1
|
Yu Y, Ma S, Li L, Song Z, Yu L, Tang C, Liu C, Chen Q, Xin D, Wang J. Genome-Wide Analysis of Soybean Apyrase Gene Family and Functional Characterization of GmAPY1-4 Responses to Aluminum Stress. Int J Mol Sci 2025; 26:1919. [PMID: 40076545 PMCID: PMC11900418 DOI: 10.3390/ijms26051919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 02/20/2025] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
Apyrases (APYs) directly regulate intra- and extra-cellular ATP homeostasis and play a key role in the process of plants adapting to various stresses. In this study, we identified and characterized soybean APY (GmAPY) family members at the genomic level. The results identified a total of 18 APYRASE homologous genes with conserved ACR domains. We conducted a bioinformatics analysis of GmAPYs, including sequence alignment, phylogenetic relationships, and conserved motifs. According to the phylogenetic and structural characteristics, GmAPYs in soybeans are mainly divided into three groups. The characteristics of these GmAPYs were systematically evaluated, including their collinearity, gene structure, protein motifs, cis-regulatory elements, tissue expression patterns, and responses to aluminum stress. A preliminary analysis of the function of GmAPY1-4 was also conducted. The results showed that GmAPY1-4 was localized in the nucleus, presenting relatively high levels in roots and root nodules and demonstrating high sensitivity and positive responses under aluminum stress circumstances. Further functional characterization revealed that the overexpression of GmAPY1-4 in hairy roots not only induced root growth under normal growth conditions but also significantly prevented root growth inhibition under aluminum stress conditions and contributed to maintaining a relatively higher fresh root weight. By contrast, RNAi interference with the expression of GmAPY1-4 in hairy roots inhibited root growth under both normal and aluminum stress conditions, but it exerted no significant influence on the dry or fresh root weight. To sum up, these findings support the significant functional role of GmAPY1-4 in root growth and the aluminum stress response. These findings not only enhance our comprehension of the aluminum stress response mechanism by identifying and characterizing the APY gene family in the soybean genome but also provide a potential candidate gene for improving aluminum tolerance in soybeans in the future.
Collapse
Affiliation(s)
- Yanyu Yu
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (L.L.); (C.L.); (Q.C.)
| | - Shengnan Ma
- Crop Development Research Institute, Heilongjiang Academy of Land Reclamation Sciences, Harbin 150038, China; (S.M.); (L.Y.); (C.T.)
| | - Lanxin Li
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (L.L.); (C.L.); (Q.C.)
| | - Zhen Song
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China;
| | - Lin Yu
- Crop Development Research Institute, Heilongjiang Academy of Land Reclamation Sciences, Harbin 150038, China; (S.M.); (L.Y.); (C.T.)
| | - Chunshuang Tang
- Crop Development Research Institute, Heilongjiang Academy of Land Reclamation Sciences, Harbin 150038, China; (S.M.); (L.Y.); (C.T.)
| | - Chunyan Liu
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (L.L.); (C.L.); (Q.C.)
| | - Qingshan Chen
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (L.L.); (C.L.); (Q.C.)
| | - Dawei Xin
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (L.L.); (C.L.); (Q.C.)
| | - Jinhui Wang
- National Key Laboratory of Smart Farm Technology and System, Key Laboratory of Soybean Biology in Chinese Ministry of Education, College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (Y.Y.); (L.L.); (C.L.); (Q.C.)
| |
Collapse
|
2
|
Jiang D, Ou Y, Jiang G, Dai G, Liu S, Chen G. Melatonin-priming ameliorates aluminum accumulation and toxicity in rice through enhancing aluminum exclusion and maintaining redox homeostasis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109433. [PMID: 39709664 DOI: 10.1016/j.plaphy.2024.109433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/15/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Seed priming can effectively enhance the plant's ability to withstand stress during subsequent growth and development; however, the role of melatonin-priming in attenuating aluminum (Al) toxicity remain unknown. In this study, 10, 50 and 100 μM melatonin were selected for rice seed priming to investigate the protective effects and potential mechanisms of melatonin against Al toxicity. Al stress inhibited seed germination by induction of abscisic acid (ABA) accumulation and reduction of α-amylase activity. However, melatonin-priming substantially rescued the Al-induced poor germination of seeds, as evidenced by less ABA content and higher α-amylase activity. Compared to no priming under Al stress, melatonin-priming significantly increased root elongation and plant fresh weight of rice seedlings by 135.1% and 39.4%, respectively. Melatonin-priming scavenged Al-induced superoxide anion (O2·-) and hydrogen peroxide (H2O2) bursts by activating the antioxidant enzymes (superoxide dismutase and catalase) and antioxidants (ascorbate and glutathione) in root tips, thereby reducing malondialdehyde (MDA) and callose levels and ultimately mitigating oxidative damage. Furthermore, melatonin-priming enhanced Al resistance by inhibiting Al uptake into the symplast through increased citric acid secretion. The decrease of Al deposition in the cell wall was attributed to melatonin-stimulated reduction of cell wall pectin and hemicellulose contents under Al stress. Collectively, these findings reveal a positive role of melatonin-priming in alleviating Al toxicity in plants.
