1
|
Belludi R, Sharma A, Sharma SP, Ramesh GV, Gudi S. Leveraging chlorophyll fluorescence uncovers potato virus Y resistance in potato and its validation through viral quantification and yield loss studies. PLANT CELL REPORTS 2025; 44:100. [PMID: 40274639 DOI: 10.1007/s00299-025-03489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025]
Abstract
KEY MESSAGE Chlorophyll fluorescence (CF) measurements have been demonstrated to be an efficient and non-invasive tool for identifying and developing PVY-resistant potato cultivars. The validity of CF measurements was confirmed through viral titer and yield-loss assays. In the quest to identify resistant sources for potato virus Y (PVY) within Indian potato germplasm, we developed a phenotyping approach leveraging plant physiological responses against PVY infection. The study evaluated 71 potato genotypes including cultivated and experimental clones, during the year 2021-2022 and 2022-23 through mechanical inoculation in experimental fields at the Punjab Agricultural University, Ludhiana. We employed a combination of serological and molecular screening, complemented with chlorophyll fluorescence (CF) measurements to classify resistant and susceptible genotypes. Out of 71 genotypes, 34 exhibited PVY resistance, with KP-16-19-14 being the highly resistant line with minimal yield loss (i.e., only 1.64% reduction) and undetectable viral titer. This genotype holds promise as a valuable resistance source for future breeding programmes. Our findings revealed that resistant genotypes maintained stable CF metrics and experienced minimal yield reductions (up to 5.15% only), with very low viral titer. In contrast, the photosynthetic efficiency was significantly declined in susceptible genotypes, which also experienced yield losses up to 58.84% with very high viral titer. Correlation coefficient and principal component analysis (PCA) revealed a strong association among the CF parameters, disease severity, viral titer, and yield losses. This emphasizes the utility of CF as a valuable tool for assessing resistance through physiological responses to PVY. Study demonstrates that photochemistry, heat dissipation, and fluorescence emission patterns of PS-II effectively differentiate resistant and susceptible genotypes. Moreover, this study highlights the potential of integrating physiological assessments with molecular diagnostics in large-scale preliminary screening to identify and develop PVY-resistant potato genotypes.
Collapse
Affiliation(s)
- Rakesh Belludi
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Abhishek Sharma
- Department of Vegetable Sciences, Punjab Agricultural University, Ludhiana, Punjab, India.
| | - Sat Pal Sharma
- Department of Vegetable Sciences, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Gutha Venkata Ramesh
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Santosh Gudi
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
- Department of Plant Pathology, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
2
|
Juhász C, Szatmári Á, Bozsó Z, Barna B, Gullner G. Transient Overexpression of the Pepper WRKY2 Gene in Nicotiana benthamiana Markedly Delays the Systemic Necrosis Caused by Tobacco Mosaic Virus. Life (Basel) 2025; 15:669. [PMID: 40283223 PMCID: PMC12028993 DOI: 10.3390/life15040669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/07/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
The role of WRKY transcription factor proteins in plant defense reactions against fungal and bacterial pathogens is well studied, but less information is available about plant-virus interactions. We observed the rapid and strong activation of the transcription factor gene, CaWRKY2, in pepper leaves following inoculation with Obuda pepper virus (ObPV). In contrast, CaWRKY2 was only weakly induced by pepper mild mottle virus (PMMoV) inoculation. To carry out a functional analysis of CaWRKY2, the gene was transiently overexpressed in Nicotiana benthamiana leaves by agroinfiltration. Four days later, CaWRKY2-overexpressing and empty vector control leaves were inoculated with tobacco mosaic virus (TMV). Transiently overexpressing CaWRKY2 did not affect the replication rate of TMV in the inoculated leaves. However, TMV inoculation up-regulated the expression of a pathogenesis-related gene (NbPR-1b) and a lipoxygenase (NbLOX1) gene significantly more strongly in N. benthamiana leaves overexpressing CaWRKY2 than in empty vector control leaves. Intriguingly, CaWRKY2 overexpression delayed (by 3 days) the development of systemic necrosis and plant death caused by TMV in N. benthamiana. These results suggest that CaWRKY2 is able to hinder the spread of TMV from inoculated leaves towards vascular tissues and systemic leaves in N. benthamiana.
Collapse
Affiliation(s)
| | | | | | - Balazs Barna
- Plant Protection Institute, HUN-REN Centre for Agricultural Research, Fehérvári Str. 132-144, 1116 Budapest, Hungary; (C.J.); (Á.S.); (Z.B.)
| | | |
Collapse
|
3
|
Juárez ID, Kurouski D. Contemporary applications of vibrational spectroscopy in plant stresses and phenotyping. FRONTIERS IN PLANT SCIENCE 2024; 15:1411859. [PMID: 39345978 PMCID: PMC11427297 DOI: 10.3389/fpls.2024.1411859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024]
Abstract
Plant pathogens, including viruses, bacteria, and fungi, cause massive crop losses around the world. Abiotic stresses, such as drought, salinity and nutritional deficiencies are even more detrimental. Timely diagnostics of plant diseases and abiotic stresses can be used to provide site- and doze-specific treatment of plants. In addition to the direct economic impact, this "smart agriculture" can help minimizing the effect of farming on the environment. Mounting evidence demonstrates that vibrational spectroscopy, which includes Raman (RS) and infrared spectroscopies (IR), can be used to detect and identify biotic and abiotic stresses in plants. These findings indicate that RS and IR can be used for in-field surveillance of the plant health. Surface-enhanced RS (SERS) has also been used for direct detection of plant stressors, offering advantages over traditional spectroscopies. Finally, all three of these technologies have applications in phenotyping and studying composition of crops. Such non-invasive, non-destructive, and chemical-free diagnostics is set to revolutionize crop agriculture globally. This review critically discusses the most recent findings of RS-based sensing of biotic and abiotic stresses, as well as the use of RS for nutritional analysis of foods.
Collapse
Affiliation(s)
- Isaac D. Juárez
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
- Interdisciplinary Faculty of Toxicology, Texas A&M University,
College Station, TX, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
- Interdisciplinary Faculty of Toxicology, Texas A&M University,
College Station, TX, United States
| |
Collapse
|
4
|
Clark KR, Goldberg Oppenheimer P. Vibrational spectroscopic profiling of biomolecular interactions between oak powdery mildew and oak leaves. SOFT MATTER 2024; 20:959-970. [PMID: 38189096 PMCID: PMC10828924 DOI: 10.1039/d3sm01392h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Oak powdery mildew, caused by the biotrophic fungus Erysiphe alphitoides, is a prevalent disease affecting oak trees, such as English oak (Quercus robur). While mature oak populations are generally less susceptible to this disease, it can endanger young oak seedlings and new leaves on mature trees. Although disruptions of photosynthate and carbohydrate translocation have been observed, accurately detecting and understanding the specific biomolecular interactions between the fungus and the leaves of oak trees is currently lacking. Herein, via hybrid Raman spectroscopy combined with an advanced artificial neural network algorithm, the underpinning biomolecular interactions between biological soft matter, i.e., Quercus robur leaves and Erysiphe alphitoides, are investigated and profiled, generating a spectral library and shedding light on the changes induced by fungal infection and the tree's defence response. The adaxial surfaces of oak leaves are categorised based on either the presence or absence of Erysiphe alphitoides mildew and further distinguishing between covered or not covered infected leaf tissues, yielding three disease classes including healthy controls, non-mildew covered and mildew-covered. By analysing spectral changes between each disease category per tissue type, we identified important biomolecular interactions including disruption of chlorophyll in the non-vein and venule tissues, pathogen-induced degradation of cellulose and pectin and tree-initiated lignification of cell walls in response, amongst others, in lateral vein and mid-vein tissues. Via our developed computational algorithm, the underlying biomolecular differences between classes were identified and allowed accurate and rapid classification of disease with high accuracy of 69.6% for non-vein, 73.5% for venule, 82.1% for lateral vein and 85.6% for mid-vein tissues. Interfacial wetting differences between non-mildew covered and mildew-covered tissue were further analysed on the surfaces of non-vein and venule tissue. The overall results demonstrated the ability of Raman spectroscopy, combined with advanced AI, to act as a powerful and specific tool to probe foliar interactions between forest pathogens and host trees with the simultaneous potential to probe and catalogue molecular interactions between biological soft matter, paving the way for exploring similar relations in broader forest tree-pathogen systems.
