic acid, gibberellins 1, 3, 4, and 7 (GA1, GA3, GA4, and GA7), the cytokinins trans-zeatin, and 2-isopentenyl adenine, including as well their respective ribosylated forms] were periodically evaluated from veraison to harvest. The hormonal profiling in leaves was also measured at the beginning and end of the season for comparison. Results showed that grape growth dynamics were transiently affected by the differences in water regimes, the increased water supply leading to an accelerated growth, slightly reduced accumulation of sugars, and transiently lowered pH, although grape quality did not differ between treatments at harvest. Hormonal profiling of whole berries did not reveal any difference in the endogenous contents of phytohormones between treatments, except for a transient decrease in GA4 contents in T1 compared to T0 vines, which was not confirmed at the tissular level. Hormonal profiling at the tissue level highlighted a differential accumulation of phytohormones during ripening in berry tissues, with pulps being particularly poor in ABA, JA, and SA contents, seeds particularly accumulating ACC, gibberellins, and zeatin-type cytokinins, and the skin being particularly rich in auxin and active cytokinins. Changes in water supply led to very small and transient changes in the endogenous contents of phytohormones in the seeds, pulp, and skin of berries, the most remarkable variations being observed in cytokinin contents, which increased earlier [between 5 and 12days after veraison (DAV)] but later kept more constant in the skin from T1 compared to T0 vines and were also 3-fold higher at 40 DAV in seeds of T1 compared to T0 vines. It is concluded that small changes in water supply can trigger hormonal-driven physiological adjustments at the tissular level affecting the evolution of fruit growth and quality throughout grape berry ripening.
Collapse
Affiliation(s)
- Camila Ribalta-Pizarro
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
- Research Institute of Nutrition and Food Safety, University of Barcelona, Barcelona, Spain
- *Correspondence: Sergi Munné-Bosch,
| |
Collapse
|
19
|
Gholizadeh F, Mirzaghaderi G. Genome-wide analysis of the polyamine oxidase gene family in wheat (Triticum aestivum L.) reveals involvement in temperature stress response. PLoS One 2020; 15:e0236226. [PMID: 32866160 PMCID: PMC7458318 DOI: 10.1371/journal.pone.0236226] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/08/2020] [Indexed: 11/18/2022] Open
Abstract
Amine oxidases (AOs) including copper containing amine oxidases (CuAOs) and FAD-dependent polyamine oxidases (PAOs) are associated with polyamine catabolism in the peroxisome, apoplast and cytoplasm and play an essential role in growth and developmental processes and response to biotic and abiotic stresses. Here, we identified PAO genes in common wheat (Triticum aestivum), T. urartu and Aegilops tauschii and reported the genome organization, evolutionary features and expression profiles of the wheat PAO genes (TaPAO). Expression analysis using publicly available RNASeq data showed that TaPAO genes are expressed redundantly in various tissues and developmental stages. A large percentage of TaPAOs respond significantly to abiotic stresses, especially temperature (i.e. heat and cold stress). Some TaPAOs were also involved in response to other stresses such as powdery mildew, stripe rust and Fusarium infection. Overall, TaPAOs may have various functions in stress tolerances responses, and play vital roles in different tissues and developmental stages. Our results provided a reference for further functional investigation of TaPAO proteins.
Collapse
Affiliation(s)
- Fatemeh Gholizadeh
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| | - Ghader Mirzaghaderi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, University of Kurdistan, Sanandaj, Iran
| |
Collapse
|
20
|
Upadhyay RK, Fatima T, Handa AK, Mattoo AK. Polyamines and Their Biosynthesis/Catabolism Genes Are Differentially Modulated in Response to Heat Versus Cold Stress in Tomato Leaves ( Solanum lycopersicum L.). Cells 2020; 9:cells9081749. [PMID: 32707844 PMCID: PMC7465501 DOI: 10.3390/cells9081749] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/11/2022] Open
Abstract
Polyamines (PAs) regulate growth in plants and modulate the whole plant life cycle. They have been associated with different abiotic and biotic stresses, but little is known about the molecular regulation involved. We quantified gene expression of PA anabolic and catabolic pathway enzymes in tomato (Solanum lycopersicum cv. Ailsa Craig) leaves under heat versus cold stress. These include arginase1 and 2, arginine decarboxylase 1 and 2, agmatine iminohydrolase/deiminase 1, N-carbamoyl putrescine amidase, two ornithine decarboxylases, three S-adenosylmethionine decarboxylases, two spermidine synthases; spermine synthase; flavin-dependent polyamine oxidases (SlPAO4-like and SlPAO2) and copper dependent amine oxidases (SlCuAO and SlCuAO-like). The spatiotemporal transcript abundances using qRT-PCR revealed presence of their transcripts in all tissues examined, with higher transcript levels observed for SAMDC1, SAMDC2 and ADC2 in most tissues. Cellular levels of free and conjugated forms of putrescine and spermidine were found to decline during heat stress while they increased in response to cold stress, revealing their differential responses. Transcript levels of ARG2, SPDS2, and PAO4-like increased in response to both heat and cold stresses. However, transcript levels of ARG1/2, AIH1, CPA, SPDS1 and CuAO4 increased in response to heat while those of ARG2, ADC1,2, ODC1, SAMDC1,2,3, PAO2 and CuPAO4-like increased in response to cold stress, respectively. Transcripts of ADC1,2, ODC1,2, and SPMS declined in response to heat stress while ODC2 transcripts declined under cold stress. These results show differential expression of PA metabolism genes under heat and cold stresses with more impairment clearly seen under heat stress. We interpret these results to indicate a more pronounced role of PAs in cold stress acclimation compared to that under heat stress in tomato leaves.
Collapse
Affiliation(s)
- Rakesh K. Upadhyay
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, USA;
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, W. Lafayette, IN 47907, USA; (T.F.); (A.K.H.)
| | - Tahira Fatima
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, W. Lafayette, IN 47907, USA; (T.F.); (A.K.H.)
| | - Avtar K. Handa
- Center of Plant Biology, Department of Horticulture and Landscape Architecture, Purdue University, W. Lafayette, IN 47907, USA; (T.F.); (A.K.H.)
| | - Autar K. Mattoo
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD 20705-2350, USA;
- Correspondence: ; Tel.: +1-301-504-6622
| |
Collapse
|
21
|
Hu Y, Chen B. Arbuscular mycorrhiza induced putrescine degradation into γ-aminobutyric acid, malic acid accumulation, and improvement of nitrogen assimilation in roots of water-stressed maize plants. MYCORRHIZA 2020; 30:329-339. [PMID: 32253571 DOI: 10.1007/s00572-020-00952-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/25/2020] [Indexed: 05/08/2023]
Abstract
Water shortage limits plant growth and development by inducing physiological and metabolic disorders, while arbuscular mycorrhizal (AM) symbiosis can improve plant adaptation to drought stress by altering some metabolic and signaling pathways. In this study, root growth and levels of some metabolites (polyamines, amino acids, and malic acid [MA]) and key enzymes were examined in AM-inoculated and non-inoculated (NM) maize seedlings under different water conditions. The results showed that AM symbiosis stimulated root growth and the accumulation of putrescine (Put) during initial plant growth. Root Put concentration significantly decreased in AM compared with NM plants under water stress; correspondingly, Put degradation via diamine oxidase into γ-aminobutyric acid (GABA) occurred. Moreover, glutamine concentration and the activity of N assimilation enzymes (nitrate reductase and glutamine synthetase) were higher in roots of AM than NM plants under moderate water stress. The activity of GABA transaminase and malic enzyme, and MA concentration were also higher in roots of AM than NM plants under moderate water stress. Our results indicated that Put catabolism along with improved N assimilation and the accumulation of GABA and MA were the key metabolic processes in roots of AM maize plants in response to water stress.