Collapse
Affiliation(s)
- Dexing Jiang
- Jiangsu Key Laboratory of Innovative Applications of Bioresources and Functional Molecules, College of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, 211222, China.
| | - Ying Ou
- Jiangsu Key Laboratory of Innovative Applications of Bioresources and Functional Molecules, College of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, 211222, China
| | - Gongcheng Jiang
- Jiangsu Key Laboratory of Innovative Applications of Bioresources and Functional Molecules, College of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, 211222, China
| | - Gu Dai
- Jiangsu Key Laboratory of Innovative Applications of Bioresources and Functional Molecules, College of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, 211222, China
| | - Shaohua Liu
- Jiangsu Key Laboratory of Innovative Applications of Bioresources and Functional Molecules, College of Life Sciences and Chemical Engineering, Jiangsu Second Normal University, Nanjing, 211222, China
| | - Guoxiang Chen
- Jiangsu Key Laboratory of Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Negusse H, Haileselassie T, Geleta M, Tesfaye K. Genetic Variability of Ethiopian Chickpea ( Cicer arietinum L.) Landraces for Acid Soil Tolerance. PLANTS (BASEL, SWITZERLAND) 2025; 14:311. [PMID: 39942873 PMCID: PMC11819724 DOI: 10.3390/plants14030311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/04/2025] [Accepted: 01/16/2025] [Indexed: 02/16/2025]
Abstract
Chickpea is among the major legume crops grown globally. In Ethiopia, it plays a vital role in the food security and economic stability of smallholder farmers. However, its production is often hampered by abiotic factors, particularly soil acidity, which is a major yet often overlooked challenge. Using tolerant genotypes alone or combined with soil amendments is a sustainable approach to improving chickpea production in acidic soils. Hence, the present study assessed the genetic variation of 64 Ethiopian chickpea accessions for acidic-soil tolerance using simple lattice design-based field experiments with two replications at two sites with acidic soil, Emdebir and Holetta. The study revealed significant genetic variation among the evaluated accessions for acid soil tolerance. The study also identified tolerant and high-yielding chickpea accessions with a high yield stability index (YSI) at both test sites. The landrace ETC_B_1_2016 exhibited the highest number of primary branches per plant (NPB), number of pods per plant (NPP), and total seed yield (TSY) at the Emdebir acidic soil trial. At the Holetta acidic soil trial, the landrace ETC_41237 recorded the highest TSY, followed by ETC_K_3_2016 and ETC_B_1_2016, while Akaki had the least. In addition, 14 accessions had the highest TSY and YSI at the Emdebir site, while 16 had the highest YSI at the Holetta site. Notably, NPP displayed the strongest positive correlation with TSY at both sites, irrespective of lime application. Higher genetic variance and broad-sense heritability observed for NPP, hundred-seed weight (HSW), and TSY suggest that genetic factors mainly influence these traits and are more likely to improve through selection. The identified acid-tolerant and high-yielding accessions could be considered for direct cultivation in areas with acidic soils, potentially increasing chickpea productivity. Additionally, these accessions can be crossbred with existing improved varieties to enhance their adaptability to acidic soils, ultimately contributing to food security in regions affected by soil acidity.
Collapse
Affiliation(s)
- Hawi Negusse
- Institute of Biotechnology, Addis Ababa University, Addis Ababa 1000, Ethiopia; (T.H.); (K.T.)
- Bio and Emerging Technology Institute (BETin), Addis Ababa 1000, Ethiopia
| | | | - Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422 Alnarp, Sweden;
| | - Kassahun Tesfaye
- Institute of Biotechnology, Addis Ababa University, Addis Ababa 1000, Ethiopia; (T.H.); (K.T.)
- Bio and Emerging Technology Institute (BETin), Addis Ababa 1000, Ethiopia
| |
Collapse
|
4
|
Long S, Xie W, Zhao W, Liu D, Wang P, Zhao L. Effects of acid and aluminum stress on seed germination and physiological characteristics of seedling growth in Sophora davidii. PLANT SIGNALING & BEHAVIOR 2024; 19:2328891. [PMID: 38506438 PMCID: PMC10956626 DOI: 10.1080/15592324.2024.2328891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Sophora davidii, a vital forage species, predominantly thrives in the subtropical karst mountains of Southwest China. Its resilience to poor soil conditions and arid environments renders it an ideal pioneer species for ecological restoration in these regions. This study investigates the influence of acidic, aluminum-rich local soil on the germination and seedling growth physiology of S. davidii. Experiments were conducted under varying degrees of acidity and aluminum stress, employing three pH levels (3.5 to 5.5) and four aluminum concentrations (0.5 to 2.0 mmol·L-1). The results showed that germination rate, germination index, and vigor index of S. davidii seeds were decreased but not significantly under slightly acidic conditions (pH 4.5-5.5), while strong acid (pH = 3.5) significantly inhibited the germination rate, germination index, and vigor index of white spurge seeds compared with the control group. Aluminum stress (≥0.5 mmol·L-1) significantly inhibited the germination rate, germination index, and vigor index of S. davidii seed. Moreover, the seedlings' root systems were sensitive to the changes of aluminum concentration, evident from significant root growth inhibition, characterized by root shortening and color deepening. Notably, under aluminum stress (pH = 4.3), the levels of malondialdehyde and proline in S. davidii escalated with increasing aluminum concentration, while antioxidant enzyme activities demonstrated an initial increase followed by a decline. The study underscores the pivotal role of cellular osmoregulatory substances and protective enzymes in combating aluminum toxicity in S. davidii, a key factor exacerbating growth inhibition in acidic environments. These findings offer preliminary theoretical insights for the practical agricultural utilization of S. davidii in challenging soil conditions.
