1
|
Zhu X, Chen A, Butler NM, Zeng Z, Xin H, Wang L, Lv Z, Eshel D, Douches DS, Jiang J. Molecular dissection of an intronic enhancer governing cold-induced expression of the vacuolar invertase gene in potato. THE PLANT CELL 2024; 36:1985-1999. [PMID: 38374801 PMCID: PMC11062429 DOI: 10.1093/plcell/koae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/21/2024]
Abstract
Potato (Solanum tuberosum) is the third most important food crop in the world. Potato tubers must be stored at cold temperatures to minimize sprouting and losses due to disease. However, cold temperatures strongly induce the expression of the potato vacuolar invertase gene (VInv) and cause reducing sugar accumulation. This process, referred to as "cold-induced sweetening," is a major postharvest problem for the potato industry. We discovered that the cold-induced expression of VInv is controlled by a 200 bp enhancer, VInvIn2En, located in its second intron. We identified several DNA motifs in VInvIn2En that bind transcription factors involved in the plant cold stress response. Mutation of these DNA motifs abolished VInvIn2En function as a transcriptional enhancer. We developed VInvIn2En deletion lines in both diploid and tetraploid potato using clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease 9 (Cas9)-mediated gene editing. VInv transcription in cold-stored tubers was significantly reduced in the deletion lines. Interestingly, the VInvIn2En sequence is highly conserved among distantly related Solanum species, including tomato (Solanum lycopersicum) and other non-tuber-bearing species. We conclude that the VInv gene and the VInvIn2En enhancer have adopted distinct roles in the cold stress response in tubers of tuber-bearing Solanum species.
Collapse
Affiliation(s)
- Xiaobiao Zhu
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, Anhui Province, China
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Airu Chen
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Nathaniel M Butler
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- Vegetable Crops Research Unit, United States Department of Agriculture-Agricultural Research Service, Madison, WI 53706, USA
| | - Zixian Zeng
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu 610101, Sichuan Province, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu 610101, Sichuan Province, China
| | - Haoyang Xin
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Lixia Wang
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Zhaoyan Lv
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei 230036, Anhui Province, China
| | - Dani Eshel
- Department of Postharvest Science, The Volcani Institute, ARO, Rishon LeZion 50250, Israel
| | - David S Douches
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
| | - Jiming Jiang
- Department of Horticulture, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
2
|
Comparison and Characterization of a Cell Wall Invertase Promoter from Cu-Tolerant and Non-Tolerant Populations of Elsholtzia haichowensis. Int J Mol Sci 2021; 22:ijms22105299. [PMID: 34069912 PMCID: PMC8157609 DOI: 10.3390/ijms22105299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/04/2022] Open
Abstract
Cell wall invertase (CWIN) activity and the expression of the corresponding gene were previously observed to be significantly elevated in a Cu-tolerant population of Elsholtzia haichowensis relative to a non-tolerant population under copper stress. To understand the differences in CWIN gene regulation between the two populations, their CWIN promoter β-glucuronidase (GUS) reporter vectors were constructed. GUS activity was measured in transgenic Arabidopsis in response to copper, sugar, and phytohormone treatments. Under the copper treatment, only the activity of the CWIN promoter from the Cu-tolerant population was slightly increased. Glucose and fructose significantly induced the activity of CWIN promoters from both populations. Among the phytohormone treatments, only salicylic acid induced significantly higher (p < 0.05) activity of the Cu-tolerant CWIN promoter relative to the non-tolerant promoters. Analysis of 5′-deletion constructs revealed that a 270-bp promoter fragment was required for SA induction of the promoter from the Cu-tolerant population. Comparison of this region in the two CWIN promoters revealed that it had 10 mutation sites and contained CAAT-box and W-box cis-elements in the Cu-tolerant promoter only. This work provides insights into the regulatory role of SA in CWIN gene expression and offers an explanation for differences in CWIN expression between E. haichowensis populations.