Collapse
Affiliation(s)
- Yanbo Hu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education; College of Life Science, Northeast Forestry University, 26# Hexing Road, Harbin, 150040, People's Republic of China.
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Bejing, People's Republic of China.
| | - Baodong Chen
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Jankovska-Bortkevič E, Gavelienė V, Šveikauskas V, Mockevičiūtė R, Jankauskienė J, Todorova D, Sergiev I, Jurkonienė S. Foliar Application of Polyamines Modulates Winter Oilseed Rape Responses to Increasing Cold. PLANTS 2020; 9:plants9020179. [PMID: 32024174 PMCID: PMC7076441 DOI: 10.3390/plants9020179] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/23/2020] [Accepted: 01/28/2020] [Indexed: 12/26/2022]
Abstract
Cold stress is one of the most common abiotic stresses experienced by plants and is caused by low temperature extremes and variations. Polyamines (PAs) have been reported to contribute in abiotic stress defense processes in plants. The present study investigates the survival and responses of PA-treated non-acclimated (N) and acclimated (A) winter oilseed rape to increasing cold conditions. The study was conducted under controlled conditions. Seedlings were foliarly sprayed with spermidine (Spd), spermine (Spm), and putrescine (Put) solutions (1 mM) and exposed to four days of cold acclimation (4 °C) and two days of increasing cold (from −1 to −3 °C). Two cultivars with different cold tolerance were used in this study. The recorded traits included the percentage of survival, H+-ATPase activity, proline accumulation, and ethylene emission. Exogenous PA application improved cold resistance, maintained the activity of plasma membrane H+-ATPase, increased content of free proline, and delayed stimulation of ethylene emission under increasing cold. The results of the current study on winter oilseed rape revealed that foliar application of PAs may activate a defensive response (act as elicitor to trigger physiological processes), which may compensate the negative impact of cold stress. Thus, cold tolerance of winter oilseed rape can be enhanced by PA treatment.
Collapse
Affiliation(s)
- Elžbieta Jankovska-Bortkevič
- Nature Research Centre, Laboratory of Plant Physiology, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.G.); (V.Š.); (R.M.); (J.J.); (S.J.)
- Correspondence: ; Tel.: +370-5-2729839
| | - Virgilija Gavelienė
- Nature Research Centre, Laboratory of Plant Physiology, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.G.); (V.Š.); (R.M.); (J.J.); (S.J.)
| | - Vaidevutis Šveikauskas
- Nature Research Centre, Laboratory of Plant Physiology, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.G.); (V.Š.); (R.M.); (J.J.); (S.J.)
| | - Rima Mockevičiūtė
- Nature Research Centre, Laboratory of Plant Physiology, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.G.); (V.Š.); (R.M.); (J.J.); (S.J.)
| | - Jurga Jankauskienė
- Nature Research Centre, Laboratory of Plant Physiology, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.G.); (V.Š.); (R.M.); (J.J.); (S.J.)
| | - Dessislava Todorova
- Bulgarian Academy of Sciences, Institute of Plant Physiology and Genetics, Acad. G. Bonchev Str. Bl. 21, Sofia BG-1113, Bulgaria; (D.T.); (I.S.)
| | - Iskren Sergiev
- Bulgarian Academy of Sciences, Institute of Plant Physiology and Genetics, Acad. G. Bonchev Str. Bl. 21, Sofia BG-1113, Bulgaria; (D.T.); (I.S.)
| | - Sigita Jurkonienė
- Nature Research Centre, Laboratory of Plant Physiology, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (V.G.); (V.Š.); (R.M.); (J.J.); (S.J.)
| |
Collapse
|
23
|
Borges CV, Belin MAF, Amorim EP, Minatel IO, Monteiro GC, Gomez Gomez HA, Monar GRS, Lima GPP. Bioactive amines changes during the ripening and thermal processes of bananas and plantains. Food Chem 2019; 298:125020. [PMID: 31260965 DOI: 10.1016/j.foodchem.2019.125020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/05/2019] [Accepted: 06/15/2019] [Indexed: 10/26/2022]
Abstract
Bioactive amines are found in food and can be relevant for the assessment of fruits shelf life and nutritional quality. The pulp and peel of 20 banana and plantain were analyzed and the bioactive amine content varied according to the genotype, ripening stage, fruit tissue and thermal processing. In most of the analyzed genotypes, tyramine, histamine, dopamine, serotonin, spermidine, and spermine were decreased during the ripening process in the pulps. By contrast, there was an increase in putrescine level. In many genotypes of plantains, the serotonin and dopamine contents in pulp decreased until stage 5 and increased at stage 7. Peels contain higher levels of serotonin, dopamine, histamine and tyramine than pulps. Additionally, thermal processing affects the content of amines present in fruit. Boiling with the peel should be preferred in domestic preparations, regardless of the genotype used.
Collapse
Affiliation(s)
- Cristine Vanz Borges
- Department of Chemistry and Biochemistry, Institute of Bioscience, São Paulo State University, 18.618-000 Botucatu, São Paulo, Brazil
| | - Matheus Antônio Filiol Belin
- Department of Chemistry and Biochemistry, Institute of Bioscience, São Paulo State University, 18.618-000 Botucatu, São Paulo, Brazil
| | | | - Igor Otavio Minatel
- Department of Chemistry and Biochemistry, Institute of Bioscience, São Paulo State University, 18.618-000 Botucatu, São Paulo, Brazil
| | - Gean Charles Monteiro
- Department of Chemistry and Biochemistry, Institute of Bioscience, São Paulo State University, 18.618-000 Botucatu, São Paulo, Brazil
| | - Hector Alonzo Gomez Gomez
- Department of Food Technology, Universidad Nacional de Agricultura, Barrio El Espino, Catacamas, Honduras.
| | - Giovana Rafaela Stelzer Monar
- Department of Chemistry and Biochemistry, Institute of Bioscience, São Paulo State University, 18.618-000 Botucatu, São Paulo, Brazil
| | - Giuseppina Pace Pereira Lima
- Department of Chemistry and Biochemistry, Institute of Bioscience, São Paulo State University, 18.618-000 Botucatu, São Paulo, Brazil.
| |
Collapse
|
24
|
Lokesh V, Manjunatha G, Hegde NS, Bulle M, Puthusseri B, Gupta KJ, Neelwarne B. Polyamine Induction in Postharvest Banana Fruits in Response to NO Donor SNP Occurs via l-Arginine Mediated Pathway and Not via Competitive Diversion of S-Adenosyl-l-Methionine. Antioxidants (Basel) 2019; 8:antiox8090358. [PMID: 31480617 PMCID: PMC6769871 DOI: 10.3390/antiox8090358] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/10/2019] [Accepted: 08/22/2019] [Indexed: 01/02/2023] Open
Abstract
Nitric oxide (NO) is known to antagonize ethylene by various mechanisms; one of such mechanisms is reducing ethylene levels by competitive action on S-adenosyl-L-methionine (SAM)—a common precursor for both ethylene and polyamines (PAs) biosynthesis. In order to investigate whether this mechanism of SAM pool diversion by NO occur towards PAs biosynthesis in banana, we studied the effect of NO on alterations in the levels of PAs, which in turn modulate ethylene levels during ripening. In response to NO donor sodium nitroprusside (SNP) treatment, all three major PAs viz. putrescine, spermidine and spermine were induced in control as well as ethylene pre-treated banana fruits. However, the gene expression studies in two popular banana varieties of diverse genomes, Nanjanagudu rasabale (NR; AAB genome) and Cavendish (CAV; AAA genome) revealed the downregulation of SAM decarboxylase, an intermediate gene involved in ethylene and PA pathway after the fifth day of NO donor SNP treatment, suggesting that ethylene and PA pathways do not compete for SAM. Interestingly, arginine decarboxylase belonging to arginine-mediated route of PA biosynthesis was upregulated several folds in response to the SNP treatment. These observations revealed that NO induces PAs via l-arginine-mediated route and not via diversion of SAM pool.