Collapse
Affiliation(s)
- Sisi Long
- College of Animal Science, Guizhou University, Guiyang, China
| | - Wenhui Xie
- College of Animal Science, Guizhou University, Guiyang, China
| | - Wenwu Zhao
- College of Animal Science, Guizhou University, Guiyang, China
| | - Danyang Liu
- College of Forestry, Guizhou University, Guiyang, China
| | - Puchang Wang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Lili Zhao
- College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
5
|
Zhou M, Huang C, Lin J, Yuan Y, Lin L, Zhou J, Li Z. γ-Aminobutyric acid (GABA) priming alleviates acid-aluminum toxicity to roots of creeping bentgrass via enhancements in antioxidant defense and organic metabolites remodeling. PLANTA 2024; 260:33. [PMID: 38896325 DOI: 10.1007/s00425-024-04461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 06/09/2024] [Indexed: 06/21/2024]
Abstract
MAIN CONCLUSION γ-Aminobutyric acid alleviates acid-aluminum toxicity to roots associated with enhanced antioxidant metabolism as well as accumulation and transportation of citric and malic acids. Aluminum (Al) toxicity has become the main limiting factor for crop growth and development in acidic soils and is further being aggravated worldwide due to continuous industrial pollution. The current study was designed to examine effects of GABA priming on alleviating acid-Al toxicity in terms of root growth, antioxidant defense, citrate and malate metabolisms, and extensive metabolites remodeling in roots under acidic conditions. Thirty-seven-day-old creeping bentgrass (Agrostis stolonifera) plants were used as test materials. Roots priming with or without 0.5 mM GABA for 3 days were cultivated in standard nutrient solution for 15 days as control or subjected to nutrient solution containing 5 mM AlCl3·6H2O for 15 days as acid-Al stress treatment. Roots were sampled for determinations of root characteristics, physiological and biochemical parameters, and metabolomics. GABA priming significantly alleviated acid-Al-induced root growth inhibition and oxidative damage, despite it promoted the accumulation of Al in roots. Analysis of metabolomics showed that GABA priming significantly increased accumulations of organic acids, amino acids, carbohydrates, and other metabolites in roots under acid-Al stress. In addition, GABA priming also significantly up-regulated key genes related to accumulation and transportation of malic and citric acids in roots under acid-Al stress. GABA-regulated metabolites participated in tricarboxylic acid cycle, GABA shunt, antioxidant defense system, and lipid metabolism, which played positive roles in reactive oxygen species scavenging, energy conversion, osmotic adjustment, and Al ion chelation in roots.
Collapse
Affiliation(s)
- Min Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Cheng Huang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Junnan Lin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Yan Yuan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Long Lin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Jianzhen Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 61130, China.
| |
Collapse
|
6
|
Wang H, Li C, Wang L, Zhong H, Xu X, Cheng Y, Nian H, Liu W, Chen P, Zhang A, Ma Q. GmABR1 encoding an ERF transcription factor enhances the tolerance to aluminum stress in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1125245. [PMID: 37035040 PMCID: PMC10076715 DOI: 10.3389/fpls.2023.1125245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
The ethylene response factor (ERF) transcription factors, which is one of the largest transcription factor families in plants, are involved in biological and abiotic stress response and play an important role in plant growth and development. In this study, the GmABR1 gene from the soybean inbred line Zhonghuang24 (ZH24)×Huaxia 3 (HX3) was investigated its aluminum (Al) tolerance. GmABR1 protein has a conserved domain AP2, which is located in the nucleus and has transcriptional activation ability. The results of real-time quantitative PCR (qRT-PCR) showed that the GmABR1 gene presented a constitutive expression pattern rich in the root tip, stem and leaf tissues of HX3. After Al stress, the GmABR1 transcript was significantly increased in the roots. The transcripts of GmABR1 in the roots of HX3 treated with 50 µM AlCl3 was 51 times than that of the control. The GmABR1 was spatiotemporally specific with the highest expression levels when Al concentration was 50 µM, which was about 36 times than that of the control. The results of hematoxylin staining showed that the root tips of GmABR1-overexpression lines were stained the lightest, followed by the control, and the root tips of GmABR1 RNAi lines were stained the darkest. The concentrations of Al3+ in root tips were 207.40 µg/g, 147.74 µg/g and 330.65 µg/g in wild type (WT), overexpressed lines and RNAi lines, respectively. When AlCl3 (pH4.5) concentration was 100 µM, all the roots of Arabidopsis were significantly inhibited. The taproot elongation of WT, GmABR1 transgenic lines was 69.6%, 85.6%, respectively. When treated with Al, the content of malondialdehyde (MDA) in leaves of WT increased to 3.03 µg/g, while that of transgenic Arabidopsis increased from 1.66-2.21 µg/g, which was lower than that of WT. Under the Al stress, the Al stress responsive genes such as AtALMT1 and AtMATE, and the genes related to ABA pathway such as AtABI1, AtRD22 and AtRD29A were up-regulated. The results indicated that GmABR1 may jointly regulate plant resistance to Al stress through genes related to Al stress response and ABA response pathways.
