1
|
Salvatierra A, Mateluna P, Toro G, Solís S, Pimentel P. Genome-Wide Identification and Gene Expression Analysis of Sweet Cherry Aquaporins ( Prunus avium L.) under Abiotic Stresses. Genes (Basel) 2023; 14:genes14040940. [PMID: 37107698 PMCID: PMC10138167 DOI: 10.3390/genes14040940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Aquaporins (AQPs) are integral transmembrane proteins well known as channels involved in the mobilization of water, small uncharged molecules and gases. In this work, the main objective was to carry out a comprehensive study of AQP encoding genes in Prunus avium (cv. Mazzard F12/1) on a genome-wide scale and describe their transcriptional behaviors in organs and in response to different abiotic stresses. A total of 28 non-redundant AQP genes were identified in Prunus spp. Genomes, which were phylogenetically grouped into five subfamilies (seven PIPs, eight NIPs, eight TIPs, three SIPs and two XIPs). Bioinformatic analyses revealed a high synteny and remarkable conservation of structural features among orthologs of different Prunus genomes. Several cis-acting regulatory elements (CREs) related to stress regulation were detected (ARE, WRE3, WUN, STRE, LTR, MBS, DRE, AT-rich and TC-rich). The above could be accounting for the expression variations associated with plant organs and, especially, each abiotic stress analyzed. Gene expressions of different PruavAQPs were shown to be preferentially associated with different stresses. PruavXIP2;1 and PruavXIP1;1 were up-regulated in roots at 6 h and 72 h of hypoxia, and in PruavXIP2;1 a slight induction of expression was also detected in leaves. Drought treatment strongly down-regulated PruavTIP4;1 but only in roots. Salt stress exhibited little or no variation in roots, except for PruavNIP4;1 and PruavNIP7;1, which showed remarkable gene repression and induction, respectively. Interestingly, PruavNIP4;1, the AQP most expressed in cherry roots subjected to cold temperatures, also showed this pattern in roots under high salinity. Similarly, PruavNIP4;2 consistently was up-regulated at 72 h of heat and drought treatments. From our evidence is possible to propose candidate genes for the development of molecular markers for selection processes in breeding programs for rootstocks and/or varieties of cherry.
Collapse
Affiliation(s)
- Ariel Salvatierra
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo 2940000, Chile
| | - Patricio Mateluna
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo 2940000, Chile
| | - Guillermo Toro
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo 2940000, Chile
| | - Simón Solís
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo 2940000, Chile
| | - Paula Pimentel
- Centro de Estudios Avanzados en Fruticultura (CEAF), Camino Las Parcelas 882, km 105 Ruta 5 Sur, Sector Los Choapinos, Rengo 2940000, Chile
| |
Collapse
|
2
|
Transcriptomic Analysis of Distal Parts of Roots Reveals Potentially Important Mechanisms Contributing to Limited Flooding Tolerance of Canola ( Brassica napus) Plants. Int J Mol Sci 2022; 23:ijms232415469. [PMID: 36555110 PMCID: PMC9779561 DOI: 10.3390/ijms232415469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Since most of the root metabolic activities as well as root elongation and the uptake of water and mineral nutrients take place in the distal parts of roots, we aimed to gain insight into the physiological and transcriptional changes induced by root hypoxia in the distal parts of roots in canola (Brassica napus) plants, which are relatively sensitive to flooding conditions. Plants were subject to three days of root hypoxia via lowering oxygen content in hydroponic medium, and various physiological and anatomical features were examined to characterize plant responses. Untargeted transcriptomic profiling approaches were also applied to investigate changes in gene expression that took place in the distal root tissues in response to hypoxia. Plants responded to three days of root hypoxia by reducing growth and gas exchange rates. These changes were accompanied by decreases in leaf water potential (Ψleaf) and root hydraulic conductivity (Lpr). Increased deposition of lignin and suberin was also observed in the root tissues of hypoxic plants. The transcriptomic data demonstrated that the effect of hypoxia on plant water relations involved downregulation of most BnPIPs in the root tissues with the exception of BnPIP1;3 and BnPIP2;7, which were upregulated. Since some members of the PIP1 subfamily of aquaporins are known to transport oxygen, the increase in BnPIP1;3 may represent an important hypoxia tolerance strategy in plants. The results also demonstrated substantial rearrangements of different signaling pathways and transcription factors (TFs), which resulted in alterations of genes involved in the regulation of Lpr, TCA (tricarboxylic acid) cycle-related enzymes, antioxidant enzymes, and cell wall modifications. An integration of these data enabled us to draft a comprehensive model of the molecular pathways involved in the responses of distal parts of roots in B. napus. The model highlights systematic transcriptomic reprogramming aimed at explaining the relative sensitivity of Brassica napus to root hypoxia.