Collapse
Affiliation(s)
- Veeresh Lokesh
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore 570020, India
| | - Girigowda Manjunatha
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore 570020, India
| | - Namratha S Hegde
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore 570020, India
| | - Mallesham Bulle
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Bijesh Puthusseri
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore 570020, India
| | | | - Bhagyalakshmi Neelwarne
- Plant Cell Biotechnology Department, Council of Scientific and Industrial Research-Central Food Technological Research Institute, Mysore 570020, India.
| |
Collapse
|
25
|
Evaluation of storage time and grape seed extract addition on biogenic amines content of tarhana: A cereal-based fermented food. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.05.109] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Fortes AM, Agudelo-Romero P, Pimentel D, Alkan N. Transcriptional Modulation of Polyamine Metabolism in Fruit Species Under Abiotic and Biotic Stress. FRONTIERS IN PLANT SCIENCE 2019; 10:816. [PMID: 31333688 PMCID: PMC6614878 DOI: 10.3389/fpls.2019.00816] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 06/06/2019] [Indexed: 05/29/2023]
Abstract
Polyamines are growth regulators that have been widely implicated in abiotic and biotic stresses. They are also associated with fruit set, ripening, and regulation of fruit quality-related traits. Modulation of their content confers fruit resilience, with polyamine application generally inhibiting postharvest decay. Changes in the content of free and conjugated polyamines in response to stress are highly dependent on the type of abiotic stress applied or the lifestyle of the pathogen. Recent studies suggest that exogenous application of polyamines or modulation of polyamine content by gene editing can confer tolerance to multiple abiotic and biotic stresses simultaneously. In this review, we explore data on polyamine synthesis and catabolism in fruit related to pre- and postharvest stresses. Studies of mutant plants, priming of stress responses, and treatments with polyamines and polyamine inhibitors indicate that these growth regulators can be manipulated to increase fruit productivity with reduced use of pesticides and therefore, under more sustainable conditions.
Collapse
Affiliation(s)
- Ana Margarida Fortes
- Faculdade de Ciências de Lisboa, Department of Plant Biology, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Lisbon, Portugal
| | - Patricia Agudelo-Romero
- School of Molecular Science, The University of Western Australia, Perth, WA, Australia
- ARC Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, Australia
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Diana Pimentel
- Faculdade de Ciências de Lisboa, Department of Plant Biology, Biosystems and Integrative Sciences Institute, Universidade de Lisboa, Lisbon, Portugal
| | - Noam Alkan
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| |
Collapse
|
27
|
Yu Z, Jia D, Liu T. Polyamine Oxidases Play Various Roles in Plant Development and Abiotic Stress Tolerance. PLANTS (BASEL, SWITZERLAND) 2019; 8:E184. [PMID: 31234345 PMCID: PMC6632040 DOI: 10.3390/plants8060184] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 02/06/2023]
Abstract
Polyamines not only play roles in plant growth and development, but also adapt to environmental stresses. Polyamines can be oxidized by copper-containing diamine oxidases (CuAOs) and flavin-containing polyamine oxidases (PAOs). Two types of PAOs exist in the plant kingdom; one type catalyzes the back conversion (BC-type) pathway and the other catalyzes the terminal catabolism (TC-type) pathway. The catabolic features and biological functions of plant PAOs have been investigated in various plants in the past years. In this review, we focus on the advance of PAO studies in rice, Arabidopsis, and tomato, and other plant species.
Collapse
Affiliation(s)
- Zhen Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| | - Dongyu Jia
- Department of Biology, Georgia Southern University, Statesboro, GA 30460-8042, USA.
| | - Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
28
|
Coelho J, Almeida-Trapp M, Pimentel D, Soares F, Reis P, Rego C, Mithöfer A, Fortes AM. The study of hormonal metabolism of Trincadeira and Syrah cultivars indicates new roles of salicylic acid, jasmonates, ABA and IAA during grape ripening and upon infection with Botrytis cinerea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:266-277. [PMID: 31128697 DOI: 10.1016/j.plantsci.2019.01.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/21/2019] [Accepted: 01/26/2019] [Indexed: 05/20/2023]
Abstract
Hormones play an important role in fruit ripening and in response to biotic stress. Nevertheless, analyses of hormonal profiling during plant development and defense are scarce. In this work, changes in hormonal metabolism in grapevine (Vitis vinifera) were compared between a susceptible (Trincadeira) and a tolerant (Syrah) variety during grape ripening and upon infection with Botrytis cinerea. Infection of grapes with the necrotrophic pathogen Botrytis cinerea leads to significant economic losses worldwide. Peppercorn-sized fruits were infected in the field and mock-treated and infected berries were collected at green, veraison and harvest stages for hormone analysis and targeted qPCR analysis of genes involved in hormonal metabolism and signaling. Results indicate a substantial reprogramming of hormonal metabolism during grape ripening and in response to fungal attack. Syrah and Trincadeira presented differences in the metabolism of abscisic acid (ABA), indole-3-acetic acid (IAA) and jasmonates during grape ripening that may be connected to fruit quality. On the other hand, high basal levels of salicylic acid (SA), jasmonates and IAA at an early stage of ripening, together with activated SA, jasmonates and IAA signaling, likely enable a fast defense response leading to grape resistance/ tolerance towards B. cinerea. The balance among the different phytohormones seems to depend on the ripening stage and on the intra-specific genetic background and may be fundamental in providing resistance or susceptibility. In addition, this study indicated the involvement of SA and IAA in defense against necrotrophic pathogens and gains insights into possible strategies for conventional breeding and/or gene editing aiming at improving grape quality and grape resistance against Botrytis cinerea.
Collapse
Affiliation(s)
- João Coelho
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioISI, Campo Grande, 1749-016, Lisboa, Portugal
| | - Marilia Almeida-Trapp
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Diana Pimentel
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioISI, Campo Grande, 1749-016, Lisboa, Portugal
| | - Flávio Soares
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioISI, Campo Grande, 1749-016, Lisboa, Portugal
| | - Pedro Reis
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Cecília Rego
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal
| | - Axel Mithöfer
- Research Group Plant Defense Physiology, Max Planck Institute for Chemical Ecology, 07745, Jena, Germany
| | - Ana Margarida Fortes
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioISI, Campo Grande, 1749-016, Lisboa, Portugal.
| |
Collapse
|
29
|
Wang W, Paschalidis K, Feng JC, Song J, Liu JH. Polyamine Catabolism in Plants: A Universal Process With Diverse Functions. FRONTIERS IN PLANT SCIENCE 2019; 10:561. [PMID: 31134113 PMCID: PMC6513885 DOI: 10.3389/fpls.2019.00561] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/12/2019] [Indexed: 05/18/2023]
Abstract
Polyamine (PA) catabolic processes are performed by copper-containing amine oxidases (CuAOs) and flavin-containing PA oxidases (PAOs). So far, several CuAOs and PAOs have been identified in many plant species. These enzymes exhibit different subcellular localization, substrate specificity, and functional diversity. Since PAs are involved in numerous physiological processes, considerable efforts have been made to explore the functions of plant CuAOs and PAOs during the recent decades. The stress signal transduction pathways usually lead to increase of the intracellular PA levels, which are apoplastically secreted and oxidized by CuAOs and PAOs, with parallel production of hydrogen peroxide (H2O2). Depending on the levels of the generated H2O2, high or low, respectively, either programmed cell death (PCD) occurs or H2O2 is efficiently scavenged by enzymatic/nonenzymatic antioxidant factors that help plants coping with abiotic stress, recruiting different defense mechanisms, as compared to biotic stress. Amine and PA oxidases act further as PA back-converters in peroxisomes, also generating H2O2, possibly by activating Ca2+ permeable channels. Here, the new research data are discussed on the interconnection of PA catabolism with the derived H2O2, together with their signaling roles in developmental processes, such as fruit ripening, senescence, and biotic/abiotic stress reactions, in an effort to elucidate the mechanisms involved in crop adaptation/survival to adverse environmental conditions and to pathogenic infections.