Collapse
Affiliation(s)
- Hongjie Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Cheng Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lidan Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hongying Zhong
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xin Xu
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wenhua Liu
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Pei Chen
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Aixia Zhang
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, China
- The Guangdong Province Key Laboratory of Plant Molecular Breeding, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou, China
- The Guangdong Provincial Laboratory of Lingnan Modern Agricultural Science and Technology, South China Agricultural University, Guangzhou, China
- Zengcheng Teaching and Research Bases, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Jia Y, Pradeep K, Vance WH, Zhang X, Weir B, Wei H, Deng Z, Zhang Y, Xu X, Zhao C, Berger JD, Bell RW, Li C. Identification of two chickpea multidrug and toxic compound extrusion transporter genes transcriptionally upregulated upon aluminum treatment in root tips. FRONTIERS IN PLANT SCIENCE 2022; 13:909045. [PMID: 35991422 PMCID: PMC9389367 DOI: 10.3389/fpls.2022.909045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Aluminum (Al) toxicity poses a significant challenge for the yield improvement of chickpea, which is an economically important legume crop with high nutritional value in human diets. The genetic basis of Al-tolerance in chickpea remains unclear. Here, we assessed the Al-tolerance of 8 wild Cicer and one cultivated chickpea (PBA Pistol) accessions by measuring the root elongation in solution culture under control (0 μM Al3+) and Al treatments (15, 30 μM Al3+). Compared to PBA Pistol, the wild Cicer accessions displayed both tolerant and sensitive phenotypes, supporting wild Cicer as a potential genetic pool for Al-tolerance improvement. To identify potential genes related to Al-tolerance in chickpea, genome-wide screening of multidrug and toxic compound extrusion (MATE) encoding genes was performed. Fifty-six MATE genes were identified in total, which can be divided into 4 major phylogenetic groups. Four chickpea MATE genes (CaMATE1-4) were clustered with the previously characterized citrate transporters MtMATE66 and MtMATE69 in Medicago truncatula. Transcriptome data showed that CaMATE1-4 have diverse expression profiles, with CaMATE2 being root-specific. qRT-PCR analyses confirmed that CaMATE2 and CaMATE4 were highly expressed in root tips and were up-regulated upon Al treatment in all chickpea lines. Further measurement of carboxylic acids showed that malonic acid, instead of malate or citrate, is the major extruded acid by Cicer spp. root. Protein structural modeling analyses revealed that CaMATE2 has a divergent substrate-binding cavity from Arabidopsis AtFRD3, which may explain the different acid-secretion profile for chickpea. Pangenome survey showed that CaMATE1-4 have much higher genetic diversity in wild Cicer than that in cultivated chickpea. This first identification of CaMATE2 and CaMATE4 responsive to Al3+ treatment in Cicer paves the way for future functional characterization of MATE genes in Cicer spp., and to facilitate future design of gene-specific markers for Al-tolerant line selection in chickpea breeding programs.
Collapse
Affiliation(s)
- Yong Jia
- Western Crop Genetic Alliance, Murdoch University, Perth, WA, Australia
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Department of Primary Industry and Regional Development, Government of Western Australia, Perth, WA, Australia
| | - Karthika Pradeep
- Centre for Sustainable Farming Systems, Future Foods Institute, Murdoch University, Perth, WA, Australia
| | - Wendy H. Vance
- Centre for Sustainable Farming Systems, Future Foods Institute, Murdoch University, Perth, WA, Australia
| | - Xia Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Brayden Weir
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Hongru Wei
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Zhiwei Deng
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
| | - Yujuan Zhang
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Xuexin Xu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Changxing Zhao
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | | | - Richard William Bell
- Centre for Sustainable Farming Systems, Future Foods Institute, Murdoch University, Perth, WA, Australia
| | - Chengdao Li
- Western Crop Genetic Alliance, Murdoch University, Perth, WA, Australia
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- Department of Primary Industry and Regional Development, Government of Western Australia, Perth, WA, Australia
| |
Collapse
|
8
|
Yang G, Qu M, Xu G, Li Y, Li X, Feng Y, Xiao H, He Y, Shabala S, Demidchik V, Liu J, Yu M. pH-Dependent mitigation of aluminum toxicity in pea (Pisum sativum) roots by boron. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111208. [PMID: 35351298 DOI: 10.1016/j.plantsci.2022.111208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/07/2022] [Accepted: 02/02/2022] [Indexed: 06/14/2023]
Abstract
Boron (B) deficiency and aluminum (Al) toxicity are two major constraints on plants grown in acidic soils. B supply mitigates Al toxicity; however, the underlying mechanisms of this process remain elusive. In this work, Pisum sativum plants were used to address this issue. In the absence of pH buffers, B supply had a better mitigation effect on Al-induced root inhibition at pH 4.0 than pH 4.8. However, in MES buffered solution, mitigating effects of B on Al-induced root inhibition were more pronounced at pH 4.8, indicating a strong pH dependency of this process. Quantification of pH-dependent accumulation of Al in various root zones, modification of root pH by an exogenous addition of rapid alkalization factor (RALF), and measuring changes in the rhizosphere pH by fluorescent dyes have revealed operation of two concurrent mechanisms to explain alleviation of the inhibition of root elongation induced by Al toxicity by boron: (1) via enhancing rhizosphere pH under strong acidic stress (pH4.0), and (2) via stabilizing of cell wall by cross-linking with RGII at relatively higher pH (4.8). These findings provide scientific basis and support for the application of B fertilizers in the regions with inherited soil acidity.
Collapse
Affiliation(s)
- Gen Yang
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000 Foshan, Guangdong, China
| | - Mei Qu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000 Foshan, Guangdong, China
| | - Guilian Xu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000 Foshan, Guangdong, China
| | - Yalin Li
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000 Foshan, Guangdong, China
| | - Xuewen Li
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000 Foshan, Guangdong, China
| | - Yingming Feng
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000 Foshan, Guangdong, China
| | - Hongdong Xiao
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000 Foshan, Guangdong, China
| | - Yongming He
- College of Life Science and Engineering, Foshan University, 528000 Foshan, Guangdong, China
| | - Sergey Shabala
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000 Foshan, Guangdong, China; Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7005, Australia
| | - Vadim Demidchik
- Department of Plant Cell Biology and Bioengineering, Biological Faculty, Belarusian State University, 4 Independence Avenue, 220030 Minsk, Belarus
| | - Jiayou Liu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000 Foshan, Guangdong, China.