Collapse
|
3
|
Tarelkina TV, Galibina NA, Moshchenskaya YL, Novitskaya LL. In Silico Analysis of Regulatory cis-Elements in the Promoters of Genes Encoding Apoplastic Invertase and Sucrose Synthase in Silver Birch. Russ J Dev Biol 2020. [DOI: 10.1134/s1062360420050082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
4
|
Qian W, Xiao B, Wang L, Hao X, Yue C, Cao H, Wang Y, Li N, Yu Y, Zeng J, Yang Y, Wang X. CsINV5, a tea vacuolar invertase gene enhances cold tolerance in transgenic Arabidopsis. BMC PLANT BIOLOGY 2018; 18:228. [PMID: 30309330 PMCID: PMC6182829 DOI: 10.1186/s12870-018-1456-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/01/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Vacuolar invertases (VINs) have been reported to regulate plant growth and development and respond to abiotic stresses such as drought and cold. With our best knowledge, the functions of VIN genes little have been reported in tea plant (Camellia sinensis L.). Therefore, it is necessary to develop research in this field. RESULTS Here, we identified a VIN gene, CsINV5, which was induced by cold acclimation and sugar treatments in the tea plant. Histochemical assays results showed that the 1154 bp 5'-flanking sequence of CsINV5 drove β-glucuronidase (GUS) gene expression in roots, stems, leaves, flowers and siliques of transgenic Arabidopsis during different developmental stages. Moreover, promoter deletion analysis results revealed that an LTRE-related motif (CCGAAA) and a WBOXHVISO1 motif (TGACT) within the promoter region of CsINV5 were the core cis-elements in response to low temperature and sugar signaling, respectively. In addition, overexpression of CsINV5 in Arabidopsis promoted taproot and lateral root elongation through glucose-mediated effects on auxin signaling. Based on physiological and RNA-seq analysis, we found that overexpression of CsINV5 improved cold tolerance in transgenic Arabidopsis mainly by increasing the contents of glucose and fructose, the corresponding ratio of hexose to sucrose, and the transcription of osmotic-stress-related genes (P5CS1, P5CS2, AtLEA3, COR413-PM1 and COR15B) to adjust its osmotic potential. CONCLUSIONS Comprehensive experimental results suggest that overexpression of CsINV5 may enhance the cold tolerance of plant through the modification of cellular sugar compounds contents and osmotic regulation related pathways.
Collapse
Affiliation(s)
- Wenjun Qian
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong China
| | - Bin Xiao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi China
| | - Lu Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinyuan Hao
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Chuan Yue
- Department of Tea Science, College of Horticulture, Fujian A & F University, Fuzhou, China
| | - Hongli Cao
- Department of Tea Science, College of Horticulture, Fujian A & F University, Fuzhou, China
| | - Yuchun Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Nana Li
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Youben Yu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi China
| | - Jianming Zeng
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Yajun Yang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| | - Xinchao Wang
- National Center for Tea Plant Improvement, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
5
|
Jin Y, Fei M, Rosenquist S, Jin L, Gohil S, Sandström C, Olsson H, Persson C, Höglund AS, Fransson G, Ruan Y, Åman P, Jansson C, Liu C, Andersson R, Sun C. A Dual-Promoter Gene Orchestrates the Sucrose-Coordinated Synthesis of Starch and Fructan in Barley. MOLECULAR PLANT 2017; 10:1556-1570. [PMID: 29126994 DOI: 10.1016/j.molp.2017.10.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/25/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Sequential carbohydrate synthesis is important for plant survival because it guarantees energy supplies for growth and development during plant ontogeny and reproduction. Starch and fructan are two important carbohydrates in many flowering plants and in human diets. Understanding this coordinated starch and fructan synthesis and unraveling how plants allocate photosynthates and prioritize different carbohydrate synthesis for survival could lead to improvements to cereals in agriculture for the purposes of greater food security and production quality. Here, we report a system from a single gene in barley employing two alternative promoters, one intronic/exonic, to generate two sequence-overlapping but functionally opposing transcription factors, in sensing sucrose, potentially via sucrose/glucose/fructose/trehalose 6-phosphate signaling. The system employs an autoregulatory mechanism in perceiving a sucrose-controlled trans activity on one promoter and orchestrating the coordinated starch and fructan synthesis by competitive transcription factor binding on the other promoter. As a case in point for the physiological roles of the system, we have demonstrated that this multitasking system can be exploited in breeding barley with tailored amounts of fructan to produce healthy food ingredients. The identification of an intron/exon-spanning promoter in a hosting gene, resulting in proteins with distinct functions, adds to the complexity of plant genomes.