Collapse
|
3
|
Fu Z, Ciais P, Prentice IC, Gentine P, Makowski D, Bastos A, Luo X, Green JK, Stoy PC, Yang H, Hajima T. Atmospheric dryness reduces photosynthesis along a large range of soil water deficits. Nat Commun 2022; 13:989. [PMID: 35190562 PMCID: PMC8861027 DOI: 10.1038/s41467-022-28652-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/28/2022] [Indexed: 12/13/2022] Open
Abstract
Both low soil water content (SWC) and high atmospheric dryness (vapor pressure deficit, VPD) can negatively affect terrestrial gross primary production (GPP). The sensitivity of GPP to soil versus atmospheric dryness is difficult to disentangle, however, because of their covariation. Using global eddy-covariance observations, here we show that a decrease in SWC is not universally associated with GPP reduction. GPP increases in response to decreasing SWC when SWC is high and decreases only when SWC is below a threshold. By contrast, the sensitivity of GPP to an increase of VPD is always negative across the full SWC range. We further find canopy conductance decreases with increasing VPD (irrespective of SWC), and with decreasing SWC on drier soils. Maximum photosynthetic assimilation rate has negative sensitivity to VPD, and a positive sensitivity to decreasing SWC when SWC is high. Earth System Models underestimate the negative effect of VPD and the positive effect of SWC on GPP such that they should underestimate the GPP reduction due to increasing VPD in future climates.
Collapse
Affiliation(s)
- Zheng Fu
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France.
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - I Colin Prentice
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
- Ministry of Education Key Laboratory for Earth System Modeling, Department of Earth System Science, Tsinghua University, Beijing, 100084, China
| | - Pierre Gentine
- Department of Earth and Environmental Engineering, Columbia University, New York, NY, 10027, USA
| | - David Makowski
- Unit Applied mathematics and computer science (UMR 518) INRAE AgroParisTech Université Paris-Saclay, Paris, France
| | - Ana Bastos
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, D-07745, Jena, Germany
| | - Xiangzhong Luo
- Department of Geography, National University of Singapore, Singapore, Singapore
| | - Julia K Green
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Paul C Stoy
- Department of Biological Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Hui Yang
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Tomohiro Hajima
- Research Center for Environmental Modeling and Application, Japan Agency for Marine-Earth Science and Technology, 3173-25 Showamachi, Kanazawaku, Yokohama, 236-0001, Japan
| |
Collapse
|
4
|
Cheng XF, Wu HH, Zou YN, Wu QS, Kuča K. Mycorrhizal response strategies of trifoliate orange under well-watered, salt stress, and waterlogging stress by regulating leaf aquaporin expression. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 162:27-35. [PMID: 33662869 DOI: 10.1016/j.plaphy.2021.02.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/19/2021] [Indexed: 05/24/2023]
Abstract
Aquaporins (AQPs) involved in water and small molecule transport respond to environmental stress, while it is not clear how arbuscular mycorrhizal fungi (AMF) regulate AQP expression. Here, we investigated the change in leaf water potential and expression level of four tonoplast intrinsic proteins (TIPs), six plasma membrane intrinsic proteins (PIPs), and four nodin-26 like intrinsic proteins (NIPs) genes in trifoliate orange (Poncirus trifoliata) inoculated with Funneliformis mosseae under well-watered (WW), salt stress (SS), and waterlogging stress (WS). Root AMF colonization and soil hyphal length collectively were reduced by SS and WS. Under WW, inoculation with AMF gave diverse responses of AQPs: six AQPs up-regulated, three AQPs down-regulated, and five AQPs did not change. Such up-regulation of more AQPs under mycorrhization and WW partly accelerated water absorption, thereby, maintaining higher leaf water potential. However, under SS, all the fourteen AQPs were dramatically induced by AMF inoculation, which improved water permeability of membranes and stimulated water transport of the host. Under WS, AMF colonization almost did not induce or even down-regulated these AQPs expressions with three exceptions (PtTIP2;2, PtPIP1;1, and PtNIP1;2), thus, no change in leaf water potential. As a result, mycorrhizal plants under flooding may have an escape mechanism to reduce water absorption. It is concluded that AMF had different strategies in response to environmental stresses (e.g. SS and WS) by regulating leaf AQP expression in the host (e.g. trifoliate orange).