| | - Min Yu
- International Research Center for Environmental Membrane Biology & Department of Horticulture, Foshan University, 528000 Foshan, Guangdong, China.
| |
Collapse
|
9
|
Impact of Different Methods of Root-Zone Application of Biochar-Based Fertilizers on Young Cocoa Plants: Insights from a Pot-Trial. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8040328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Effective and efficient nutrient management is central to best-practice agriculture, facilitating sustainable intensification while reducing negative externalities. The application of biochar-based fertilizers (BBF) in tropical agronomy has the potential to improve nutrient management by enhancing nutrient availability and uptake. Here, we performed pot-trials with Theobroma cacao L. seedlings planted in an Oxisol with critically low phosphorus levels. Four fertilizer levels were deployed, including BBFs using micro-dosed biochar (16 g plant−1 i.e., 0.3% soil amendment w/w) charged with mineral fertilizer. Three different fertilizer-placement levels (topsoil, root-zone hotspot and root-zone layer) were evaluated. The results from the topsoil application of mineral fertilizer (farmer practice) served as the reference data. The root-zone layer application of BBF increased the aboveground biomass, total leaf area and chlorophyll content index by 56%, 222%, and 140% respectively. Foliar phosphorus levels were also significantly elevated by 53%. The N:P ratio of the foliar tissue was improved, indicating the potential of BBF to ameliorate P limitations. Thus, low dosages of biochar, which is upgraded to BBF, can considerably improve plant nutrition. Small scale technology to produce biochar can be easily adopted and integrated in T. cacao systems. We suggest that BBF production and application within tropical, perennial systems can contribute to achieving a range of sustainable development goals (SDGs), including climate action.
Collapse
|
10
|
A Computational Study of the Role of Secondary Metabolites for Mitigation of Acid Soil Stress in Cereals Using Dehydroascorbate and Mono-Dehydroascorbate Reductases. Antioxidants (Basel) 2022; 11:antiox11030458. [PMID: 35326108 PMCID: PMC8944642 DOI: 10.3390/antiox11030458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/30/2022] Open
Abstract
The present study investigates the potential ameliorative role of seven secondary metabolites, viz., ascorbate (AsA), reduced glutathione (GSH), jasmonic acid (JA), salicylic acid (SA), serotonin (5-HT), indole–3–acetic acid (IAA) and gibberellic acid (GA3), for mitigation of aluminium (Al3+) and manganese (Mn2+) stress associated with acidic soils in rice, maize and wheat. The dehydroascorbate reductase (DHAR) and mono-dehydroascorbate reductase (MDHAR) of the cereals were used as model targets, and the analysis was performed using computational tools. Molecular docking approach was employed to evaluate the interaction of these ions (Al3+ and Mn2+) and the metabolites at the active sites of the two target enzymes. The results indicate that the ions potentially interact with the active sites of these enzymes and conceivably influence the AsA–GSH cycle. The metabolites showed strong interactions at the active sites of the enzymes. When the electrostatic surfaces of the metabolites and the ions were generated, it revealed that the surfaces overlap in the case of DHAR of rice and wheat, and MDHAR of rice. Thus, it was hypothesized that the metabolites may prevent the interaction of ions with the enzymes. This is an interesting approach to decipher the mechanism of action of secondary metabolites against the metal or metalloid - induced stress responses in cereals by aiming at specific targets. The findings of the present study are reasonably significant and may be the beginning of an interesting and useful approach towards comprehending the role of secondary metabolites for stress amelioration and mitigation in cereals grown under acidic soil conditions.
Collapse
|
11
|
Lawson-Wood K, Jaafar M, Felipe-Sotelo M, Ward NI. Investigation of the uptake of molybdenum by plants from Argentinean groundwater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:48929-48941. [PMID: 33928502 PMCID: PMC8410703 DOI: 10.1007/s11356-021-13902-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Some regions of Argentina are affected by high concentrations of molybdenum, arsenic and vanadium from natural sources in their groundwater. In particular, Mo levels in groundwater from Eduardo Castex (La Pampa, Argentina) typically exceed the guidelines for drinking water formerly established by WHO at 70 μg/L. Therefore, this study investigated the uptake of Mo in plants, using cress (Lepidium sativum L.) as a model using hydroponic experiments with synthetic solutions and groundwater from La Pampa. Cress grown from control experiments (150 μg/L Mo, pH 7) presented an average Mo concentration of 35.2 mg/kg (dry weight, d.w.), higher than the typical total plant range (0.7-2.5 mg/kg d.w.) in the literature. Using pooled groundwater samples (65.0-92.5 μg/L Mo) from wells of La Pampa (Argentina) as growth solutions resulted in significantly lower cress Mo levels (1.89-4.59 mg/kg d.w.) than were obtained for synthetic solutions of equivalent Mo concentration. This may be due to the high levels in these groundwater samples of As, V, Fe and Mn which are known to be associated with volcanic deposits. This research addressed the hitherto scarcity of data about the effect of various physicochemical parameters on the uptake of Mo in plants.