Collapse
Affiliation(s)
- Wei Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Konstantinos Paschalidis
- Department of Agriculture, School of Agricultural Sciences, Hellenic Mediterranean University, Heraklion, Greece
| | - Jian-Can Feng
- College of Horticulture, Henan Agricultural University, Zhengzhou, China
| | - Jie Song
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
30
|
Chen D, Shao Q, Yin L, Younis A, Zheng B. Polyamine Function in Plants: Metabolism, Regulation on Development, and Roles in Abiotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2019; 9:1945. [PMID: 30687350 PMCID: PMC6335389 DOI: 10.3389/fpls.2018.01945] [Citation(s) in RCA: 355] [Impact Index Per Article: 59.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 12/13/2018] [Indexed: 05/10/2023]
Abstract
Polyamines (PAs) are low molecular weight aliphatic nitrogenous bases containing two or more amino groups. They are produced by organisms during metabolism and are present in almost all cells. Because they play important roles in diverse plant growth and developmental processes and in environmental stress responses, they are considered as a new kind of plant biostimulant. With the development of molecular biotechnology techniques, there is increasing evidence that PAs, whether applied exogenously or produced endogenously via genetic engineering, can positively affect plant growth, productivity, and stress tolerance. However, it is still not fully understood how PAs regulate plant growth and stress responses. In this review, we attempt to cover these information gaps and provide a comprehensive and critical assessment of the published literature on the relationships between PAs and plant flowering, embryo development, senescence, and responses to several (mainly abiotic) stresses. The aim of this review is to summarize how PAs improve plants' productivity, and to provide a basis for future research on the mechanism of action of PAs in plant growth and development. Future perspectives for PA research are also suggested.
Collapse
Affiliation(s)
- Dandan Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Qingsong Shao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Lianghong Yin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
- Department of Traditional Chinese Medicine, Zhejiang A&F University, Hangzhou, China
| | - Adnan Younis
- Institute of Horticultural Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
31
|
Hao Y, Huang B, Jia D, Mann T, Jiang X, Qiu Y, Niitsu M, Berberich T, Kusano T, Liu T. Identification of seven polyamine oxidase genes in tomato (Solanum lycopersicum L.) and their expression profiles under physiological and various stress conditions. JOURNAL OF PLANT PHYSIOLOGY 2018; 228:1-11. [PMID: 29793152 DOI: 10.1016/j.jplph.2018.05.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 05/13/2018] [Accepted: 05/13/2018] [Indexed: 05/24/2023]
Abstract
Polyamines (PAs) are implicated in developmental processes and stress responses of plants. Polyamine oxidases (PAOs), flavin adenine dinucleotide-dependent enzymes that function in PA catabolism, play a critical role. Even though PAO gene families of Arabidopsis and rice have been intensely characterized and their expression in response to developmental and environmental changes has been investigated, little is known about PAOs in tomato (Solanum lycopersicum). We found seven PAO genes in S. lycopersicum and named them SlPAO1∼7. Plant PAOs form four clades in phylogenetic analysis, of which SlPAO1 belongs to clade-I, SlPAO6 and SlPAO7 to clade-III, and the residual four (SlPAO2∼5) to clade-IV, while none belongs to clade-II. All the clade-IV members in tomato also retain the putative peroxisomal-targeting signals in their carboxy termini, suggesting their peroxisome localization. SlPAO1 to SlPAO5 genes consist of 10 exons and 9 introns, while SlPAO6 and SlPAO7 are intronless genes. To address the individual roles of SlPAOs, we analyzed their expression in various tissues and during flowering and fruit development. The expression of SlPAO2∼4 was constitutively high, while that of the other SlPAO members was relatively lower. We further analyzed the expressional changes of SlPAOs upon abiotic stresses, oxidative stresses, phytohormone application, and PA application. Based on the data obtained, we discuss the distinctive roles of SlPAOs.
Collapse
Affiliation(s)
- Yanwei Hao
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Binbin Huang
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Dongyu Jia
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460-8042, USA
| | - Taylor Mann
- Department of Biology, Georgia Southern University, Statesboro, GA, 30460-8042, USA
| | - Xinyi Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Yuxing Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Masaru Niitsu
- Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, 370-0290, Japan
| | - Thomas Berberich
- Senckenberg Biodiversity and Climate Research Center, Georg-Voigt-Str. 14-16, Frankfurt am Main, D-60325, Germany
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577, Japan
| | - Taibo Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
32
|
Fortes AM, Agudelo-Romero P. Polyamine Metabolism in Climacteric and Non-Climacteric Fruit Ripening. Methods Mol Biol 2018; 1694:433-447. [PMID: 29080186 DOI: 10.1007/978-1-4939-7398-9_36] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Polyamines are small aliphatic amines that are found in both prokaryotic and eukaryotic organisms. These growth regulators have been implicated in abiotic and biotic stresses as well as plant development and morphogenesis. Several studies have also suggested a key role of polyamines during fruit set and early development. Polyamines have also been linked to fruit ripening and in the regulation of fruit quality-related traits.Recent studies indicate that during ripening of both climacteric and non-climacteric fruits, a decline in total polyamine contents is observed together with an increased catabolism of these growth regulators.In this review, we explore the current knowledge on polyamine biosynthesis and catabolism during fruit set and ripening. The study of the role of polyamine metabolism in fruit ripening indicates the possible application of these natural polycations to control ripening and postharvest decay as well as to improve fruit quality traits.
Collapse
Affiliation(s)
- Ana Margarida Fortes
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.
| | - Patricia Agudelo-Romero
- Australian Research Council (ARC) Centre of Excellence in Plant Energy Biology, The University of Western Australia, Perth, WA, 6009, Australia
| |
Collapse
|
33
|
Evaluation of the Impact of Storage Conditions on the Biogenic Amines Profile in Opened Wine Bottles. Molecules 2018; 23:molecules23051130. [PMID: 29747446 PMCID: PMC6100326 DOI: 10.3390/molecules23051130] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 05/03/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022] Open
Abstract
A survey of biogenic amine (BA) profiles in opened wine bottles has been established to monitor the level of biogenic amines (BAs) in opened bottles against time and other conditions. Bottles of red and white wine were submitted to different temperatures, stopper type (screw cap, cork), and use of vacuum devices. A total of six wines made from a variety of grapes were obtained from vineyards from regions across Poland. Dispersive liquid-liquid microextraction-gas chromatography-mass spectrometry (DLLME-GC-MS) procedure for BAs determination was validated and applied for wine sample analysis. The total content of BAs from the set of immediately opened wine samples ranged from 442 to 929 µg/L for white wines, and 669 to 2244 µg/L for red wines. The most abundant BAs in the analysed wines were histamine and putrescine. Considering the commercial availability of the analysed wines, there was no relationship between the presence of BAs in a given wine and their availability on the market. However, it was observed and confirmed by chemometric analysis that the different storage conditions employed in this experiment affect not only the BAs profile, but also the pH.
Collapse
|
34
|
Procedures for ADC Immunoblotting and Immunolocalization for Transmission Electron Microscopy During Organogenic Nodule Formation in Hop. Methods Mol Biol 2017. [PMID: 29080169 DOI: 10.1007/978-1-4939-7398-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Immunolocalization for transmission electron microscopy is a powerful technique to identify subcellular localization of proteins. This can be combined with molecular and physiological data in order to have a complete overview of protein function. However, optimal sample preservation is required to avoid artefacts. When using chemically fixed samples, the progressive lowering of temperature (PLT) technique is a convenient procedure to dehydrate and embed samples at low temperature, thereby preserving the antigenicity of the proteins to be detected. Despite the advantages of immunogold labelling, it is a time-consuming cell biology technique. Therefore, the quality and specificity of the antibody should be previously checked by western blot. This approach also enables to identify changes in the amount of protein under study throughout development or in response to stress conditions.