Collapse
Affiliation(s)
- Kieran R Clark
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Birmingham Institute of Forest Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Pola Goldberg Oppenheimer
- School of Chemical Engineering, Advanced Nanomaterials Structures and Applications Laboratories, College of Engineering and Physical Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
- Healthcare Technologies Institute, Institute of Translational Medicine, Mindelsohn Way, Birmingham, B15 2TH, UK
| |
Collapse
|
5
|
Wang C, Ma G, Zhang S, Zhao K, Li X. Study on the binding of ningnanmycin to the helicase of Tobamovirus virus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105494. [PMID: 37532353 DOI: 10.1016/j.pestbp.2023.105494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 08/04/2023]
Abstract
The Tobamovirus helicase plays an important role in virus proliferation and host interaction. They can also be targets for antiviral drugs. Tobacco mosaic virus (TMV) is well controlled by ningnanmycin (NNM), but whether it acts on other virus helicases of Tobamovirus virus is not clear. In this study, we expressed and purified several Tobamovirus virus helicase proteins and analyzed the three-dimensional structures of several Tobamovirus virus helicases. In addition, the binding of Tobamovirus helicase to NNM was also studied. The docking study reveals the interaction between NNM and Tobamovirus virus helicase. Microscale Thermophoresis (MST) experiments have shown that NNM binds to Tobamovirus helicase with a dissociation constant of 4.64-12.63 μM. Therefore, these data are of great significance for the design and synthesis of new effective anti-plant virus drugs.
Collapse
Affiliation(s)
- Chen Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Guangming Ma
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Shanqi Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Kunhong Zhao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China
| | - Xiangyang Li
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
6
|
Park M, Somborn A, Schlehuber D, Keuter V, Deerberg G. Raman spectroscopy in crop quality assessment: focusing on sensing secondary metabolites: a review. HORTICULTURE RESEARCH 2023; 10:uhad074. [PMID: 37249949 PMCID: PMC10208899 DOI: 10.1093/hr/uhad074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/12/2023] [Indexed: 05/31/2023]
Abstract
As a crop quality sensor, Raman spectroscopy has been consistently proposed as one of the most promising and non-destructive methods for qualitative and quantitative analysis of plant substances, because it can measure molecular structures in a short time without requiring pretreatment along with simple usage. The sensitivity of the Raman spectrum to target chemicals depends largely on the wavelength, intensity of the laser power, and exposure time. Especially for plant samples, it is very likely that the peak of the target material is covered by strong fluorescence effects. Therefore, methods using lasers with low energy causing less fluorescence, such as 785 nm or near-infrared, are vigorously discussed. Furthermore, advanced techniques for obtaining more sensitive and clear spectra, like surface-enhanced Raman spectroscopy, time-gated Raman spectroscopy or combination with thin-layer chromatography, are being investigated. Numerous interpretations of plant quality can be represented not only by the measurement conditions but also by the spectral analysis methods. Up to date, there have been attempted to optimize and generalize analysis methods. This review summarizes the state of the art of micro-Raman spectroscopy in crop quality assessment focusing on secondary metabolites, from in vitro to in vivo and even in situ, and suggests future research to achieve universal application.
Collapse
Affiliation(s)
| | - Annette Somborn
- Fraunhofer Institute for Environmental, Safety and Energy Technologies UMSICHT, 46047, Oberhausen, Germany
| | - Dennis Schlehuber
- Fraunhofer Institute for Environmental, Safety and Energy Technologies UMSICHT, 46047, Oberhausen, Germany
| | - Volkmar Keuter
- Fraunhofer Institute for Environmental, Safety and Energy Technologies UMSICHT, 46047, Oberhausen, Germany
| | - Görge Deerberg
- Fraunhofer Institute for Environmental, Safety and Energy Technologies UMSICHT, 46047, Oberhausen, Germany
| |
Collapse
|
7
|
Zavafer A, Ball MC. Good vibrations: Raman spectroscopy enables insights into plant biochemical composition. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:1-16. [PMID: 36592984 DOI: 10.1071/fp21335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 09/20/2022] [Indexed: 06/17/2023]
Abstract
Non-invasive techniques are needed to enable an integrated understanding of plant metabolic responses to environmental stresses. Raman spectroscopy is one such technique, allowing non-destructive chemical characterisation of samples in situ and in vivo and resolving the chemical composition of plant material at scales from microns to metres. Here, we review Raman band assignments of pigments, structural and non-structural carbohydrates, lipids, proteins and secondary metabolites in plant material and consider opportunities this technology raises for studies in vascular plant physiology.
Collapse
Affiliation(s)
- Alonso Zavafer
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 2000, Australia; and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2001, Australia; and Present address: Department Biological Sciences and Yousef Haj-Ahmad Department of Engineering, Brock University, St. Catherines, ON, Canada
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, The Australian National University, Canberra, ACT 2000, Australia
| |
Collapse
|
8
|
Rys M, Miastkowska M, Sikora E, Łętocha A, Krajewska A, Synowiec A. Bio-Herbicidal Potential of Nanoemulsions with Peppermint Oil on Barnyard Grass and Maize. Molecules 2022; 27:molecules27113480. [PMID: 35684420 PMCID: PMC9181968 DOI: 10.3390/molecules27113480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/17/2022] [Accepted: 05/25/2022] [Indexed: 11/29/2022] Open
Abstract
Bio-based nanoemulsions are part of green pest management for sustainable agriculture. This study assessed the physicochemical properties and the herbicidal activities of the peppermint essential oil nanoemulsions (PNs) in concentrations 1.0–10% stabilized by Eco-Polysorbate 80 on germinating seeds and young plants of maize and barnyard grass. Based on the design of experiment (DOE) results, the final nanoemulsion formulations were obtained with 1, 1.5, 2, and 5% of essential oil concentration. Biological analyses were conducted to select the most promising sample for selective control of barnyard grass in maize. Seedlings growing in the presence of PNs displayed an overall inhibition of metabolism, as expressed by the calorimetric analyses, which could result from significant differences in both content and composition of carbohydrates. Concentration–response sub estimation showed that leaf-sprayed concentration of PN causing 10% of maize damage is equal to 2.2%, whereas doses causing 50% and 90% of barnyard grass damage are 1.1% and 1.7%, respectively. Plants sprayed with PN at 5% or 10% concentration caused significant drops in relative water content in leaves and Chlorophyll a fluorescence 72 h after spraying. In summary, peppermint nanoemulsion with Eco-Polysorbate 80 at 2% concentration is a perspective preparation for selective control of barnyard grass in maize. It should be analyzed further in controlled and field conditions.