Collapse
Affiliation(s)
- Xiao-Fen Cheng
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Hui-Hui Wu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Ying-Ning Zou
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China.
| | - Qiang-Sheng Wu
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Hubei Key Laboratory of Waterlogging Disaster and Agricultural Use of Wetland, College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, 434025, China; Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic.
| | - Kamil Kuča
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, 50003, Czech Republic
| |
Collapse
|
5
|
Molecular Research on Stress Responses in Quercus spp.: From Classical Biochemistry to Systems Biology through Omics Analysis. FORESTS 2021. [DOI: 10.3390/f12030364] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The genus Quercus (oak), family Fagaceae, comprises around 500 species, being one of the most important and dominant woody angiosperms in the Northern Hemisphere. Nowadays, it is threatened by environmental cues, which are either of biotic or abiotic origin. This causes tree decline, dieback, and deforestation, which can worsen in a climate change scenario. In the 21st century, biotechnology should take a pivotal role in facing this problem and proposing sustainable management and conservation strategies for forests. As a non-domesticated, long-lived species, the only plausible approach for tree breeding is exploiting the natural diversity present in this species and the selection of elite, more resilient genotypes, based on molecular markers. In this direction, it is important to investigate the molecular mechanisms of the tolerance or resistance to stresses, and the identification of genes, gene products, and metabolites related to this phenotype. This research is being performed by using classical biochemistry or the most recent omics (genomics, epigenomics, transcriptomics, proteomics, and metabolomics) approaches, which should be integrated with other physiological and morphological techniques in the Systems Biology direction. This review is focused on the current state-of-the-art of such approaches for describing and integrating the latest knowledge on biotic and abiotic stress responses in Quercus spp., with special reference to Quercus ilex, the system on which the authors have been working for the last 15 years. While biotic stress factors mainly include fungi and insects such as Phytophthora cinnamomi, Cerambyx welensii, and Operophtera brumata, abiotic stress factors include salinity, drought, waterlogging, soil pollutants, cold, heat, carbon dioxide, ozone, and ultraviolet radiation. The review is structured following the Central Dogma of Molecular Biology and the omic cascade, from DNA (genomics, epigenomics, and DNA-based markers) to metabolites (metabolomics), through mRNA (transcriptomics) and proteins (proteomics). An integrated view of the different approaches, challenges, and future directions is critically discussed.
Collapse
|
6
|
Physiological, Biochemical and Chlorophyll Fluorescence Parameters of Physalis Peruviana L. Seedlings Exposed to Different Short-Term Waterlogging Periods and Fusarium Wilt Infection. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9050213] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cape gooseberry has coped with abiotic and biotic stresses such as prolonged waterlogging periods and vascular wilt in recent years. The aim of this study was to evaluate the influence of four waterlogging periods on stomatal conductance (gs), leaf water potential (Ψwf), plant growth, leaf photosynthetic pigments, malondialdehyde (MDA) production, proline content and chlorophyll fluorescence parameters in cape gooseberry plants infected with Fusarium oxysporum f. sp. physali (Foph). Two-month-old ecotype “Colombia” plants were arranged in a completely randomized factorial design in eight treatments: plants without waterlogging (control), plants with waterlogging for 4, 6 and 8 d with and without Foph, respectively. The area under the disease progress curve was higher in inoculated plants subjected to 6 and 8 d of waterlogging (55.25 and 64.25) compared to inoculated plants but without waterlogging (45.25). The results also showed a lower plant growth, gs, Ψwf, leaf photosynthetic pigments and chlorophyll fluorescence parameters (Fv/Fm, electron transport rate (ETR), Y (II) and qP) as waterlogging periods in plants with Foph increased. However, this group of plants showed a greater proline and malondialdehyde (MDA) accumulation and a higher NPQ. In conclusion, cape gooseberry shows a low acclimation to waterlogging conditions of more than 6 d in soils with Foph.