Collapse
Affiliation(s)
- Kathryn Lawson-Wood
- ICP-MS Facility, Department of Chemistry, University of Surrey, Guildford, Surrey, GU2 7XH, UK
- Perkin Elmer, Chalfont Road, Seer Green, Buckinghamshire, HP9 2FX, UK
| | - Maisarah Jaafar
- ICP-MS Facility, Department of Chemistry, University of Surrey, Guildford, Surrey, GU2 7XH, UK
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Mónica Felipe-Sotelo
- ICP-MS Facility, Department of Chemistry, University of Surrey, Guildford, Surrey, GU2 7XH, UK.
| | - Neil I Ward
- ICP-MS Facility, Department of Chemistry, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| |
Collapse
|
12
|
Vance W, Pradeep K, Strachan SR, Diffey S, Bell RW. Novel Sources of Tolerance to Aluminium Toxicity in Wild Cicer ( Cicer reticulatum and Cicer echinospermum) Collections. FRONTIERS IN PLANT SCIENCE 2021; 12:678211. [PMID: 34249045 PMCID: PMC8269930 DOI: 10.3389/fpls.2021.678211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/25/2021] [Indexed: 05/05/2023]
Abstract
In acid soils, the toxic form of aluminium, Al3+, significantly inhibits root growth and elongation, leading to less water and nutrient uptake. Previous research had shown differential Al toxicity tolerance among cultivated Cicer arietinum L. (chickpea); however, the potential for developing tolerant cultivars is limited by the narrow genetic diversity of cultivated chickpeas. Recent collections from Turkey of wild Cicer species, Cicer reticulatum, and Cicer echinospermum, have increased the available gene pool significantly, but there has been no large-scale screening of wild Cicer for acid tolerance or Al3+ toxicity tolerance. This study evaluated 167 wild Cicer and 17 Australian chickpea cultivars in a series of screenings under controlled growth conditions. The pH of 4.2 and Al concentrations of 15 and 60 μM Al were selected for large-scale screening based on dose response experiments in a low ionic strength nutrient solution. The change in root length showed better discrimination between tolerant and sensitive lines when compared with shoot and root dry weights and was used as a selection criterion. In a large-scale screening, 13 wild Cicer reticulatum accessions had a higher root tolerance index (≥50%), and eight had higher relative change in root length (≥40%) compared with PBA Monarch, which showed greater tolerance among the Australian domestic cultivars screened. In general, C. reticulatum species were found to be more tolerant than C. echinospermum, while genetic population groups Ret_5, Ret_6, and Ret_7 from Diyarbakir and Mardin Province were more tolerant than other groups. Among C. echinospermum, Ech_6 from the Siv-Diyar collection site of the Urfa Province showed better tolerance than other groups. In this first detailed screening of aluminium toxicity tolerance in the new wild Cicer collections, we identified accessions that were more tolerant than current domestic cultivars, providing promising germplasm for breeding programs to expand chickpea adaptation to acid soils.
Collapse
Affiliation(s)
- Wendy Vance
- Centre for Sustainable Farming Systems, Future Food Institute, Murdoch University, Perth, WA, Australia
- *Correspondence: Wendy Vance
| | - Karthika Pradeep
- Centre for Sustainable Farming Systems, Future Food Institute, Murdoch University, Perth, WA, Australia
| | - Scott R. Strachan
- Centre for Sustainable Farming Systems, Future Food Institute, Murdoch University, Perth, WA, Australia
| | | | - Richard W. Bell
- Centre for Sustainable Farming Systems, Future Food Institute, Murdoch University, Perth, WA, Australia
| |
Collapse
|
13
|
Dai B, Chen C, Liu Y, Liu L, Qaseem MF, Wang J, Li H, Wu AM. Physiological, Biochemical, and Transcriptomic Responses of Neolamarckia cadamba to Aluminum Stress. Int J Mol Sci 2020; 21:E9624. [PMID: 33348765 PMCID: PMC7767006 DOI: 10.3390/ijms21249624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/23/2022] Open
Abstract
Aluminum is the most abundant metal of the Earth's crust accounting for 7% of its mass, and release of toxic Al3+ in acid soils restricts plant growth. Neolamarckia cadamba, a fast-growing tree, only grows in tropical regions with acidic soils. In this study, N. cadamba was treated with high concentrations of aluminum under acidic condition (pH 4.5) to study its physiological, biochemical, and molecular response mechanisms against high aluminum stress. High aluminum concentration resulted in significant inhibition of root growth with time in N. cadamba. The concentration of Al3+ ions in the root tip increased significantly and the distribution of absorbed Al3+ was observed in the root tip after Al stress. Meanwhile, the concentration of Ca, Mg, Mn, and Fe was significantly decreased, but P concentration increased. Aluminum stress increased activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase from micrococcus lysodeiktic (CAT), and peroxidase (POD) in the root tip, while the content of MDA was decreased. Transcriptome analysis showed 37,478 differential expression genes (DEGs) and 4096 GOs terms significantly associated with treatments. The expression of genes regulating aluminum transport and abscisic acid synthesis was significantly upregulated; however, the genes involved in auxin synthesis were downregulated. Of note, the transcripts of several key enzymes affecting lignin monomer synthesis in phenylalanine pathway were upregulated. Our results shed light on the physiological and molecular mechanisms of aluminum stress tolerance in N. cadamba.
Collapse
Affiliation(s)
- Baojia Dai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (B.D.); (C.C.); (Y.L.); (M.F.Q.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Chen Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (B.D.); (C.C.); (Y.L.); (M.F.Q.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Yi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (B.D.); (C.C.); (Y.L.); (M.F.Q.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Lijun Liu
- State Forestry and Grassland Administration Key Laboratory of Silviculture in downstream areas of the Yellow River, College of Forestry, Shandong Agriculture University, Taian 271018, Shandong, China;
| | - Mirza Faisal Qaseem
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (B.D.); (C.C.); (Y.L.); (M.F.Q.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Jinxiang Wang
- Root Biology Center & College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Huiling Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (B.D.); (C.C.); (Y.L.); (M.F.Q.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
| | - Ai-Min Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (B.D.); (C.C.); (Y.L.); (M.F.Q.)