Collapse
Affiliation(s)
- Magdalena Rys
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Krakow, Poland;
| | - Małgorzata Miastkowska
- Faculty of Chemical Engineering and Technology, Institute of Organic Chemistry and Technology, Cracow University of Technology, 31-155 Krakow, Poland; (M.M.); (E.S.); (A.Ł.)
| | - Elżbieta Sikora
- Faculty of Chemical Engineering and Technology, Institute of Organic Chemistry and Technology, Cracow University of Technology, 31-155 Krakow, Poland; (M.M.); (E.S.); (A.Ł.)
| | - Anna Łętocha
- Faculty of Chemical Engineering and Technology, Institute of Organic Chemistry and Technology, Cracow University of Technology, 31-155 Krakow, Poland; (M.M.); (E.S.); (A.Ł.)
| | - Agnieszka Krajewska
- Department of Biotechnology and Food Science, Lodz University of Technology, 90-530 Lodz, Poland;
| | - Agnieszka Synowiec
- Department of Agroecology and Crop Production, The University of Agriculture in Krakow, 31-120 Krakow, Poland
- Correspondence:
| |
Collapse
|
9
|
Higgins S, Biswas S, Goff NK, Septiningsih EM, Kurouski D. Raman Spectroscopy Enables Non-invasive and Confirmatory Diagnostics of Aluminum and Iron Toxicities in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:754735. [PMID: 35651767 PMCID: PMC9149412 DOI: 10.3389/fpls.2022.754735] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 03/28/2022] [Indexed: 05/26/2023]
Abstract
Metal toxicities can be detrimental to a plant health, as well as to the health of animals and humans that consume such plants. Metal content of plants can be analyzed using colorimetric, atomic absorption- or mass spectroscopy-based methods. However, these techniques are destructive, costly and laborious. In the current study, we investigate the potential of Raman spectroscopy (RS), a modern spectroscopic technique, for detection and identification of metal toxicities in rice. We modeled medium and high levels of iron and aluminum toxicities in hydroponically grown plants. Spectroscopic analyses of their leaves showed that both iron and aluminum toxicities can be detected and identified with ∼100% accuracy as early as day 2 after the stress initiation. We also showed that diagnostics accuracy was very high not only on early, but also on middle (day 4-day 8) and late (day 10-day 14) stages of the stress development. Importantly this approach only requires an acquisition time of 1 s; it is non-invasive and non-destructive to plants. Our findings suggest that if implemented in farming, RS can enable pre-symptomatic detection and identification of metallic toxins that would lead to faster recovery of crops and prevent further damage.
Collapse
Affiliation(s)
- Samantha Higgins
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Sudip Biswas
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Nicolas K. Goff
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Endang M. Septiningsih
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, United States
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
- Institute for Quantum Science and Engineering, Texas A&M University, College Station, TX, United States
| |
Collapse
|
10
|
Plant Viral Disease Detection: From Molecular Diagnosis to Optical Sensing Technology—A Multidisciplinary Review. REMOTE SENSING 2022. [DOI: 10.3390/rs14071542] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plant viral diseases result in productivity and economic losses to agriculture, necessitating accurate detection for effective control. Lab-based molecular testing is the gold standard for providing reliable and accurate diagnostics; however, these tests are expensive, time-consuming, and labour-intensive, especially at the field-scale with a large number of samples. Recent advances in optical remote sensing offer tremendous potential for non-destructive diagnostics of plant viral diseases at large spatial scales. This review provides an overview of traditional diagnostic methods followed by a comprehensive description of optical sensing technology, including camera systems, platforms, and spectral data analysis to detect plant viral diseases. The paper is organized along six multidisciplinary sections: (1) Impact of plant viral disease on plant physiology and consequent phenotypic changes, (2) direct diagnostic methods, (3) traditional indirect detection methods, (4) optical sensing technologies, (5) data processing techniques and modelling for disease detection, and (6) comparison of the costs. Finally, the current challenges and novel ideas of optical sensing for detecting plant viruses are discussed.
Collapse
|
11
|
Grishina A, Sherstneva O, Grinberg M, Zdobnova T, Ageyeva M, Khlopkov A, Sukhov V, Brilkina A, Vodeneev V. Pre-Symptomatic Detection of Viral Infection in Tobacco Leaves Using PAM Fluorometry. PLANTS (BASEL, SWITZERLAND) 2021; 10:2782. [PMID: 34961253 PMCID: PMC8707847 DOI: 10.3390/plants10122782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/11/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Chlorophyll fluorescence imaging was used to study potato virus X (PVX) infection of Nicotiana benthamiana. Infection-induced changes in chlorophyll fluorescence parameters (quantum yield of photosystem II photochemistry (ΦPSII) and non-photochemical fluorescence quenching (NPQ)) in the non-inoculated leaf were recorded and compared with the spatial distribution of the virus detected by the fluorescence of GFP associated with the virus. We determined infection-related changes at different points of the light-induced chlorophyll fluorescence kinetics and at different days after inoculation. A slight change in the light-adapted steady-state values of ΦPSII and NPQ was observed in the infected area of the non-inoculated leaf. In contrast to the steady-state parameters, the dynamics of ΦPSII and NPQ caused by the dark-light transition in healthy and infected areas differed significantly starting from the second day after the detection of the virus in a non-inoculated leaf. The coefficients of correlation between chlorophyll fluorescence parameters and virus localization were 0.67 for ΦPSII and 0.76 for NPQ. In general, the results demonstrate the possibility of reliable pre-symptomatic detection of the spread of a viral infection using chlorophyll fluorescence imaging.
Collapse
Affiliation(s)
- Alyona Grishina
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia; (A.G.); (O.S.); (M.G.); (T.Z.); (A.K.); (V.S.)
| | - Oksana Sherstneva
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia; (A.G.); (O.S.); (M.G.); (T.Z.); (A.K.); (V.S.)
| | - Marina Grinberg
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia; (A.G.); (O.S.); (M.G.); (T.Z.); (A.K.); (V.S.)
| | - Tatiana Zdobnova
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia; (A.G.); (O.S.); (M.G.); (T.Z.); (A.K.); (V.S.)
| | - Maria Ageyeva
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia; (M.A.); (A.B.)
| | - Andrey Khlopkov
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia; (A.G.); (O.S.); (M.G.); (T.Z.); (A.K.); (V.S.)
| | - Vladimir Sukhov
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia; (A.G.); (O.S.); (M.G.); (T.Z.); (A.K.); (V.S.)
| | - Anna Brilkina
- Department of Biochemistry and Biotechnology, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia; (M.A.); (A.B.)
| | - Vladimir Vodeneev
- Department of Biophysics, National Research Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Avenue, 603950 Nizhny Novgorod, Russia; (A.G.); (O.S.); (M.G.); (T.Z.); (A.K.); (V.S.)
| |
Collapse
|
12
|
Chung PJ, Singh GP, Huang CH, Koyyappurath S, Seo JS, Mao HZ, Diloknawarit P, Ram RJ, Sarojam R, Chua NH. Rapid Detection and Quantification of Plant Innate Immunity Response Using Raman Spectroscopy. FRONTIERS IN PLANT SCIENCE 2021; 12:746586. [PMID: 34745179 PMCID: PMC8566886 DOI: 10.3389/fpls.2021.746586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
We have developed a rapid Raman spectroscopy-based method for the detection and quantification of early innate immunity responses in Arabidopsis and Choy Sum plants. Arabidopsis plants challenged with flg22 and elf18 elicitors could be differentiated from mock-treated plants by their Raman spectral fingerprints. From the difference Raman spectrum and the value of p at each Raman shift, we derived the Elicitor Response Index (ERI) as a quantitative measure of the response whereby a higher ERI value indicates a more significant elicitor-induced immune response. Among various Raman spectral bands contributing toward the ERI value, the most significant changes were observed in those associated with carotenoids and proteins. To validate these results, we investigated several characterized Arabidopsis pattern-triggered immunity (PTI) mutants. Compared to wild type (WT), positive regulatory mutants had ERI values close to zero, whereas negative regulatory mutants at early time points had higher ERI values. Similar to elicitor treatments, we derived an analogous Infection Response Index (IRI) as a quantitative measure to detect the early PTI response in Arabidopsis and Choy Sum plants infected with bacterial pathogens. The Raman spectral bands contributing toward a high IRI value were largely identical to the ERI Raman spectral bands. Raman spectroscopy is a convenient tool for rapid screening for Arabidopsis PTI mutants and may be suitable for the noninvasive and early diagnosis of pathogen-infected crop plants.