Collapse
Affiliation(s)
- Yunkai Jin
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China; Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden
| | - Mingliang Fei
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China; Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden; Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Sara Rosenquist
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden
| | - Lu Jin
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China; Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden
| | - Suresh Gohil
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Corine Sandström
- Department of Chemistry and Biotechnology, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7015, 750 07 Uppsala, Sweden
| | - Helena Olsson
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden
| | - Cecilia Persson
- The Swedish NMR Centre at University of Gothenburg, Box 465, 405 30 Gothenburg, Sweden
| | - Anna-Stina Höglund
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden
| | - Gunnel Fransson
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7051, 750 07 Uppsala, Sweden
| | - Ying Ruan
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China; Key Laboratory of Education, Department of Hunan Province on Plant Genetics and Molecular Biology, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Per Åman
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7051, 750 07 Uppsala, Sweden
| | - Christer Jansson
- The Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory, P.O. Box 999, K8-93, Richland, WA 99352, USA
| | - Chunlin Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha 410128, China.
| | - Roger Andersson
- Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, P.O. Box 7051, 750 07 Uppsala, Sweden
| | - Chuanxin Sun
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology, Swedish University of Agricultural Sciences, P.O. Box 7080, 75007 Uppsala, Sweden.
| |
Collapse
|
6
|
Li J, Wu L, Foster R, Ruan YL. Molecular regulation of sucrose catabolism and sugar transport for development, defence and phloem function. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:322-335. [PMID: 28304127 DOI: 10.1111/jipb.12539] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 03/15/2017] [Indexed: 06/06/2023]
Abstract
Sucrose (Suc) is the major end product of photosynthesis in mesophyll cells of most vascular plants. It is loaded into phloem of mature leaves for long-distance translocation to non-photosynthetic organs where it is unloaded for diverse uses. Clearly, Suc transport and metabolism is central to plant growth and development and the functionality of the entire vascular system. Despite vast information in the literature about the physiological roles of individual sugar metabolic enzymes and transporters, there is a lack of systematic evaluation about their molecular regulation from transcriptional to post-translational levels. Knowledge on this topic is essential for understanding and improving plant development, optimizing resource distribution and increasing crop productivity. We therefore focused our analyses on molecular control of key players in Suc metabolism and transport, including: (i) the identification of promoter elements responsive to sugars and hormones or targeted by transcription factors and microRNAs degrading transcripts of target genes; and (ii) modulation of enzyme and transporter activities through protein-protein interactions and other post-translational modifications. We have highlighted major remaining questions and discussed opportunities to exploit current understanding to gain new insights into molecular control of carbon partitioning for improving plant performance.
Collapse
Affiliation(s)
- Jun Li
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Australia
| | - Limin Wu
- CSIRO Agriculture, Canberra, ACT 2601, Australia
| | - Ryan Foster
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Australia
| | - Yong-Ling Ruan
- Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle, NSW 2308, Australia
| |
Collapse
|
7
|
Sheshadri SA, Nishanth MJ, Simon B. Stress-Mediated cis-Element Transcription Factor Interactions Interconnecting Primary and Specialized Metabolism in planta. FRONTIERS IN PLANT SCIENCE 2016; 7:1725. [PMID: 27933071 PMCID: PMC5122738 DOI: 10.3389/fpls.2016.01725] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 11/02/2016] [Indexed: 05/07/2023]
Abstract
Plant specialized metabolites are being used worldwide as therapeutic agents against several diseases. Since the precursors for specialized metabolites come through primary metabolism, extensive investigations have been carried out to understand the detailed connection between primary and specialized metabolism at various levels. Stress regulates the expression of primary and specialized metabolism genes at the transcriptional level via transcription factors binding to specific cis-elements. The presence of varied cis-element signatures upstream to different stress-responsive genes and their transcription factor binding patterns provide a prospective molecular link among diverse metabolic pathways. The pattern of occurrence of these cis-elements (overrepresentation/common) decipher the mechanism of stress-responsive upregulation of downstream genes, simultaneously forming a molecular bridge between primary and specialized metabolisms. Though many studies have been conducted on the transcriptional regulation of stress-mediated primary or specialized metabolism genes, but not much data is available with regard to cis-element signatures and transcription factors that simultaneously modulate both pathway genes. Hence, our major focus would be to present a comprehensive analysis of the stress-mediated interconnection between primary and specialized metabolism genes via the interaction between different transcription factors and their corresponding cis-elements. In future, this study could be further utilized for the overexpression of the specific transcription factors that upregulate both primary and specialized metabolism, thereby simultaneously improving the yield and therapeutic content of plants.