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architectures, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
14
|
Sultana S, Bell RW, Vance WH. Genotypic variation among chickpea and wild Cicer spp. in nutrient uptake with increasing concentration of solution Al at low pH. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:390-401. [PMID: 33197728 DOI: 10.1016/j.plaphy.2020.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 05/21/2023]
Abstract
In many acidic soils, high concentrations of toxic Al3+ hamper plant growth by restricting root growth which in turn restricts water and nutrient absorption. Previous research showed variation among chickpea (Cicer arietinum L.) and wild Cicer species in root elongation at 15 μM Al or more, but effects on nutrient absorption have not been examined. The variation in nutrient uptake of two chickpea varieties (PBA HatTrick and PBA Striker) and two wild Cicer species (C. echinospermum (C. echi) and C. reticulatum (C. reti)) was determined in low pH (4.2) nutrient solution with increasing Al concentrations (0, 7.5, 15, 30 μM Al). While C. echi, PBA HatTrick and PBA Striker had thicker roots and more lateral roots compared to C. reti, C. reti had greater aluminium tolerance index (AlTI) at 15 and 30 μM Al. The C. echi had higher uptake of root and shoot Al (7.5, 15 and 30 μM Al), P and S (15 and 30 μM Al) while its uptake was marginally lower for Mg, Ca (all Al treatments) and K (15 and 30 μM Al). By contrast, C. reti contained higher shoot Ca concentration at 15 and 30 μM Al and it had lower root Al uptake. Manganese uptake by C. reti roots and shoots were high enough to induce moderate Mn toxicity at 0 and 7.5 μM Al. Therefore, in response to Al toxicity, C. reti maintained greater AlTI and restricted Al uptake while increasing Ca uptake.
Collapse
Affiliation(s)
- Shahana Sultana
- Sustainable Land Management Group, Agriculture Discipline, College of Science, Health, Engineering and Education, Murdoch University, WA, 6150, Australia; On-Farm Research Division, Bangladesh Agricultural Research Institute, Gazipur, 1701, Bangladesh.
| | - Richard W Bell
- Sustainable Land Management Group, Agriculture Discipline, College of Science, Health, Engineering and Education, Murdoch University, WA, 6150, Australia
| | - Wendy H Vance
- Sustainable Land Management Group, Agriculture Discipline, College of Science, Health, Engineering and Education, Murdoch University, WA, 6150, Australia
| |
Collapse
|
15
|
Salazar-Chavarría V, Sánchez-Nieto S, Cruz-Ortega R. Fagopyrum esculentum at early stages copes with aluminum toxicity by increasing ABA levels and antioxidant system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 152:170-176. [PMID: 32422533 DOI: 10.1016/j.plaphy.2020.04.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/28/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Aluminum toxicity (Al) is one of the main constraints for plant growth on acid soils. While most plants are sensitive to Al, some species have developed strategies to cope with this metal. Fagopyrum esculentum, Moench., var Mancan (Polygonaceae), despite being an aluminum-tolerant plant, shows root inhibition as a seedling during the first hours of exposure to Al, whereas at later times, it fully recovers. In this study, we assessed whether abscisic acid (ABA) levels and the antioxidant system might be involved in the early tolerance mechanisms of F. esculentum. The results showed that seedlings exposed to 50 μM Al for 3, 6, 12, 24, and 48 h showed decreases in the relative root growth (RRG), and there was an accumulation of Al in the root apex from 3 to 24 h. In addition, reactive oxygen species (ROS) levels increased, and were detected early after Al exposure; endogenous ABA levels increased and antioxidant enzyme activity increased, including catalase (CAT, EC1.11.1.6), glutathione reductase (GR, EC 1.6.4.2), ascorbate peroxidase (APX, EC 1.11.1.11), and superoxide dismutase (SOD, EC 1.15.1.1) activity. Seedlings treated with exogenous ABA also showed increased ROS levels and CAT and APX activity. The results suggest that after the first 12 h of Al treatment, root growth declines while ROS levels increase due to the entrance of Al into the root. However, the enzyme antioxidant system is promoted, which may impact the recovery of the root growth at later times and increasing levels of ABA might mediate this effect.
Collapse
Affiliation(s)
- Violeta Salazar-Chavarría
- Instituto de Ecología, UNAM, Circuito exterior Universitario S/N anexo Jardín Botánico exterior Ciudad Universitaria, Mexico
| | - Sobeida Sánchez-Nieto
- Facultad de Química, UNAM, Ciudad Universitaria, Ciudad de México, C.P, 04500, Mexico
| | - Rocío Cruz-Ortega
- Instituto de Ecología, UNAM, Circuito exterior Universitario S/N anexo Jardín Botánico exterior Ciudad Universitaria, Mexico.