Collapse
Affiliation(s)
- Pil Joong Chung
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Gajendra P. Singh
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Chung-Hao Huang
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Sayuj Koyyappurath
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Jun Sung Seo
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
| | - Hui-Zhu Mao
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
| | - Piyarut Diloknawarit
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
| | - Rajeev J. Ram
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Rajani Sarojam
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Nam-Hai Chua
- Temasek Life Science Laboratory, National University of Singapore, Singapore, Singapore
- Disruptive and Sustainable Technologies for Agricultural Precision, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| |
Collapse
|
13
|
Surówka E, Latowski D, Dziurka M, Rys M, Maksymowicz A, Żur I, Olchawa-Pajor M, Desel C, Krzewska M, Miszalski Z. ROS-Scavengers, Osmoprotectants and Violaxanthin De-Epoxidation in Salt-Stressed Arabidopsis thaliana with Different Tocopherol Composition. Int J Mol Sci 2021; 22:11370. [PMID: 34768798 PMCID: PMC8583738 DOI: 10.3390/ijms222111370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 02/04/2023] Open
Abstract
To determine the role of α- and γ-tocopherol (TC), this study compared the response to salt stress (200 mM NaCl) in wild type (WT) Arabidopsis thaliana (L.) Heynh. And its two mutants: (1) totally TC-deficient vte1; (2) vte4 accumulating γ-TC instead of α-TC; and (3) tmt transgenic line overaccumulating α-TC. Raman spectra revealed that salt-exposed α-TC accumulating plants were more flexible in regulating chlorophyll, carotenoid and polysaccharide levels than TC deficient mutants, while the plants overaccumulating γ-TC had the lowest levels of these biocompounds. Tocopherol composition and NaCl concentration affected xanthophyll cycle by changing the rate of violaxanthin de-epoxidation and zeaxanthin formation. NaCl treated plants with altered TC composition accumulated less oligosaccharides than WT plants. α-TC deficient plants increased their oligosaccharide levels and reduced maltose amount, while excessive accumulation of α-TC corresponded with enhanced amounts of maltose. Salt-stressed TC-deficient mutants and tmt transgenic line exhibited greater proline levels than WT plants, lower chlorogenic acid levels, and lower activity of catalase and peroxidases. α-TC accumulating plants produced more methylated proline- and glycine- betaines, and showed greater activity of superoxide dismutase than γ-TC deficient plants. Under salt stress, α-TC demonstrated a stronger regulatory effect on carbon- and nitrogen-related metabolites reorganization and modulation of antioxidant patterns than γ-TC. This suggested different links of α- and γ-TCs with various metabolic pathways via various functions and metabolic loops.
Collapse
Affiliation(s)
- Ewa Surówka
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (M.R.); (A.M.); (I.Ż); (M.K.)
| | - Dariusz Latowski
- Faculty of Biochemistry, Biophysics and Biotechnology of the Jagiellonian University, ul. Gronostajowa 7, 30-387 Kraków, Poland
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (M.R.); (A.M.); (I.Ż); (M.K.)
| | - Magdalena Rys
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (M.R.); (A.M.); (I.Ż); (M.K.)
| | - Anna Maksymowicz
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (M.R.); (A.M.); (I.Ż); (M.K.)
| | - Iwona Żur
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (M.R.); (A.M.); (I.Ż); (M.K.)
| | - Monika Olchawa-Pajor
- Department of Environmental Protection, Faculty of Mathematics and Natural Sciences, University of Applied Sciences in Tarnow, Mickiewicza 8, 33-100 Tarnów, Poland;
| | - Christine Desel
- Botanical Institute of the Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1-9, 24118 Kiel, Germany;
| | - Monika Krzewska
- The Franciszek Górski Institute of Plant Physiology of the Polish Academy of Sciences, ul. Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (M.R.); (A.M.); (I.Ż); (M.K.)
| | - Zbigniew Miszalski
- W. Szafer Institute of Botany, Polish Academy of Sciences, ul. Lubicz 46, 31-512 Kraków, Poland;
| |
Collapse
|
14
|
Kalapos B, Juhász C, Balogh E, Kocsy G, Tóbiás I, Gullner G. Transcriptome profiling of pepper leaves by RNA-Seq during an incompatible and a compatible pepper-tobamovirus interaction. Sci Rep 2021; 11:20680. [PMID: 34667194 PMCID: PMC8526828 DOI: 10.1038/s41598-021-00002-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/05/2021] [Indexed: 11/09/2022] Open
Abstract
Upon virus infections, the rapid and comprehensive transcriptional reprogramming in host plant cells is critical to ward off virus attack. To uncover genes and defense pathways that are associated with virus resistance, we carried out the transcriptome-wide Illumina RNA-Seq analysis of pepper leaves harboring the L3 resistance gene at 4, 8, 24 and 48 h post-inoculation (hpi) with two tobamoviruses. Obuda pepper virus (ObPV) inoculation led to hypersensitive reaction (incompatible interaction), while Pepper mild mottle virus (PMMoV) inoculation resulted in a systemic infection without visible symptoms (compatible interaction). ObPV induced robust changes in the pepper transcriptome, whereas PMMoV showed much weaker effects. ObPV markedly suppressed genes related to photosynthesis, carbon fixation and photorespiration. On the other hand, genes associated with energy producing pathways, immune receptors, signaling cascades, transcription factors, pathogenesis-related proteins, enzymes of terpenoid biosynthesis and ethylene metabolism as well as glutathione S-transferases were markedly activated by ObPV. Genes related to photosynthesis and carbon fixation were slightly suppressed also by PMMoV. However, PMMoV did not influence significantly the disease signaling and defense pathways. RNA-Seq results were validated by real-time qPCR for ten pepper genes. Our findings provide a deeper insight into defense mechanisms underlying tobamovirus resistance in pepper.
Collapse
Affiliation(s)
- Balázs Kalapos
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Brunszvik utca 2, Martonvásár, 2462, Hungary
| | - Csilla Juhász
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Herman Ottó út 15, Budapest, 1022, Hungary
| | - Eszter Balogh
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Brunszvik utca 2, Martonvásár, 2462, Hungary
| | - Gábor Kocsy
- Agricultural Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Brunszvik utca 2, Martonvásár, 2462, Hungary
| | - István Tóbiás
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Herman Ottó út 15, Budapest, 1022, Hungary
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, Eötvös Lóránt Research Network (ELKH), Herman Ottó út 15, Budapest, 1022, Hungary.
| |
Collapse
|
15
|
Morey R, Farber C, McCutchen B, Burow MD, Simpson C, Kurouski D, Cason J. Raman spectroscopy-based diagnostics of water deficit and salinity stresses in two accessions of peanut. PLANT DIRECT 2021; 5:e342. [PMID: 34458666 PMCID: PMC8377774 DOI: 10.1002/pld3.342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/24/2021] [Accepted: 07/23/2021] [Indexed: 05/17/2023]
Abstract
Water deficit and salinity are two major abiotic stresses that have tremendous effect on crop yield worldwide. Timely identification of these stresses can help limit associated yield loss. Confirmatory detection and identification of water deficit stress can also enable proper irrigation management. Traditionally, unmanned aerial vehicle (UAV)-based imaging and satellite-based imaging, together with visual field observation, are used for diagnostics of such stresses. However, these approaches can only detect salinity and water deficit stress at the symptomatic stage. Raman spectroscopy (RS) is a noninvasive and nondestructive technique that can identify and detect plant biotic and abiotic stress. In this study, we investigated accuracy of Raman-based diagnostics of water deficit and salinity stresses on two greenhouse-grown peanut accessions: tolerant and susceptible to water deficit. Plants were grown for 76 days prior to application of the water deficit and salinity stresses. Water deficit treatments received no irrigation for 5 days, and salinity treatments received 1.0 L of 240-mM salt water per day for the duration of 5-day sampling. Every day after the stress was imposed, plant leaves were collected and immediately analyzed by a hand-held Raman spectrometer. RS and chemometrics could identify control and stressed (either water deficit or salinity) susceptible plants with 95% and 80% accuracy just 1 day after treatment. Water deficit and salinity stressed plants could be differentiated from each other with 87% and 86% accuracy, respectively. In the tolerant accessions at the same timepoint, the identification accuracies were 66%, 65%, 67%, and 69% for control, combined stresses, water deficit, and salinity stresses, respectively. The high selectivity and specificity for presymptomatic identification of abiotic stresses in the susceptible line provide evidence for the potential of Raman-based surveillance in commercial-scale agriculture and digital farming.