Collapse
|
35
|
Shangguan L, Mu Q, Fang X, Zhang K, Jia H, Li X, Bao Y, Fang J. RNA-Sequencing Reveals Biological Networks during Table Grapevine ('Fujiminori') Fruit Development. PLoS One 2017; 12:e0170571. [PMID: 28118385 PMCID: PMC5261597 DOI: 10.1371/journal.pone.0170571] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/06/2017] [Indexed: 11/19/2022] Open
Abstract
Grapevine berry development is a complex and genetically controlled process, with many morphological, biochemical and physiological changes occurring during the maturation process. Research carried out on grapevine berry development has been mainly concerned with wine grape, while barely focusing on table grape. 'Fujiminori' is an important table grapevine cultivar, which is cultivated in most provinces of China. In order to uncover the dynamic networks involved in anthocyanin biosynthesis, cell wall development, lipid metabolism and starch-sugar metabolism in 'Fujiminori' fruit, we employed RNA-sequencing (RNA-seq) and analyzed the whole transcriptome of grape berry during development at the expanding period (40 days after full bloom, 40DAF), véraison period (65DAF), and mature period (90DAF). The sequencing depth in each sample was greater than 12×, and the expression level of nearly half of the expressed genes were greater than 1. Moreover, greater than 64% of the clean reads were aligned to the Vitis vinifera reference genome, and 5,620, 3,381, and 5,196 differentially expressed genes (DEGs) were identified between different fruit stages, respectively. Results of the analysis of DEGs showed that the most significant changes in various processes occurred from the expanding stage to the véraison stage. The expression patterns of F3'H and F3'5'H were crucial in determining red or blue color of the fruit skin. The dynamic networks of cell wall development, lipid metabolism and starch-sugar metabolism were also constructed. A total of 4,934 SSR loci were also identified from 4,337 grapevine genes, which may be helpful for the development of phylogenetic analysis in grapevine and other fruit trees. Our work provides the foundation for developmental research of grapevine fruit as well as other non-climacteric fruits.
Collapse
MESH Headings
- Anthocyanins/metabolism
- Carbohydrate Metabolism/genetics
- Cell Wall/metabolism
- DNA, Complementary/genetics
- Fruit/growth & development
- Fruit/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Gene Regulatory Networks
- Genes, Plant
- Hybridization, Genetic
- Lipid Metabolism/genetics
- Phylogeny
- Plant Proteins/biosynthesis
- Plant Proteins/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Plant/analysis
- RNA, Plant/genetics
- Real-Time Polymerase Chain Reaction
- Sequence Analysis, RNA
- Transcriptome
- Vitis/genetics
- Vitis/growth & development
Collapse
Affiliation(s)
- Lingfei Shangguan
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Qian Mu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
- Shandong Academy of Grape, Jinan, Shandong, PR. China
| | - Xiang Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Kekun Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Xiaoying Li
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, PR China
| | - Yiqun Bao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, PR China
| |
Collapse
|
36
|
du Plessis K, Young PR, Eyéghé-Bickong HA, Vivier MA. The Transcriptional Responses and Metabolic Consequences of Acclimation to Elevated Light Exposure in Grapevine Berries. FRONTIERS IN PLANT SCIENCE 2017; 8:1261. [PMID: 28775728 PMCID: PMC5518647 DOI: 10.3389/fpls.2017.01261] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/04/2017] [Indexed: 05/19/2023]
Abstract
An increasing number of field studies that focus on grapevine berry development and ripening implement systems biology approaches; the results are highlighting not only the intricacies of the developmental programming/reprogramming that occurs, but also the complexity of how profoundly the microclimate influences the metabolism of the berry throughout the different stages of development. In a previous study we confirmed that a leaf removal treatment to Sauvignon Blanc grapes, grown in a highly characterized vineyard, primarily affected the level of light exposure to the berries throughout their development. A full transcriptomic analysis of berries from this model vineyard details the underlying molecular responses of the berries in reaction to the exposure and show how the berries acclimated to the imposing light stress. Gene expression involved in the protection of the photosynthetic machinery through rapid protein-turnover and the expression of photoprotective flavonoid compounds were most significantly affected in green berries. Overall, the transcriptome analysis showed that the berries implemented multiple stress-mitigation strategies in parallel and metabolite analysis was used to support the main findings. Combining the transcriptome data and amino acid profiling provided evidence that amino acid catabolism probably contributed to the mitigation of a likely energetic deficit created by the upregulation of (energetically) costly stress defense mechanisms. Furthermore, the rapid turnover of essential proteins involved in the maintenance of primary metabolism and growth in the photosynthetically active grapes appeared to provide precursors for the production of protective secondary metabolites such as apocarotenoids and flavonols in the ripening stages of the berries. Taken together, these results confirmed that the green grape berries responded to light stress much like other vegetative organs and were able to acclimate to the increased exposure, managing their metabolism and energy requirements to sustain the developmental cycle toward ripening. The typical metabolic consequences of leaf removal on grape berries can therefore now be linked to increased light exposure through mechanisms of photoprotection in green berries that leads toward acclimation responses that remain intact until ripening.
Collapse
Affiliation(s)
- Kari du Plessis
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
| | - Philip R. Young
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
| | - Hans A. Eyéghé-Bickong
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
- Institute for Grape and Wine Sciences, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
| | - Melané A. Vivier
- Institute for Wine Biotechnology, Department of Viticulture and Oenology, Stellenbosch UniversityStellenbosch, South Africa
- *Correspondence: Melané A. Vivier
| |
Collapse
|
37
|
Bioactive amines in Passiflora are affected by species and fruit development. Food Res Int 2016; 89:733-738. [PMID: 28460972 DOI: 10.1016/j.foodres.2016.09.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 09/21/2016] [Accepted: 09/27/2016] [Indexed: 02/08/2023]
Abstract
Bioactive amines were determined in selected passion fruit species and throughout fruit development. The same amines (spermine, spermidine, agmatine, putrescine and tryptamine) were found in four Passiflora species (2008-2010 growing seasons) at different concentrations: P. alata had higher polyamines (spermine+spermidine, 8.41mg/100g); P. setacea and P. nitida had higher putrescine (>7.0mg/100g); and P. setacea had higher agmatine contents (1.37mg/100g) compared to the others. The indolamine tryptamine was present at low concentrations in all species (~0.05mg/100g). P. nitida and P. alata had the highest soluble solids (~18°Brix); P. edulis had the lowest pH (2.97) and P. nitida the highest pH (4.19). Throughout P. setacea fruit development, the concentrations of spermidine, putrescine and agmatine decreased; spermine contents did not change; and pH decreased. Fruit shelf life and some of the health promoting properties of Passiflora and their synthesis are modulated by species.