Collapse
|
7
|
Pan DL, Wang G, Wang T, Jia ZH, Guo ZR, Zhang JY. AdRAP2.3, a Novel Ethylene Response Factor VII from Actinidia deliciosa, Enhances Waterlogging Resistance in Transgenic Tobacco through Improving Expression Levels of PDC and ADH Genes. Int J Mol Sci 2019; 20:E1189. [PMID: 30857203 PMCID: PMC6429156 DOI: 10.3390/ijms20051189] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 01/18/2023] Open
Abstract
APETALA2/ethylene-responsive factor superfamily (AP2/ERF) is a transcription factor involved in abiotic stresses, for instance, cold, drought, and low oxygen. In this study, a novel ethylene-responsive transcription factor named AdRAP2.3 was isolated from Actinidia deliciosa 'Jinkui'. AdRAP2.3 transcription levels in other reproductive organs except for the pistil were higher than those in the vegetative organs (root, stem, and leaf) in kiwi fruit. Plant hormones (Salicylic acid (SA), Methyl-jasmonate acid (MeJA), 1-Aminocyclopropanecarboxylic Acid (ACC), Abscisic acid (ABA)), abiotic stresses (waterlogging, heat, 4 °C and NaCl) and biotic stress (Pseudomonas Syringae pv. Actinidiae, Psa) could induce the expression of AdRAP2.3 gene in kiwi fruit. Overexpression of the AdRAP2.3 gene conferred waterlogging stress tolerance in transgenic tobacco plants. When completely submerged, the survival rate, fresh weight, and dry weight of transgenic tobacco lines were significantly higher than those of wile type (WT). Upon the roots being submerged, transgenic tobacco lines grew aerial roots earlier. Overexpression of AdRAP2.3 in transgenic tobacco improved the pyruvate decarboxylase (PDC) and alcohol dehydrogenase (ADH) enzyme activities, and improved the expression levels of waterlogging mark genes NtPDC, NtADH, NtHB1, NtHB2, NtPCO1, and NtPCO2 in roots under waterlogging treatment. Overall, these results demonstrated that AdRAP2.3 might play an important role in resistance to waterlogging through regulation of PDC and ADH genes in kiwi fruit.
Collapse
Affiliation(s)
- De-Lin Pan
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Gang Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Tao Wang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Zhan-Hui Jia
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Zhong-Ren Guo
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| | - Ji-Yu Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China.
| |
Collapse
|
8
|
Kadam S, Abril A, Dhanapal AP, Koester RP, Vermerris W, Jose S, Fritschi FB. Characterization and Regulation of Aquaporin Genes of Sorghum [ Sorghum bicolor (L.) Moench] in Response to Waterlogging Stress. FRONTIERS IN PLANT SCIENCE 2017; 8:862. [PMID: 28611797 PMCID: PMC5447673 DOI: 10.3389/fpls.2017.00862] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 05/09/2017] [Indexed: 05/25/2023]
Abstract
Waterlogging is a significant environmental constraint to crop production, and a better understanding of plant responses is critical for the improvement of crop tolerance to waterlogged soils. Aquaporins (AQPs) are a class of channel-forming proteins that play an important role in water transport in plants. This study aimed to examine the regulation of AQP genes under waterlogging stress and to characterize the genetic variability of AQP genes in sorghum (Sorghum bicolor). Transcriptional profiling of AQP genes in response to waterlogging stress in nodal root tips and nodal root basal regions of two tolerant and two sensitive sorghum genotypes at 18 and 96 h after waterlogging stress imposition revealed significant gene-specific pattern with regard to genotype, root tissue sample, and time point. For some tissue sample and time point combinations, PIP2-6, PIP2-7, TIP2-2, TIP4-4, and TIP5-1 expression was differentially regulated in tolerant compared to sensitive genotypes. The differential response of these AQP genes suggests that they may play a tissue specific role in mitigating waterlogging stress. Genetic analysis of sorghum revealed that AQP genes were clustered into the same four subfamilies as in maize (Zea mays) and rice (Oryza sativa) and that residues determining the AQP channel specificity were largely conserved across species. Single nucleotide polymorphism (SNP) data from 50 sorghum accessions were used to build an AQP gene-based phylogeny of the haplotypes. Phylogenetic analysis based on single nucleotide polymorphisms of sorghum AQP genes placed the tolerant and sensitive genotypes used for the expression study in distinct groups. Expression analyses suggested that selected AQPs may play a pivotal role in sorghum tolerance to water logging stress. Further experimentation is needed to verify their role and to leverage phylogenetic analyses and AQP expression data to improve waterlogging tolerance in sorghum.