Collapse
Affiliation(s)
| | | | - Bindu Simon
- School of Chemical and Biotechnology, SASTRA UniversityThanjavur, India
| |
Collapse
|
8
|
Gao S, He D, Li G, Zhang Y, Lv H, Wang L. A method for amplification of unknown flanking sequences based on touchdown PCR and suppression-PCR. Anal Biochem 2016; 509:79-81. [PMID: 27393656 DOI: 10.1016/j.ab.2016.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 07/02/2016] [Accepted: 07/03/2016] [Indexed: 11/29/2022]
Abstract
Thermal asymmetric staggered PCR is the most widely used technique to obtain the flanking sequences. However, it has some limitations, including a low rate of positivity, and complex operation. In this study, a improved method of it was made based on suppression-PCR and touchdown PCR. The PCR fragment obtained by the amplification was used directly for sequencing after gel purification. Using this improved method, the positive rate of amplified flanking sequences of the ATMT mutants reached 99%. In addition, the time from DNA extraction to flanking sequence analysis was shortened to 2 days with about 6 dollars each sample.
Collapse
Affiliation(s)
- Song Gao
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Dan He
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| | - Guangquan Li
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, Second Hospital of Jilin University, Changchun, 130021, China.
| | - Yanhua Zhang
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Department of Biology, Plant Science College of Jilin University, Changchun, 130062, China.
| | - Huiying Lv
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China; Science Research Certer, China-Japan Union Hospital, Jilin University, Changchun, 130021, China.
| | - Li Wang
- Department of Pathogenobiology, Jilin University Mycology Research Center, Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
9
|
Rabot A, Portemer V, Péron T, Mortreau E, Leduc N, Hamama L, Coutos-Thévenot P, Atanassova R, Sakr S, Le Gourrierec J. Interplay of sugar, light and gibberellins in expression of Rosa hybrida vacuolar invertase 1 regulation. PLANT & CELL PHYSIOLOGY 2014; 55:1734-48. [PMID: 25108242 DOI: 10.1093/pcp/pcu106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Our previous findings showed that the expression of the Rosa hybrida vacuolar invertase 1 gene (RhVI1) was tightly correlated with the ability of buds to grow out and was under sugar, gibberellin and light control. Here, we aimed to provide an insight into the mechanistic basis of this regulation. In situ hybridization showed that RhVI1 expression was localized in epidermal cells of young leaves of bursting buds. We then isolated a 895 bp fragment of the promoter of RhVI1. In silico analysis identified putative cis-elements involved in the response to sugars, light and gibberellins on its proximal part (595 bp). To carry out functional analysis of the RhVI1 promoter in a homologous system, we developed a direct method for stable transformation of rose cells. 5' deletions of the proximal promoter fused to the uidA reporter gene were inserted into the rose cell genome to study the cell's response to exogenous and endogenous stimuli. Deletion analysis revealed that the 468 bp promoter fragment is sufficient to trigger reporter gene activity in response to light, sugars and gibberellins. This region confers sucrose- and fructose-, but not glucose-, responsive activation in the dark. Inversely, the -595 to -468 bp region that carries the sugar-repressive element (SRE) is required to down-regulate the RhVI1 promoter in response to sucrose and fructose in the dark. We also demonstrate that sugar/light and gibberellin/light act synergistically to up-regulate β-glucuronidase (GUS) activity sharply under the control of the 595 bp pRhVI1 region. These results reveal that the 127 bp promoter fragment located between -595 and -468 bp is critical for light and sugar and light and gibberellins to act synergistically.