Collapse
|
38
|
Cai K, Cai B, Xiang Z, Zhao H, Rao X, Pan W, Lei B. Low-temperature derivatization followed by vortex-assisted liquid-liquid microextraction for the analysis of polyamines in Nicotiana Tabacum. J Sep Sci 2016; 39:2573-83. [PMID: 27145427 DOI: 10.1002/jssc.201600210] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/29/2016] [Accepted: 04/21/2016] [Indexed: 01/12/2023]
Abstract
Polyamines are ubiquitous polycationic molecules that play a key role in many biological processes such as nucleic acid metabolism, protein synthesis, cell growth, and nicotine synthesis precursors. This work describes a rapid, sensitive, convenient, green, and cost-effective method for the determination of polyamines in Nicotiana tabacum by ultra high performance liquid chromatography with photodiode array detection. The analytes were derivatized with 3,5-dinitrobenzoyl chloride at low temperature (about 4°C) and then extracted with vortex-assisted liquid-liquid microextraction. The experimental designs based on quarter-fractional factorial design and Doehlert design were used to screen and optimize the important factors in microextraction process. Under the optimal conditions, the method was linear over 0.05-8.00 μg/mL with an r(2) ≥ 0.992 and exhibited good repeatability and reproducibility less than 6.0 and 6.9%, respectively. The limit of detection ranged between 0.013 and 0.029 μg/g. The newly developed method was successfully employed to analyze different leaf samples of Nicotiana tabacum, among which the polyamines contents were found to be very different. Moreover, tyramine, 1,3-diaminopropane, homospermidine, and canavalmine were tentatively identified with the electrospray ionization quadrupole time-of-flight mass spectrometry. To our knowledge, this is the first report of identification of canavalmine in Nicotiana Tabacum.
Collapse
Affiliation(s)
- Kai Cai
- Guizhou Academy of Tobacco Science, Guiyang, P.R. China
| | - Bin Cai
- Guizhou Academy of Tobacco Science, Guiyang, P.R. China
| | | | - Huina Zhao
- Guizhou Academy of Tobacco Science, Guiyang, P.R. China
| | - Xingyi Rao
- Tobacco Technology Promotion Station, Zunyi County Tobacco Company of Guizhou Province, Zunyi, P.R. China
| | - Wenjie Pan
- Guizhou Academy of Tobacco Science, Guiyang, P.R. China
- Upland Flue-Cured Tobacco Quality & Ecology Key Laboratory of China Tobacco
| | - Bo Lei
- Guizhou Academy of Tobacco Science, Guiyang, P.R. China
- Key Laboratory of Molecular Genetics, CNTC, Guiyang, P.R. China
| |
Collapse
|
39
|
Tsaniklidis G, Kotsiras A, Tsafouros A, Roussos PA, Aivalakis G, Katinakis P, Delis C. Spatial and temporal distribution of genes involved in polyamine metabolism during tomato fruit development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 100:27-36. [PMID: 26773542 DOI: 10.1016/j.plaphy.2016.01.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 01/04/2016] [Accepted: 01/04/2016] [Indexed: 05/20/2023]
Abstract
Polyamines are organic compounds involved in various biological roles in plants, including cell growth and organ development. In the present study, the expression profile, the accumulation of free polyamines and the transcript localisation of the genes involved in Put metabolism, such as Ornithine decarboxylase (ODC), Arginine decarboxylase (ADC) and copper containing Amine oxidase (CuAO), were examined during Solanum lycopersicum cv. Chiou fruit development and maturation. Moreover, the expression of genes coding for enzymes involved in higher polyamine metabolism, including Spermidine synthase (SPDS), Spermine synthase (SPMS), S-adenosylmethionine decarboxylase (SAMDC) and Polyamine oxidase (PAO), were studied. Most genes participating in PAs biosynthesis and metabolism exhibited an increased accumulation of transcripts at the early stages of fruit development. In contrast, CuAO and SPMS were mostly expressed later, during the development stages of the fruits where a massive increase in fruit volume occurs, while the SPDS1 gene exhibited a rather constant expression with a peak at the red ripe stage. Although Put, Spd and Spm were all exhibited decreasing levels in developing immature fruits, Put levels maxed late during fruit ripening. In contrast to Put both Spd and Spm levels continue to decrease gradually until full ripening. It is worth noticing that in situ RNA-RNA hybridisation is reported for the first time in tomato fruits. The localisation of ADC2, ODC1 and CuAO gene transcripts at tissues such as the locular parenchyma and the vascular bundles fruits, supports the theory that all genes involved in Put biosynthesis and catabolism are mostly expressed in fast growing tissues. The relatively high expression levels of CuAO at the ImG4 stage of fruit development (fruits with a diameter of 3 cm), mature green and breaker stages could possibly be attributed to the implication of polyamines in physiological processes taking place during fruit ripening.
Collapse
Affiliation(s)
- Georgios Tsaniklidis
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Anastasios Kotsiras
- Technological Educational Institute of Peloponnese, School of Agricultural Technology and Food Technology and Nutrition, Department of Agricultural Technology, 24100 Antikalamos, Kalamata, Greece.
| | - Athanasios Tsafouros
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Peter A Roussos
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Georgios Aivalakis
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Panagiotis Katinakis
- Agricultural University of Athens, Department of Natural Resources Development and Agricultural Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| | - Costas Delis
- Technological Educational Institute of Peloponnese, School of Agricultural Technology and Food Technology and Nutrition, Department of Agricultural Technology, 24100 Antikalamos, Kalamata, Greece.
| |
Collapse
|
40
|
Tavladoraki P, Cona A, Angelini R. Copper-Containing Amine Oxidases and FAD-Dependent Polyamine Oxidases Are Key Players in Plant Tissue Differentiation and Organ Development. FRONTIERS IN PLANT SCIENCE 2016; 7:824. [PMID: 27446096 PMCID: PMC4923165 DOI: 10.3389/fpls.2016.00824] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/26/2016] [Indexed: 05/18/2023]
Abstract
Plant polyamines are catabolized by two classes of amine oxidases, the copper amine oxidases (CuAOs) and the flavin adenine dinucleotide (FAD)-dependent polyamine oxidases (PAOs). These enzymes differ to each other in substrate specificity, catalytic mechanism and subcellular localization. CuAOs and PAOs contribute to several physiological processes both through the control of polyamine homeostasis and as sources of biologically-active reaction products. CuAOs and PAOs have been found at high level in the cell-wall of several species belonging to Fabaceae and Poaceae families, respectively, especially in tissues fated to undertake extensive wall loosening/stiffening events and/or in cells undergoing programmed cell death (PCD). Apoplastic CuAOs and PAOs have been shown to play a key role as a source of H2O2 in light- or developmentally-regulated differentiation events, thus influencing cell-wall architecture and maturation as well as PCD. Moreover, growing evidence suggests a key role of intracellular CuAOs and PAOs in several facets of plant development. Here, we discuss recent advances in understanding the contribution of different CuAOs/PAOs, as well as their cross-talk with different intracellular and apoplastic metabolic pathways, in tissue differentiation and organ development.
Collapse
|
41
|
Cuadros-Inostroza A, Ruíz-Lara S, González E, Eckardt A, Willmitzer L, Peña-Cortés H. GC-MS metabolic profiling of Cabernet Sauvignon and Merlot cultivars during grapevine berry development and network analysis reveals a stage- and cultivar-dependent connectivity of primary metabolites. Metabolomics 2016; 12:39. [PMID: 26848290 PMCID: PMC4723623 DOI: 10.1007/s11306-015-0927-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 10/10/2015] [Indexed: 11/06/2022]
Abstract
Information about the total chemical composition of primary metabolites during grape berry development is scarce, as are comparative studies trying to understand to what extent metabolite modifications differ between cultivars during ripening. Thus, correlating the metabolic profiles with the changes occurring in berry development and ripening processes is essential to progress in their comprehension as well in the development of new approaches to improve fruit attributes. Here, the developmental metabolic profiling analysis across six stages from flowering to fully mature berries of two cultivars, Cabernet Sauvignon and Merlot, is reported at metabolite level. Based on a gas chromatography-mass spectrometry untargeted approach, 115 metabolites were identified and relative quantified in both cultivars. Sugars and amino acids levels show an opposite behaviour in both cultivars undergoing a highly coordinated shift of metabolite associated to primary metabolism during the stages involved in growth, development and ripening of berries. The changes are characteristic for each stage, the most pronounced ones occuring at fruit setting and pre-Veraison. They are associated to a reduction of the levels of metabolites present in the earlier corresponding stage, revealing a required catabolic activity of primary metabolites for grape berry developmental process. Network analysis revealed that the network connectivity of primary metabolites is stage- and cultivar-dependent, suggesting differences in metabolism regulation between both cultivars as the maturity process progresses. Furthermore, network analysis may represent an appropriate method to display the association between primary metabolites during berry developmental processes among different grapevine cultivars and for identifying potential biologically relevant metabolites.