Collapse
Affiliation(s)
- Suhas Kadam
- Division of Plant Sciences, University of Missouri, ColumbiaMO, United States
| | - Alejandra Abril
- Graduate Program in Plant Molecular and Cellular Biology, University of Florida, GainesvilleFL, United States
| | - Arun P. Dhanapal
- Division of Plant Sciences, University of Missouri, ColumbiaMO, United States
| | - Robert P. Koester
- Division of Plant Sciences, University of Missouri, ColumbiaMO, United States
| | - Wilfred Vermerris
- Department of Microbiology and Cell Science – Institute of Food and Agricultural Sciences, University of Florida, GainesvilleFL, United States
- University of Florida Genetics Institute, University of Florida, GainesvilleFL, United States
| | - Shibu Jose
- The Center for Agroforestry, University of Missouri, ColumbiaMO, United States
| | - Felix B. Fritschi
- Division of Plant Sciences, University of Missouri, ColumbiaMO, United States
| |
Collapse
|
9
|
Savi T, Casolo V, Luglio J, Bertuzzi S, Trifilo' P, Lo Gullo MA, Nardini A. Species-specific reversal of stem xylem embolism after a prolonged drought correlates to endpoint concentration of soluble sugars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 106:198-207. [PMID: 27174138 DOI: 10.1016/j.plaphy.2016.04.051] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/28/2016] [Accepted: 04/29/2016] [Indexed: 05/23/2023]
Abstract
Recent reports on tree mortality associated with anomalous drought and heat have raised interest into processes underlying tree resistance/resilience to water stress. Hydraulic failure and carbon starvation have been proposed as main causes of tree decline, with recent theories treating water and carbon metabolism as interconnected processes. We subjected young plants of two native (Quercus pubescens [Qp] and Prunus mahaleb [Pm]) and two invasive (Robinia pseudoacacia [Rp] and Ailanthus altissima [Aa]) woody angiosperms to a prolonged drought leading to stomatal closure and xylem embolism, to induce carbon starvation and hydraulic failure. At the end of the treatment, plants were measured for embolism rates and NSC content, and re-irrigated to monitor recovery of xylem hydraulics. Data highlight different hydraulic strategies in native vs invasive species under water stress, and provide physiological explanations for species-specific impacts of recent severe droughts. Drought-sensitive species (Qp and Rp) suffered high embolism rates and were unable to completely refill xylem conduits upon restoration of water availability. Species that better survived recent droughts were able to limit embolism build-up (Pm) or efficiently restored hydraulic functionality after irrigation (Aa). Species-specific capacity to reverse xylem embolism correlated to stem-level concentration of soluble carbohydrates, but not to starch content.
Collapse
Affiliation(s)
- Tadeja Savi
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Valentino Casolo
- Dipartimento di Scienze AgroAlimentari, Ambientali e Animali, Università di Udine, Viale delle Scienze 91, 33100 Udine, Italy
| | - Jessica Luglio
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Stefano Bertuzzi
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy
| | - Patrizia Trifilo'
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Maria A Lo Gullo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche ed Ambientali, Università di Messina, Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Andrea Nardini
- Dipartimento di Scienze della Vita, Università di Trieste, Via L. Giorgieri 10, 34127 Trieste, Italy.
| |
Collapse
|