Collapse
Affiliation(s)
- Rohini Morey
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | - Charles Farber
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
| | | | | | | | - Dmitry Kurouski
- Department of Biochemistry and BiophysicsTexas A&M UniversityCollege StationTexasUSA
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTexasUSA
| | - John Cason
- Texas A&M AgriLife ResearchStephenvilleTexasUSA
| |
Collapse
|
16
|
Vallejo-Pérez MR, Sosa-Herrera JA, Navarro-Contreras HR, Álvarez-Preciado LG, Rodríguez-Vázquez ÁG, Lara-Ávila JP. Raman Spectroscopy and Machine-Learning for Early Detection of Bacterial Canker of Tomato: The Asymptomatic Disease Condition. PLANTS (BASEL, SWITZERLAND) 2021; 10:1542. [PMID: 34451590 PMCID: PMC8399098 DOI: 10.3390/plants10081542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 12/20/2022]
Abstract
Bacterial canker of tomato is caused by Clavibacter michiganensis subsp. michiganensis (Cmm). The disease is highly destructive, because it produces latent asymptomatic infections that favor contagion rates. The present research aims consisted on the implementation of Raman spectroscopy (RS) and machine-learning spectral analysis as a method for the early disease detection. Raman spectra were obtained from infected asymptomatic tomato plants (BCTo) and healthy controls (HTo) with 785 nm excitation laser micro-Raman spectrometer. Spectral data were normalized and processed by principal component analysis (PCA), then the classifiers algorithms multilayer perceptron (PCA + MLP) and linear discriminant analysis (PCA + LDA) were implemented. Bacterial isolation and identification (16S rRNA gene sequencing) were realized of each plant studied. The Raman spectra obtained from tomato leaf samples of HTo and BCTo exhibited peaks associated to cellular components, and the most prominent vibrational bands were assigned to carbohydrates, carotenoids, chlorophyll, and phenolic compounds. Biochemical changes were also detectable in the Raman spectral patterns. Raman bands associated with triterpenoids and flavonoids compounds can be considered as indicators of Cmm infection during the asymptomatic stage. RS is an efficient, fast and reliable technology to differentiate the tomato health condition (BCTo or HTo). The analytical method showed high performance values of sensitivity, specificity and accuracy, among others.
Collapse
Affiliation(s)
- Moisés Roberto Vallejo-Pérez
- Consejo Nacional de Ciencia y Tecnología-Universidad Autónoma de San Luis Potosí, CIACYT, Alvaro Obregon 64, Col. Centro, San Luis Potosí 78000, Mexico
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Col Lomas 2a. Sección, San Luis Potosí 78210, Mexico; (H.R.N.-C.); (L.G.Á.-P.); (Á.G.R.-V.)
| | - Jesús Antonio Sosa-Herrera
- Consejo Nacional de Ciencia y Tecnología-Centro de Investigación en Ciencias de Información Geoespacial A. C., Laboratorio Nacional de Geointeligencia, Aguascalientes 20313, Mexico;
| | - Hugo Ricardo Navarro-Contreras
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Col Lomas 2a. Sección, San Luis Potosí 78210, Mexico; (H.R.N.-C.); (L.G.Á.-P.); (Á.G.R.-V.)
| | - Luz Gabriela Álvarez-Preciado
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Col Lomas 2a. Sección, San Luis Potosí 78210, Mexico; (H.R.N.-C.); (L.G.Á.-P.); (Á.G.R.-V.)
| | - Ángel Gabriel Rodríguez-Vázquez
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología (CIACYT), Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Col Lomas 2a. Sección, San Luis Potosí 78210, Mexico; (H.R.N.-C.); (L.G.Á.-P.); (Á.G.R.-V.)
| | - José Pablo Lara-Ávila
- Facultad de Agronomía y Veterinaria, Universidad Autónoma de San Luis Potosí, Km. 14.5 Carretera San Luis Potosí, Matehuala, Ejido Palma de la Cruz, Soledad de Graciano Sánchez, San Luis Potosí 78321, Mexico;
| |
Collapse
|
17
|
Payne WZ, Kurouski D. Raman spectroscopy enables phenotyping and assessment of nutrition values of plants: a review. PLANT METHODS 2021; 17:78. [PMID: 34266461 PMCID: PMC8281483 DOI: 10.1186/s13007-021-00781-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/11/2021] [Indexed: 05/23/2023]
Abstract
Our civilization has to enhance food production to feed world's expected population of 9.7 billion by 2050. These food demands can be met by implementation of innovative technologies in agriculture. This transformative agricultural concept, also known as digital farming, aims to maximize the crop yield without an increase in the field footprint while simultaneously minimizing environmental impact of farming. There is a growing body of evidence that Raman spectroscopy, a non-invasive, non-destructive, and laser-based analytical approach, can be used to: (i) detect plant diseases, (ii) abiotic stresses, and (iii) enable label-free phenotyping and digital selection of plants in breeding programs. In this review, we critically discuss the most recent reports on the use of Raman spectroscopy for confirmatory identification of plant species and their varieties, as well as Raman-based analysis of the nutrition value of seeds. We show that high selectivity and specificity of Raman makes this technique ideal for optical surveillance of fields, which can be used to improve agriculture around the world. We also discuss potential advances in synergetic use of RS and already established imaging and molecular techniques. This combinatorial approach can be used to reduce associated time and cost, as well as enhance the accuracy of diagnostics of biotic and abiotic stresses.
Collapse
Affiliation(s)
- William Z Payne
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
18
|
Payne WZ, Kurouski D. Raman-Based Diagnostics of Biotic and Abiotic Stresses in Plants. A Review. FRONTIERS IN PLANT SCIENCE 2021; 11:616672. [PMID: 33552109 PMCID: PMC7854695 DOI: 10.3389/fpls.2020.616672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/17/2020] [Indexed: 05/11/2023]
Abstract
Digital farming is a novel agricultural philosophy that aims to maximize a crop yield with the minimal environmental impact. Digital farming requires the development of technologies that can work directly in the field providing information about a plant health. Raman spectroscopy (RS) is an emerging analytical technique that can be used for non-invasive, non-destructive, and confirmatory diagnostics of diseases, as well as the nutrient deficiencies in plants. RS is also capable of probing nutritional content of grains, as well as highly accurate identification plant species and their varieties. This allows for Raman-based phenotyping and digital selection of plants. These pieces of evidence suggest that RS can be used for chemical-free surveillance of plant health directly in the field. High selectivity and specificity of this technique show that RS may transform the agriculture in the US. This review critically discusses the most recent research articles that demonstrate the use of RS in diagnostics of abiotic and abiotic stresses in plants, as well as the identification of plant species and their nutritional analysis.