Collapse
Affiliation(s)
- Alvaro Cuadros-Inostroza
- Max-Planck Institute for Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
- MetasysX, Am Mühlenberg 11, 14476 Potsdam-Golm, Germany
| | - Simón Ruíz-Lara
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Enrique González
- Instituto de Ciencias Biológicas, Universidad de Talca, 2 Norte 685, Talca, Chile
| | - Aenne Eckardt
- Max-Planck Institute for Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Lothar Willmitzer
- Max-Planck Institute for Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Hugo Peña-Cortés
- Max-Planck Institute for Plant Molecular Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
42
|
Fortes AM, Teixeira RT, Agudelo-Romero P. Complex Interplay of Hormonal Signals during Grape Berry Ripening. Molecules 2015; 20:9326-43. [PMID: 26007186 PMCID: PMC6272489 DOI: 10.3390/molecules20059326] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 05/15/2015] [Accepted: 05/18/2015] [Indexed: 11/16/2022] Open
Abstract
Grape and wine production and quality is extremely dependent on the fruit ripening process. Sensory and nutritional characteristics are important aspects for consumers and their development during fruit ripening involves complex hormonal control. In this review, we explored data already published on grape ripening and compared it with the hormonal regulation of ripening of other climacteric and non-climacteric fruits. The roles of abscisic acid, ethylene, and brassinosteroids as promoters of ripening are discussed, as well as the role of auxins, cytokinins, gibberellins, jasmonates, and polyamines as inhibitors of ripening. In particular, the recently described role of polyamine catabolism in grape ripening is discussed, together with its putative interaction with other hormones. Furthermore, other recent examples of cross-talk among the different hormones are presented, revealing a complex interplay of signals during grape development and ripening.
Collapse
Affiliation(s)
- Ana Margarida Fortes
- BioISI, Faculdade de Ciências de Lisboa, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.
- Instituto de Tecnologia de Química Biológica (ITQB), Biotecnologia de Células Vegetais, Av. da República, 2781-157 Oeiras, Portugal.
| | - Rita Teresa Teixeira
- BioISI, Faculdade de Ciências de Lisboa, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Patricia Agudelo-Romero
- BioISI, Faculdade de Ciências de Lisboa, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
43
|
Agudelo-Romero P, Erban A, Rego C, Carbonell-Bejerano P, Nascimento T, Sousa L, Martínez-Zapater JM, Kopka J, Fortes AM. Transcriptome and metabolome reprogramming in Vitis vinifera cv. Trincadeira berries upon infection with Botrytis cinerea. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1769-85. [PMID: 25675955 PMCID: PMC4669548 DOI: 10.1093/jxb/eru517] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 11/04/2014] [Accepted: 12/25/2014] [Indexed: 05/20/2023]
Abstract
Vitis vinifera berries are sensitive towards infection by the necrotrophic pathogen Botrytis cinerea, leading to important economic losses worldwide. The combined analysis of the transcriptome and metabolome associated with fungal infection has not been performed previously in grapes or in another fleshy fruit. In an attempt to identify the molecular and metabolic mechanisms associated with the infection, peppercorn-sized fruits were infected in the field. Green and veraison berries were collected following infection for microarray analysis complemented with metabolic profiling of primary and other soluble metabolites and of volatile emissions. The results provided evidence of a reprogramming of carbohydrate and lipid metabolisms towards increased synthesis of secondary metabolites involved in plant defence, such as trans-resveratrol and gallic acid. This response was already activated in infected green berries with the putative involvement of jasmonic acid, ethylene, polyamines, and auxins, whereas salicylic acid did not seem to be involved. Genes encoding WRKY transcription factors, pathogenesis-related proteins, glutathione S-transferase, stilbene synthase, and phenylalanine ammonia-lyase were upregulated in infected berries. However, salicylic acid signalling was activated in healthy ripening berries along with the expression of proteins of the NBS-LRR superfamily and protein kinases, suggesting that the pathogen is able to shut down defences existing in healthy ripening berries. Furthermore, this study provided metabolic biomarkers of infection such as azelaic acid, a substance known to prime plant defence responses, arabitol, ribitol, 4-amino butanoic acid, 1-O-methyl- glucopyranoside, and several fatty acids that alone or in combination can be used to monitor Botrytis infection early in the vineyard.
Collapse
Affiliation(s)
- Patricia Agudelo-Romero
- Centre for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Cecília Rego
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Pablo Carbonell-Bejerano
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja, Madre de Dios 51, 26006 Logroño, Spain
| | - Teresa Nascimento
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Lisete Sousa
- Department of Statistics and Operational Research, Centro de Estatística e Aplicações da UL, Faculdade de Ciências de Lisboa, 1749-016 Lisboa, Portugal
| | - José M Martínez-Zapater
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas-Universidad de La Rioja-Gobierno de La Rioja, Madre de Dios 51, 26006 Logroño, Spain
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany
| | - Ana Margarida Fortes
- Centre for Biodiversity, Functional and Integrative Genomics, Faculty of Sciences, University of Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
44
|
Tuberoso CIG, Congiu F, Serreli G, Mameli S. Determination of dansylated amino acids and biogenic amines in Cannonau and Vermentino wines by HPLC-FLD. Food Chem 2014; 175:29-35. [PMID: 25577047 DOI: 10.1016/j.foodchem.2014.11.120] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 10/21/2014] [Accepted: 11/20/2014] [Indexed: 01/02/2023]
Abstract
Free amino acids (AA) and biogenic amines (BA) were quantified for the first time in Cannonau and Vermentino wines, the two most popular "Controlled Designation of Origin" wines from Sardinia (Italy). An analytical method for the simultaneous determination of AA and BA was developed, using selective derivatization with dansyl chloride followed by HPLC with fluorescence detection. Thirty-two compounds were identified in the wines analysed. High levels of AA were found, with proline being the most abundant with average levels of 1244 ± 398 and 1008 ± 281 mg/L in Cannonau and Vermentino wines, respectively. BA were detected at average concentrations <10mg/L, except putrescine which reached 20.5 ± 10.2mg/L in Cannonau wines. Histamine was never detected in any Vermentino wines. γ-Aminobutyric acid, 4-hydroxyproline, glycine, leucine+isoleucine and putrescine proved to be useful for differentiating Cannonau wines from Vermentino wines.
Collapse
Affiliation(s)
| | - Francesca Congiu
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Gabriele Serreli
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| | - Stefano Mameli
- Department of Life and Environmental Sciences, University of Cagliari, Via Ospedale 72, 09124 Cagliari, Italy
| |
Collapse
|
45
|
Liu T, Kim DW, Niitsu M, Maeda S, Watanabe M, Kamio Y, Berberich T, Kusano T. Polyamine oxidase 7 is a terminal catabolism-type enzyme in Oryza sativa and is specifically expressed in anthers. PLANT & CELL PHYSIOLOGY 2014; 55:1110-22. [PMID: 24634478 DOI: 10.1093/pcp/pcu047] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Polyamine oxidase (PAO), which requires FAD as a cofactor, functions in polyamine catabolism. Plant PAOs are classified into two groups based on their reaction modes. The terminal catabolism (TC) reaction always produces 1,3-diaminopropane (DAP), H2O2, and the respective aldehydes, while the back-conversion (BC) reaction produces spermidine (Spd) from tetraamines, spermine (Spm) and thermospermine (T-Spm) and/or putrescine from Spd, along with 3-aminopropanal and H2O2. The Oryza sativa genome contains seven PAO-encoded genes termed OsPAO1-OsPAO7. To date, we have characterized four OsPAO genes. The products of these genes, i.e. OsPAO1, OsPAO3, OsPAO4 and OsPAO5, catalyze BC-type reactions. Whereas OsPAO1 remains in the cytoplasm, the other three PAOs localize to peroxisomes. Here, we examined OsPAO7 and its gene product. OsPAO7 shows high identity to maize ZmPAO1, the best characterized plant PAO having TC-type activity. OsPAO7 seems to remain in a peripheral layer of the plant cell with the aid of its predicted signal peptide and transmembrane domain. Recombinant OsPAO7 prefers Spm and Spd as substrates, and it produces DAP from both substrates in a time-dependent manner, indicating that OsPAO7 is the first TC-type enzyme identified in O. sativa. The results clearly show that two types of PAOs co-exist in O. sativa. Furthermore, OsPAO7 is specifically expressed in anthers, with an expressional peak at the bicellular pollen stage. The physiological function of OsPAO7 in anthers is discussed.