| |
Collapse
|
16
|
Bifunctional probe for Cu2+/Al3+ based on a diarylethene with a 4, 5-[bis-(5-ethylacetate-yl)-2-thienyl]-1H-imidazole unit. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
17
|
Bora K, Sarkar D, Konwar K, Payeng B, Sood K, Paul RK, Datta R, Das S, Khare P, Karak T. Disentanglement of the secrets of aluminium in acidophilic tea plant (Camellia sinensis L.) influenced by organic and inorganic amendments. Food Res Int 2019; 120:851-864. [DOI: 10.1016/j.foodres.2018.11.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 11/20/2018] [Accepted: 11/24/2018] [Indexed: 01/28/2023]
|
18
|
Liang Y, Diao L, Wang R, Wang N, Pu S. A bifunctional probe for Al3+ and Zn2+ based on diarylethene with an ethylimidazo[2,1-b]thiazole-6-hydrazide unit. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2018.11.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Guardado-Félix D, Serna-Saldivar SO, Cuevas-Rodríguez EO, Jacobo-Velázquez DA, Gutiérrez-Uribe JA. Effect of sodium selenite on isoflavonoid contents and antioxidant capacity of chickpea (Cicer arietinum L.) sprouts. Food Chem 2017; 226:69-74. [DOI: 10.1016/j.foodchem.2017.01.046] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 01/14/2023]
|
20
|
Zhang M, Deng X, Yin L, Qi L, Wang X, Wang S, Li H. Regulation of Galactolipid Biosynthesis by Overexpression of the Rice MGD Gene Contributes to Enhanced Aluminum Tolerance in Tobacco. FRONTIERS IN PLANT SCIENCE 2016; 7:337. [PMID: 27066017 PMCID: PMC4811928 DOI: 10.3389/fpls.2016.00337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 03/04/2016] [Indexed: 05/18/2023]
Abstract
Membrane lipid alterations affect Al tolerance in plants, but little is known about the regulation of membrane lipid metabolism in response to Al stress. Transgenic tobacco (Nicotiana tabacum) overexpressing rice monogalactosyldiacylglycerol (MGDG) synthase (OsMGD) gene and wild-type tobacco plants were exposed to AlCl3, and the impact of Al toxicity on root growth, Al accumulation, plasma membrane integrity, lipid peroxidation and membrane lipid composition were investigated. Compared with the wild type, the transgenic plants exhibited rapid regrowth of roots after removal of Al and less damage to membrane integrity and lipid peroxidation under Al stress, meanwhile, the Al accumulation showed no difference between wild-type and transgenic plants. Lipid analysis showed that Al treatment dramatically decreased the content of MGDG and the ratio of MGDG to digalactosyldiacylglycerol (DGDG) in wild-type plants, while it was unchanged in transgenic plants. The stable of MGDG level and the ratio of MGDG/DGDG contribute to maintain the membrane stability and permeability. Moreover, Al caused a significant increase in phospholipids in wild-type plants, resulting in a high proportion of phospholipids and low proportion of galactolipids, but these proportions were unaffected in transgenic plants. The high proportion of phospholipids could contribute to a higher rate of Al(3+) binding in the membrane and thereby leads to more membrane perturbation and damage. These results show that the regulation of galactolipid biosynthesis could play an important role in maintaining membrane structure and function under Al stress.
Collapse
Affiliation(s)
- Meijuan Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F UniversityYangling, China
- College of Life Sciences, Northwest A&F UniversityYangling, China
| | - Xiping Deng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F UniversityYangling, China
- College of Life Sciences, Northwest A&F UniversityYangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water ResourcesYangling, China
| | - Lina Yin
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F UniversityYangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water ResourcesYangling, China
- College of Natural Resources and Environment, Northwest A&F UniversityYangling, China
| | - Lingyun Qi
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F UniversityYangling, China
- College of Natural Resources and Environment, Northwest A&F UniversityYangling, China
| | - Xinyue Wang
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water ResourcesYangling, China
| | - Shiwen Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F UniversityYangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water ResourcesYangling, China
| | - Hongbing Li
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F UniversityYangling, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water ResourcesYangling, China
| |
Collapse
|
21
|
Kummerová M, Zezulka Š, Babula P, Tříska J. Possible ecological risk of two pharmaceuticals diclofenac and paracetamol demonstrated on a model plant Lemna minor. JOURNAL OF HAZARDOUS MATERIALS 2016; 302:351-361. [PMID: 26476323 DOI: 10.1016/j.jhazmat.2015.09.057] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/24/2015] [Accepted: 09/26/2015] [Indexed: 06/05/2023]
Abstract
Lemna minor is often used in environmental risk assessment and it can be supposed that usually evaluated parameters will be reliable even for assessing the risk of pharmaceuticals. Subtle changes in duckweed plant number, biomass production, and leaf area size induced by 10-day-exposure to diclofenac (DCF) and paracetamol (PCT) (0.1, 10, and 100 μg/L), excepting 100 μg/L DCF, are in contrast with considerable changes on biochemical and histochemical level. Both drugs caused a decrease in content of photosynthetic pigments (by up to 50%), an increase in non-photochemical quenching (by 65%) and decrease in relative chlorophyll fluorescence decay values (by up to 90% with DCF). Both DCF and especially PCT increased amount of reactive nitrogen and oxygen species in roots. DCF-induced effects included mainly increased lipid peroxidation (by 78%), disturbation in membrane integrity and lowering both oxidoreductase and dehydrogenase activities (by 30%). PCT increased the content of soluble proteins and phenolics. Higher concentrations of both DCF and PCT increased the levels of oxidised ascorbate (by 30%) and oxidised thiols (by up to 84% with DCF). Glutathion-reductase activity was elevated by both pharmaceuticals (nearly by 90%), glutathion-S-transferase activity increased mainly with PCT (by 22%). The early and sensitive indicators of DCF and PCT phytotoxicity stress in duckweed are mainly the changes in biochemical processes, connected with activation of defense mechanisms against oxidative stress.
Collapse
Affiliation(s)
- Marie Kummerová
- Institute of Experimental Biology-Department of Plant Physiology and Anatomy, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Štěpán Zezulka
- Institute of Experimental Biology-Department of Plant Physiology and Anatomy, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37 Brno, Czech Republic.
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 753/5, 625 00 Brno, Czech Republic.
| | - Jan Tříska
- Laboratory of Metabolomics and Isotope Analyses, Global Change Research Center, Academy of Sciences of the Czech Republic v.v.i., Bělidla 986/4a, 603 00 Brno, Czech Republic.
| |
Collapse
|