Collapse
Affiliation(s)
| | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
19
|
Macioszek VK, Gapińska M, Zmienko A, Sobczak M, Skoczowski A, Oliwa J, Kononowicz AK. Complexity of Brassica oleracea- Alternaria brassicicola Susceptible Interaction Reveals Downregulation of Photosynthesis at Ultrastructural, Transcriptional, and Physiological Levels. Cells 2020; 9:E2329. [PMID: 33092216 PMCID: PMC7593931 DOI: 10.3390/cells9102329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/17/2020] [Accepted: 10/18/2020] [Indexed: 01/23/2023] Open
Abstract
Black spot disease, caused by Alternaria brassicicola in Brassica species, is one of the most devastating diseases all over the world, especially since there is no known fully resistant Brassica cultivar. In this study, the visualization of black spot disease development on Brassica oleracea var. capitata f. alba (white cabbage) leaves and subsequent ultrastructural, molecular and physiological investigations were conducted. Inter- and intracellular hyphae growth within leaf tissues led to the loss of host cell integrity and various levels of organelle disintegration. Severe symptoms of chloroplast damage included the degeneration of chloroplast envelope and grana, and the loss of electron denseness by stroma at the advanced stage of infection. Transcriptional profiling of infected leaves revealed that photosynthesis was the most negatively regulated biological process. However, in infected leaves, chlorophyll and carotenoid content did not decrease until 48 hpi, and several chlorophyll a fluorescence parameters, such as photosystem II quantum yield (Fv/Fm), non-photochemical quenching (NPQ), or plant vitality parameter (Rdf) decreased significantly at 24 and 48 hpi compared to control leaves. Our results indicate that the initial stages of interaction between B. oleracea and A. brassicicola are not uniform within an inoculation site and show a complexity of host responses and fungal attempts to overcome host cell defense mechanisms. The downregulation of photosynthesis at the early stage of this susceptible interaction suggests that it may be a part of a host defense strategy, or, alternatively, that chloroplasts are targets for the unknown virulence factor(s) of A. brassicicola. However, the observed decrease of photosynthetic efficiency at the later stages of infection is a result of the fungus-induced necrotic lesion expansion.
Collapse
Affiliation(s)
- Violetta Katarzyna Macioszek
- Laboratory of Plant Physiology, Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 15-245 Bialystok, Poland
| | - Magdalena Gapińska
- Laboratory of Microscopy Imaging and Specialized Biological Techniques, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Agnieszka Zmienko
- Department of Molecular and Systems Biology, Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland;
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (SGGW), 02-787 Warsaw, Poland;
| | - Andrzej Skoczowski
- Institute of Biology, Pedagogical University in Krakow, 30-084 Krakow, Poland;
| | - Jakub Oliwa
- Department of Chemistry and Biochemistry, Institute of Basic Sciences, University of Physical Education in Krakow, 31-571 Krakow, Poland;
| | - Andrzej Kiejstut Kononowicz
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| |
Collapse
|
20
|
Saja D, Janeczko A, Barna B, Skoczowski A, Dziurka M, Kornaś A, Gullner G. Powdery Mildew-Induced Hormonal and Photosynthetic Changes in Barley Near Isogenic Lines Carrying Various Resistant Genes. Int J Mol Sci 2020; 21:ijms21124536. [PMID: 32630603 PMCID: PMC7352864 DOI: 10.3390/ijms21124536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022] Open
Abstract
The present work focused on the characterization of some physiological mechanisms activated upon powdery mildew inoculation of the susceptible barley cultivar Ingrid and its near-isogenic lines (NILs) carrying various resistant genes (Mla, Mlg and mlo). After inoculation with Blumeria graminis f. sp. hordei (Bgh), measurements of leaf reflectance and chlorophyll a fluorescence were performed 3 and 7 day post-inoculation (dpi), while hormone assays were made 7 dpi. Bgh-inoculated resistant genotypes were characterized by lowered leaf reflectance parameters that correlated with carotenoids (CRI) and water content (WBI) in comparison to inoculated Ingrid. The PSII activity (i.e., Fv/Fm, ETo/CSm and P.I.ABS) strongly decreased in susceptible Ingrid leaves when the disease symptoms became visible 7 dpi. In Mla plants with visible hypersensitive spots the PSII activity decreased to a lesser extent. Inoculation resulted in a very slight decrease of photosynthesis at later stage of infection in Mlg plants, whereas in resistant mlo plants the PSII activity did not change. Chlorophyll a fluorescence measurements allowed presymptomatic detection of infection in Ingrid and Mla. Changes in the homeostasis of 22 phytohormones (cytokinins, auxins, gibberellins and the stress hormones JA, SA and ABA) in powdery mildew inoculated barley are discussed in relation to resistance against this biotrophic pathogen.
Collapse
Affiliation(s)
- Diana Saja
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland; (D.S.); (A.S.); (M.D.)
| | - Anna Janeczko
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland; (D.S.); (A.S.); (M.D.)
- Correspondence:
| | - Balázs Barna
- Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, 1022 Budapest, Hungary; (B.B.); (G.G.)
| | - Andrzej Skoczowski
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland; (D.S.); (A.S.); (M.D.)
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 31-054 Krakow, Poland;
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland; (D.S.); (A.S.); (M.D.)
| | - Andrzej Kornaś
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 31-054 Krakow, Poland;
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, 1022 Budapest, Hungary; (B.B.); (G.G.)
| |
Collapse
|
21
|
Balogh E, Juhász C, Dankó T, Fodor J, Tóbiás I, Gullner G. The expression of several pepper fatty acid desaturase genes is robustly activated in an incompatible pepper-tobamovirus interaction, but only weakly in a compatible interaction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 148:347-358. [PMID: 32004918 DOI: 10.1016/j.plaphy.2020.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/18/2019] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
The replication of positive strand RNA viruses in plant cells is markedly influenced by the desaturation status of fatty acid chains in lipids of intracellular plant membranes. At present, little is known about the role of lipid desaturation in the replication of tobamoviruses. Therefore, we investigated the expression of fatty acid desaturase (FAD) genes and the fatty acid composition of pepper leaves inoculated with two different tobamoviruses. Obuda pepper virus (ObPV) inoculation induced a hypersensitive reaction (incompatible interaction) while Pepper mild mottle virus (PMMoV) inoculation caused a systemic infection (compatible interaction). Changes in the expression of 16 FADs were monitored in pepper leaves following ObPV and PMMoV inoculations. ObPV inoculation rapidly and markedly upregulated seven Δ12-FADs that encode enzymes putatively located in the endoplasmic reticulum membrane. In contrast, PMMoV inoculation resulted in a weaker but rapid upregulation of two Δ12-FADs and a Δ15-FAD. The expression of genes encoding plastidial FADs was not influenced neither by ObPV nor by PMMoV. In accordance with gene expression results, a significant accumulation of linoleic acid was observed by gas chromatography-mass spectrometry in ObPV-, but not in PMMoV-inoculated leaves. ObPV inoculation led to a marked accumulation of H2O2 in the inoculated leaves. Therefore, the effect of H2O2 treatments on the expression of six tobamovirus-inducible FADs was also studied. The expression of these FADs was upregulated to different degrees by H2O2 that correlated with ObPV-inducibility of these FADs. These results underline the importance of further studies on the role of pepper FADs in pepper-tobamovirus interactions.