Collapse
Affiliation(s)
- Taibo Liu
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577 Japan
| | - Dong Wook Kim
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577 Japan
| | - Masaru Niitsu
- Faculty of Pharmaceutical Sciences, Josai University, Sakado, Saitama, 370-0290 Japan
| | - Shunsuke Maeda
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577 Japan
| | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577 Japan
| | - Yoshiyuki Kamio
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577 JapanShokei Gakuin University, 4-10-1 Yurigaoka, Natori, Miyagi, 981-1295 Japan
| | - Thomas Berberich
- Biodiversity and Climate Research Center, Laboratory Centre, Georg-Voigt-Str. 14-16, D-60325 Frankfurt am Main, Germany
| | - Tomonobu Kusano
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai, Miyagi, 980-8577 Japan
| |
Collapse
|
46
|
Health effects and occurrence of dietary polyamines: a review for the period 2005-mid 2013. Food Chem 2014; 161:27-39. [PMID: 24837918 DOI: 10.1016/j.foodchem.2014.03.102] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 01/31/2014] [Accepted: 03/20/2014] [Indexed: 01/15/2023]
Abstract
This review continues a previous one (Kalač & Krausová, 2005). Dietary polyamines spermidine and spermine participate in an array of physiological roles with both favourable and injurious effects on human health. Dieticians thus need plausible information on their content in various foods. The data on the polyamine contents in raw food materials increased considerably during the reviewed period, while information on their changes during processing and storage have yet been fragmentary and inconsistent. Spermidine and spermine originate mainly from raw materials. Their high contents are typical particularly for inner organs and meat of warm-blooded animals, soybean and fermented soybean products and some mushroom species. Generally, polyamine contents range widely within the individual food items.
Collapse
|
47
|
Agudelo-Romero P, Ali K, Choi YH, Sousa L, Verpoorte R, Tiburcio AF, Fortes AM. Perturbation of polyamine catabolism affects grape ripening of Vitis vinifera cv. Trincadeira. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 74:141-55. [PMID: 24296250 DOI: 10.1016/j.plaphy.2013.11.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 11/04/2013] [Indexed: 05/08/2023]
Abstract
Grapes are economically the most important fruit worldwide. However, the complexity of biological events that lead to ripening of nonclimacteric fruits is not fully understood, particularly the role of polyamines' catabolism. The transcriptional and metabolic profilings complemented with biochemical data were studied during ripening of Trincadeira grapes submitted to guazatine treatment, a potent inhibitor of polyamine oxidase activity. The mRNA expression profiles of one time point (EL 38) corresponding to harvest stage was compared between mock and guazatine treatments using Affymetrix GrapeGen(®) genome array. A total of 2113 probesets (1880 unigenes) were differentially expressed between these samples. Quantitative RT-PCR validated microarrays results being carried out for EL 35 (véraison berries), EL 36 (ripe berries) and EL 38 (harvest stage berries). Metabolic profiling using HPLC and (1)H NMR spectroscopy showed increase of putrescine, proline, threonine and 1-O-ethyl-β-glucoside in guazatine treated samples. Genes involved in amino acid, carbohydrate and water transport were down-regulated in guazatine treated samples suggesting that the strong dehydrated phenotype obtained in guazatine treated samples may be due to impaired transport mechanisms. Genes involved in terpenes' metabolism were differentially expressed between guazatine and mock treated samples. Altogether, results support an important role of polyamine catabolism in grape ripening namely in cell expansion and aroma development.
Collapse
Affiliation(s)
- Patricia Agudelo-Romero
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioFIG, Campo Grande 1749-016 Lisboa, Portugal.
| | - Kashif Ali
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands.
| | - Young H Choi
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands.
| | - Lisete Sousa
- Department of Statistics and Operational Research, CEAUL, FCUL, 1749-016 Lisboa, Portugal.
| | - Rob Verpoorte
- Natural Products Laboratory, Institute of Biology, Leiden University, 2300 RA Leiden, The Netherlands.
| | - Antonio F Tiburcio
- University of Barcelona, Pharmacy Faculty, Av. Diagonal 643, 08028 Barcelona, Spain.
| | - Ana M Fortes
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, BioFIG, Campo Grande 1749-016 Lisboa, Portugal.
| |
Collapse
|
48
|
Agudelo-Romero P, Erban A, Sousa L, Pais MS, Kopka J, Fortes AM. Search for transcriptional and metabolic markers of grape pre-ripening and ripening and insights into specific aroma development in three Portuguese cultivars. PLoS One 2013; 8:e60422. [PMID: 23565246 PMCID: PMC3614522 DOI: 10.1371/journal.pone.0060422] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 02/25/2013] [Indexed: 11/18/2022] Open
Abstract
Background Grapes (Vitis species) are economically the most important fruit crop worldwide. However, the complexity of molecular and biochemical events that lead to ripening of berries as well as how aroma is developed are not fully understood. Methodology/Principal Findings In an attempt to identify the common mechanisms associated with the onset of ripening independently of the cultivar, grapes of Portuguese elite cultivars, Trincadeira, Aragonês, and Touriga Nacional, were studied. The mRNA expression profiles corresponding to veraison (EL35) and mature berries (EL36) were compared. Across the three varieties, 9,8% (2255) probesets corresponding to 1915 unigenes were robustly differentially expressed at EL 36 compared to EL 35. Eleven functional categories were represented in this differential gene set. Information on gene expression related to primary and secondary metabolism was verified by RT-qPCR analysis of selected candidate genes at four developmental stages (EL32, EL35, EL36 and EL 38). Gene expression data were integrated with metabolic profiling data from GC-EI-TOF/MS and headspace GC-EI-MS platforms. Conclusions/Significance Putative molecular and metabolic markers of grape pre-ripening and ripening related to primary and secondary metabolism were established and revealed a substantial developmental reprogramming of cellular metabolism. Altogether the results provide valuable new information on the main metabolic events leading to grape ripening. Furthermore, we provide first hints about how the development of a cultivar specific aroma is controlled at transcriptional level.
Collapse
Affiliation(s)
- Patricia Agudelo-Romero
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, Center for Biodiversity, Functional & Integrative Genomics, Campo Grande, Lisboa, Portugal
| | - Alexander Erban
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, Germany
| | - Lisete Sousa
- Department of Statistics and Operational Research, Centro de Estatística e Aplicações da UL, Faculdade de Ciências de Lisboa, Lisbon, Portugal
| | - Maria Salomé Pais
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, Center for Biodiversity, Functional & Integrative Genomics, Campo Grande, Lisboa, Portugal
| | - Joachim Kopka
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Golm, Germany
| | - Ana Margarida Fortes
- Universidade de Lisboa, Faculdade de Ciências de Lisboa, Center for Biodiversity, Functional & Integrative Genomics, Campo Grande, Lisboa, Portugal
- * E-mail:
| |
Collapse
|