Collapse
Affiliation(s)
- Amélie Rabot
- Agrocampus-Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France These authors contributed equally to this work
| | - Virginie Portemer
- Université de Poitiers, UMR 7267 CNRS/Université de Poitiers Écologie et Biologie des Interactions, équipe Physiologie Moléculaire du Transport des Sucres chez les végétaux, 3 rue Jacques Fort, B31, 86 000 Poitiers, France These authors contributed equally to this work. Present address: INRA, Institut Jean Pierre Bourgin, UMR 1318, F-78026 Versailles, France
| | - Thomas Péron
- Agrocampus-Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France
| | - Eric Mortreau
- Agrocampus-Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France
| | - Nathalie Leduc
- Université d'Angers, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France
| | - Latifa Hamama
- Agrocampus-Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France Université d'Angers, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France INRA, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49071 Beaucouzé, France
| | - Pierre Coutos-Thévenot
- Université de Poitiers, UMR 7267 CNRS/Université de Poitiers Écologie et Biologie des Interactions, équipe Physiologie Moléculaire du Transport des Sucres chez les végétaux, 3 rue Jacques Fort, B31, 86 000 Poitiers, France
| | - Rossitza Atanassova
- Université de Poitiers, UMR 7267 CNRS/Université de Poitiers Écologie et Biologie des Interactions, équipe Physiologie Moléculaire du Transport des Sucres chez les végétaux, 3 rue Jacques Fort, B31, 86 000 Poitiers, France
| | - Soulaiman Sakr
- Agrocampus-Ouest, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France
| | - José Le Gourrierec
- Université d'Angers, Institut de Recherche en Horticulture et Semences (INRA, Agrocampus-Ouest, Université d'Angers), SFR 149 QUASAV, F-49045 Angers, France
| |
Collapse
|
10
|
Lin Y, Liu J, Liu X, Ou Y, Li M, Zhang H, Song B, Xie C. Interaction proteins of invertase and invertase inhibitor in cold-stored potato tubers suggested a protein complex underlying post-translational regulation of invertase. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 73:237-44. [PMID: 24161651 DOI: 10.1016/j.plaphy.2013.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/18/2013] [Indexed: 05/19/2023]
Abstract
The activity of vacuolar invertase (VI) is vital to potato cold-induced sweetening (CIS). A post-translational regulation of VI activity has been proposed which involves invertase inhibitor (VIH), but the mechanism for the interaction between VI and VIH has not been fully understood. To identify the potential partners of VI and VIH, two cDNA libraries were respectively constructed from CIS-resistant wild potato species Solanum berthaultii and CIS-sensitive potato cultivar AC035-01 for the yeast two-hybrid analysis. The StvacINV1 (one of the potato VIs) and StInvInh2B (one of the potato VIHs), previously identified to be associated with potato CIS, were used as baits to screen the two libraries. Through positive selection and sequencing, 27 potential target proteins of StvacINV1 and eight of StInvInh2B were clarified. The Kunitz-type protein inhibitors were captured by StvacINV1 in both libraries and the interaction between them was confirmed by bimolecular fluorescence complementation assay in tobacco cells, reinforcing a fundamental interaction between VI and VIH. Notably, a sucrose non-fermenting-1-related protein kinase 1 was captured by both the baits, suggesting that a protein complex could be necessary for fine turning of the invertase activity. The target proteins clarified in present research provide a route to elucidate the mechanism by which the VI activity can be subtly modulated.
Collapse
Affiliation(s)
- Yuan Lin
- National Center for Vegetable Improvement (Central China), Wuhan 430070, People's Republic of China; Key Laboratory of Horticultural Plant Biology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, People's Republic of China; Huazhong Agricultural University, Wuhan 430070, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|