Collapse
Affiliation(s)
- Eszter Balogh
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022, Budapest, Herman Ottó út 15, Hungary
| | - Csilla Juhász
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022, Budapest, Herman Ottó út 15, Hungary
| | - Tamás Dankó
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022, Budapest, Herman Ottó út 15, Hungary
| | - József Fodor
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022, Budapest, Herman Ottó út 15, Hungary
| | - István Tóbiás
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022, Budapest, Herman Ottó út 15, Hungary
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, 1022, Budapest, Herman Ottó út 15, Hungary.
| |
Collapse
|
22
|
Pérez-Bueno ML, Pineda M, Barón M. Phenotyping Plant Responses to Biotic Stress by Chlorophyll Fluorescence Imaging. FRONTIERS IN PLANT SCIENCE 2019; 10:1135. [PMID: 31620158 PMCID: PMC6759674 DOI: 10.3389/fpls.2019.01135] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/16/2019] [Indexed: 05/20/2023]
Abstract
Photosynthesis is a pivotal process in plant physiology, and its regulation plays an important role in plant defense against biotic stress. Interactions with pathogens and pests often cause alterations in the metabolism of sugars and sink/source relationships. These changes can be part of the plant defense mechanisms to limit nutrient availability to the pathogens. In other cases, these alterations can be the result of pests manipulating the plant metabolism for their own benefit. The effects of biotic stress on plant physiology are typically heterogeneous, both spatially and temporarily. Chlorophyll fluorescence imaging is a powerful tool to mine the activity of photosynthesis at cellular, leaf, and whole-plant scale, allowing the phenotyping of plants. This review will recapitulate the responses of the photosynthetic machinery to biotic stress factors, from pathogens (viruses, bacteria, and fungi) to pests (herbivory) analyzed by chlorophyll fluorescence imaging both at the lab and field scale. Moreover, chlorophyll fluorescence imagers and alternative techniques to indirectly evaluate photosynthetic traits used at field scale are also revised.
Collapse
Affiliation(s)
- María Luisa Pérez-Bueno
- Department of Biochemistry and Molecular and Cell Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | | | | |
Collapse
|
23
|
Mandrile L, Rotunno S, Miozzi L, Vaira AM, Giovannozzi AM, Rossi AM, Noris E. Nondestructive Raman Spectroscopy as a Tool for Early Detection and Discrimination of the Infection of Tomato Plants by Two Economically Important Viruses. Anal Chem 2019; 91:9025-9031. [PMID: 31265250 DOI: 10.1021/acs.analchem.9b01323] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Global population forecasts dictate a rapid adoption of multifaceted approaches to fulfill increasing food requirements, ameliorate food dietary value and security using sustainable and economically feasible agricultural processes. Plant pathogens induce up to 25% losses in vegetable crops and their early detection would contribute to limit their spread and economic impact. As an alternative to time-consuming, destructive, and expensive diagnostic procedures, such as immunological assays and nucleic acid-based techniques, Raman spectroscopy (RS) is a nondestructive rapid technique that generates a chemical fingerprinting of a sample, at low operating costs. Here, we assessed the suitability of RS combined to chemometric analysis to monitor the infection of an important vegetable crop plant, tomato, by two dangerous and peculiarly different viral pathogens, Tomato yellow leaf curl Sardinia virus (TYLCSV) and Tomato spotted wilt virus (TSWV). Experimentally inoculated plants were monitored over 28 days for symptom occurrence and subjected to RS analysis, alongside with measuring the virus amount by quantitative real-time PCR. RS allowed to discriminate mock inoculated (healthy) from virus-infected specimens, reaching an accuracy of >70% after only 14 days after inoculation for TYLCSV and >85% only after 8 days for TSWV, demonstrating its suitability for early detection of virus infection. Importantly, RS also highlighted spectral differences induced by the two viruses, providing specific information on the infecting agent.
Collapse
Affiliation(s)
- Luisa Mandrile
- Istituto Nazionale di Ricerca Metrologica , Strada delle Cacce, 91 , 10135 , Torino , Italy
| | - Silvia Rotunno
- Institute for Sustainable Plant Protection, National Research Council of Italy , Strada delle Cacce, 73 , 10135 , Torino , Italy
| | - Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council of Italy , Strada delle Cacce, 73 , 10135 , Torino , Italy
| | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council of Italy , Strada delle Cacce, 73 , 10135 , Torino , Italy
| | - Andrea M Giovannozzi
- Istituto Nazionale di Ricerca Metrologica , Strada delle Cacce, 91 , 10135 , Torino , Italy
| | - Andrea M Rossi
- Istituto Nazionale di Ricerca Metrologica , Strada delle Cacce, 91 , 10135 , Torino , Italy
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council of Italy , Strada delle Cacce, 73 , 10135 , Torino , Italy
| |
Collapse
|
24
|
Souza PFN, Carvalho FEL. Killing two birds with one stone: How do Plant Viruses Break Down Plant Defenses and Manipulate Cellular Processes to Replicate Themselves? JOURNAL OF PLANT BIOLOGY = SINGMUL HAKHOE CHI 2019; 62:170-180. [PMID: 32218684 PMCID: PMC7090608 DOI: 10.1007/s12374-019-0056-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/15/2019] [Indexed: 05/02/2023]
Abstract
As simple organisms with a parasite nature, viruses have become masters in manipulating and subvert cellular components, including host proteins and organelles, to improve viral replication. Therefore, the understanding of viral strategies to manipulate cell function disrupting plant defenses and enhancing viral infection cycles is fundamental to the production of virus-resistant plant lines. After invading susceptible plants, viruses create conditions that favor local and systemic infections by suppressing multiple layers of innate host defenses while use cellular machinery to own benefit. Viral interference in interlinked essential cellular functions results in phenotypic changes and disease symptoms, which debilitates plants favoring infection establishment. Herein in this review, the novelty it will be the discussion about the strategies used by (+) single strand RNA viruses to affect cellular processes and components to improve viral replication, in parallel to overcome plant defenses, favoring disease establishment by applying in one action using the same viral protein to coordinate viral replication and breaking down plant defense. This focus on plant-virus interaction was never done before, and this knowledge has the potential to help in the development of new strategies to produce resistant plants.
Collapse
Affiliation(s)
- Pedro Filho Noronha Souza
- Department of Biochemistry and Molecular Biology, Center of Science, Federal University of Ceara, Fortaleza, Ceara Brazil
- Nebraska Center for Virology, Department of Plant Pathology, University of Nebraska Lincoln, Lincoln, Nebraska USA
| | | |
Collapse
|
25
|
Gullner G, Juhász C, Németh A, Barna B. Reactions of tobacco genotypes with different antioxidant capacities to powdery mildew and Tobacco mosaic virus infections. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 119:232-239. [PMID: 28917142 DOI: 10.1016/j.plaphy.2017.09.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/06/2017] [Accepted: 09/06/2017] [Indexed: 05/13/2023]
Abstract
The interactions of powdery mildew (Golovinomyces orontii) and Tobacco mosaic virus (TMV) with tobacco lines having down or upregulated antioxidants were investigated. Xanthi-nc, its salicylic acid-deficient NahG mutant, a paraquat-sensitive Samsun (PS) and its paraquat tolerant (PT) mutant were used. Cell membrane damage caused by H2O2 was significantly higher in NahG than Xanthi, whereas it was lower in PT than in PS. Leakage of ions from PT was reduced by the powdery mildew infection. On the other hand TMV inoculation led to a 6-fold and 2-fold elevation of ion leakage from hypersensitive resistant NahG and Xanthi leaves, respectively, whereas ion leakage increased slightly from susceptible PS leaves. G. orontii infection induced ribonuclease (RNase) enzyme activity in extracts from Xanthi and NahG (about 200-250% increase) and weakly (about 20-30% increase) from PS and PT lines. Pre-treatment with protein kinase inhibitor staurosporine or protein phosphatase inhibitor okadaic acid very strongly inhibited mildew development on tobacco lines. Our experiments suggest that protein kinases inhibited by staurosporine seem to be important factors, while protein phosphatases inhibited by okadaic acid play less significant role in TMV-induced lesion development. Both powdery mildew and TMV infections up-regulated the expression of PR-1b, PR-1c and WRKY12 genes in all tobacco lines to various extents.
Collapse
Affiliation(s)
- Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Csilla Juhász
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Adél Németh
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Balázs Barna
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary.
| |
Collapse
|
26
|
Varela ALN, Komatsu S, Wang X, Silva RG, Souza PFN, Lobo AKM, Vasconcelos IM, Silveira JA, Oliveira JT. Gel-free/label-free proteomic, photosynthetic, and biochemical analysis of cowpea ( Vigna unguiculata [L.] Walp.) resistance against Cowpea severe mosaic virus (CPSMV). J Proteomics 2017; 163:76-91. [DOI: 10.1016/j.jprot.2017.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 04/25/2017] [Accepted: 05/02/2017] [Indexed: 12/15/2022]
|
27
|
Barón M, Pineda M, Pérez-Bueno ML. Picturing pathogen infection in plants. ACTA ACUST UNITED AC 2017; 71:355-368. [PMID: 27626766 DOI: 10.1515/znc-2016-0134] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/22/2016] [Indexed: 11/15/2022]
Abstract
Several imaging techniques have provided valuable tools to evaluate the impact of biotic stress on host plants. The use of these techniques enables the study of plant-pathogen interactions by analysing the spatial and temporal heterogeneity of foliar metabolism during pathogenesis. In this work we review the use of imaging techniques based on chlorophyll fluorescence, multicolour fluorescence and thermography for the study of virus, bacteria and fungi-infected plants. These studies have revealed the impact of pathogen challenge on photosynthetic performance, secondary metabolism, as well as leaf transpiration as a promising tool for field and greenhouse management of diseases. Images of standard chlorophyll fluorescence (Chl-F) parameters obtained during Chl-F induction kinetics related to photochemical processes and those involved in energy dissipation, could be good stress indicators to monitor pathogenesis. Changes on UV-induced blue (F440) and green fluorescence (F520) measured by multicolour fluorescence imaging in pathogen-challenged plants seem to be related with the up-regulation of the plant secondary metabolism and with an increase in phenolic compounds involved in plant defence, such as scopoletin, chlorogenic or ferulic acids. Thermal imaging visualizes the leaf transpiration map during pathogenesis and emphasizes the key role of stomata on innate plant immunity. Using several imaging techniques in parallel could allow obtaining disease signatures for a specific pathogen. These techniques have also turned out to be very useful for presymptomatic pathogen detection, and powerful non-destructive tools for precision agriculture. Their applicability at lab-scale, in the field by remote sensing, and in high-throughput plant phenotyping, makes them particularly useful. Thermal sensors are widely used in crop fields to detect early changes in leaf transpiration induced by both air-borne and soil-borne pathogens. The limitations of measuring photosynthesis by Chl-F at the canopy level are being solved, while the use of multispectral fluorescence imaging is very challenging due to the type of light excitation that is used.
Collapse
|
28
|
Souza PFN, Silva FDA, Carvalho FEL, Silveira JAG, Vasconcelos IM, Oliveira JTA. Photosynthetic and biochemical mechanisms of an EMS-mutagenized cowpea associated with its resistance to cowpea severe mosaic virus. PLANT CELL REPORTS 2017; 36:219-234. [PMID: 27838815 DOI: 10.1007/s00299-016-2074-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/08/2016] [Indexed: 05/04/2023]
Abstract
The seed treatment of a CPSMV-susceptible cowpea genotype with the mutagenic agent EMS generated mutagenized resistant plantlets that respond to the virus challenge by activating biochemical and physiological defense mechanisms. Cowpea is an important crop that makes major nutritional contributions particularly to the diet of the poor population worldwide. However, its production is low, because cowpea is naturally exposed to several abiotic and biotic stresses, including viral agents. Cowpea severe mosaic virus (CPSMV) drastically affects cowpea grain production. This study was conducted to compare photosynthetic and biochemical parameters of a CPSMV-susceptible cowpea (CE-31 genotype) and its derived ethyl methanesulfonate-mutagenized resistant plantlets, both challenged with CPSMV, to shed light on the mechanisms of virus resistance. CPSMV inoculation was done in the fully expanded secondary leaves, 15 days after planting. At 7 days post-inoculation, in vivo photosynthetic parameters were measured and leaves collected for biochemical analysis. CPSMV-inoculated mutagenized-resistant cowpea plantlets (MCPI) maintained higher photosynthesis index, chlorophyll, and carotenoid contents in relation to the susceptible (CE-31) CPSMV-inoculated cowpea (CPI). Visually, the MCPI leaves did not exhibit any viral symptoms neither the presence of the virus as examined by RT-PCR. In addition, MCPI showed higher SOD, GPOX, chitinase, and phenylalanine ammonia lyase activities, H2O2, phenolic contents, and cell wall lignifications, but lower CAT and APX activities in comparison to CPI. All together, these photosynthetic and biochemical changes might have contributed for the CPSMS resistance of MCPI. Contrarily, CPI plantlets showed CPSMV accumulation, severe disease symptoms, reduction in the photosynthesis-related parameters, chlorophyll, carotenoid, phenolic compound, and H2O2 contents, in addition to increased β-1,3-glucanase, and catalase activities that might have favored viral infection.
Collapse
Affiliation(s)
- Pedro F N Souza
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, Brazil
| | - Fredy D A Silva
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, Brazil
| | - Fabricio E L Carvalho
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, Brazil
| | - Joaquim A G Silveira
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, Brazil
| | - Ilka M Vasconcelos
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, Brazil
| | - Jose T A Oliveira
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceara, Av. Mister Hull, P.O. Box: 60451, Fortaleza, CE, Brazil.
| |
Collapse
|
29
|
Dziurka M, Janeczko A, Juhász C, Gullner G, Oklestková J, Novák O, Saja D, Skoczowski A, Tóbiás I, Barna B. Local and systemic hormonal responses in pepper leaves during compatible and incompatible pepper-tobamovirus interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 109:355-364. [PMID: 27810675 DOI: 10.1016/j.plaphy.2016.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 10/13/2016] [Accepted: 10/13/2016] [Indexed: 05/04/2023]
Abstract
Phytohormone levels and the expression of genes encoding key enzymes participating in hormone biosynthetic pathways were investigated in pepper leaves inoculated with two different tobamoviruses. Obuda pepper virus (ObPV) inoculation led to the development of hypersensitive reaction (incompatible interaction), while Pepper mild mottle virus (PMMoV) inoculation resulted in a systemic, compatible interaction. ObPV-inoculation markedly increased not only the levels of salicylic acid (SA) (73-fold) and jasmonic acid (8-fold) but also those of abscisic acid, indole-3-acetic acid, indole-3-butyric acid, cis-zeatin, cis-zeatin-9-riboside and trans-zeatin-9-riboside in the inoculated pepper leaves 3 days post inoculation. PMMoV infection increased only the contents of gibberellic acid and SA. Hormone contents did not change significantly after ObPV or PMMoV infection in non-infected upper leaves 20 days post inoculation. Concentrations of some brassinosteroids (BRs) and progesterone increased both in ObPV- and PMMoV inoculated leaves. ObPV inoculation markedly induced the expression of three phenylalanine ammonia-lyase (PAL) and a 1-aminocyclopropane-1-carboxylate oxidase (ACO) genes, while that of an isochorismate synthase (ICS) gene was not modified. PMMoV inoculation did not alter the expression of PAL and ICS genes but induced the transcript abundance of ACO although later than ObPV. Pre-treatment of pepper leaves with exogenous 24-epi-brassinolide (24-epi-BR) prior to ObPV-inoculation strongly mitigated the visible symptoms caused by ObPV. In addition, 24-epi-BR pre-treatment markedly altered the level of several hormones in pepper leaves following ObPV-inoculation. These data indicate that ObPV- and PMMoV-inoculations lead to intricate but well harmonized hormonal responses that are largely determined by the incompatible or compatible nature of plant-virus interactions.
Collapse
Affiliation(s)
- Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Anna Janeczko
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Csilla Juhász
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Jana Oklestková
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Ondrej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany ASCR & Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Diana Saja
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - Andrzej Skoczowski
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland
| | - István Tóbiás
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary
| | - Balázs Barna
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Herman Ottó út 15, 1022 Budapest, Hungary.
| |
Collapse
|