1
|
Cai Y, Horn PJ. Packaging "vegetable oils": Insights into plant lipid droplet proteins. PLANT PHYSIOLOGY 2025; 197:kiae533. [PMID: 39566075 DOI: 10.1093/plphys/kiae533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/06/2024] [Indexed: 11/22/2024]
Abstract
Plant neutral lipids, also known as "vegetable oils", are synthesized within the endoplasmic reticulum (ER) membrane and packaged into subcellular compartments called lipid droplets (LDs) for stable storage in the cytoplasm. The biogenesis, modulation, and degradation of cytoplasmic LDs in plant cells are orchestrated by a variety of proteins localized to the ER, LDs, and peroxisomes. Recent studies of these LD-related proteins have greatly advanced our understanding of LDs not only as steady oil depots in seeds but also as dynamic cell organelles involved in numerous physiological processes in different tissues and developmental stages of plants. In the past 2 decades, technology advances in proteomics, transcriptomics, genome sequencing, cellular imaging and protein structural modeling have markedly expanded the inventory of LD-related proteins, provided unprecedented structural and functional insights into the protein machinery modulating LDs in plant cells, and shed new light on the functions of LDs in nonseed plant tissues as well as in unicellular algae. Here, we review critical advances in revealing new LD proteins in various plant tissues, point out structural and mechanistic insights into key proteins in LD biogenesis and dynamic modulation, and discuss future perspectives on bridging our knowledge gaps in plant LD biology.
Collapse
Affiliation(s)
- Yingqi Cai
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| | - Patrick J Horn
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, 76203, USA
| |
Collapse
|
2
|
Zhang Z, Xiong T, Fan T. Genomic Analysis of the Caleosin Family in Theaceae Reveals Lineagespecific Evolutionary Patterns. Curr Protein Pept Sci 2025; 26:139-155. [PMID: 39323337 DOI: 10.2174/0113892037321073240828051039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/10/2024] [Accepted: 07/18/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Caleosins are recognized as the key proteins found in Lipid Droplets (LDs) and are crucial for the creation, maintenance, and breakdown of LDs. Nevertheless, our understanding of caleosins remains limited within Theaceae, a prominent botanical family encompassing economically significant tea and oil tea species. METHODS In this research, we conducted a comprehensive genome-wide exploration and examination of the caleosin family in Theaceae species with sequenced genomes. The gene number of caleosin was similar among Theaceae species. Segmental duplication was the main form of caleosin expansion in Shuchazao (SCZ), Huangdan (HD), Biyun (BY), Tieguanyin (TGY), Longjing (LJ), C. lanceoleosa (Cla) and C. chekiangoleosa (CCH). Synteny analysis revealed one-to-more and more-to-one collinear relationships of caleosin genes among Theaceae species. RESULTS Caleosins in Theaceae are categorized into either the H-family or the L-family, each exhibiting distinct motif structures and physicochemical properties. Expression analysis revealed an apparent flower-predominant expression pattern of caleosin genes in Theaceae species. In addition, most paralogous pairs displayed expression divergence. CONCLUSION This research enhanced our understanding of the lineage-specific evolution of caleosin genes in Theaceae, and is valuable for future functional analysis of this gene family in tea and oil-tea species.
Collapse
Affiliation(s)
- Zaibao Zhang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| | - Tao Xiong
- College of Life Science, Xinyang Normal University, Xinyang, Henan, China
| | - Tianyu Fan
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang, China
| |
Collapse
|
3
|
Kaur M, Sinha K, Eastmond PJ, Bhunia RK. Exploiting lipid droplet metabolic pathway to foster lipid production: oleosin in focus. PLANT CELL REPORTS 2024; 44:12. [PMID: 39724216 DOI: 10.1007/s00299-024-03390-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 11/23/2024] [Indexed: 12/28/2024]
Abstract
In the past decade, there has been an emerging gap between the demand and supply of vegetable oils globally for both edible and industrial use. Lipids are important biomolecules with enormous applications in the industrial sector and a major source of energy for animals and plants. Hence, to elevate the lipid content through metabolic engineering, new strategies have come up for triacylglycerol (TAG) accumulation and in raising the lipid or oil yield in crop plants. Increased levels of energy density can be achieved by single and multiple gene strategies that re-orient the carbon flux into TAG. Transcription factors and enzymes of the metabolic pathways have been targeted to foster lipid production. Oleosin, a structural protein of the lipid droplet plays a vital role in its stabilization and subsequently in its mobilization for seed germination and seedling growth. Maintenance of increased lipid content with optimal composition is a major target. Knowledge gained from genetic engineering strategies suggests that oleosin co-expression can result in a significant shift in carbon allocation to LDs. In this review, we present a detailed analysis of the recent advancements in metabolic engineering of plant lipids with emphasis on oleosin with its distinct patterns and functions in plants.
Collapse
Affiliation(s)
- Manmehar Kaur
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
| | - Kshitija Sinha
- Department of Biotechnology, Panjab University, Sector-25, Chandigarh, 160014, India
- National Agri-Food and Biomanufacturing Institute (NABI), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306, India
| | | | - Rupam Kumar Bhunia
- National Agri-Food and Biomanufacturing Institute (NABI), Sector 81, Knowledge City, S.A.S. Nagar, Mohali, Punjab, 140306, India.
| |
Collapse
|
4
|
Liao Y, Wang Z, Pei Y, Yan S, Chen T, Qi B, Li Y. Unveiling the applications of membrane proteins from oil bodies: leading the way in artificial oil body technology and other biotechnological advancements. Crit Rev Food Sci Nutr 2024; 65:2295-2322. [PMID: 38594966 DOI: 10.1080/10408398.2024.2331566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Oil bodies (OBs) function as organelles that store lipids in plant seeds. An oil body (OB) is encased by a membrane composed of proteins (e.g., oleosins, caleosins, and steroleosins) and a phospholipid monolayer. The distinctive protein-phospholipid membrane architecture of OBs imparts exceptional stability even in extreme environments, thereby sparking increasing interest in their structure and properties. However, a comprehensive understanding of the structure-activity relationships determining the stability and properties of oil bodies requires a more profound exploration of the associated membrane proteins, an aspect that remains relatively unexplored. In this review, we aim to summarize and discuss the structural attributes, biological functions, and properties of OB membrane proteins. From a commercial perspective, an in-depth understanding of the structural and functional properties of OBs is important for the expansion of their applications by producing artificial oil bodies (AOB). Besides exploring their structural intricacies, we describe various methods that are used for purifying and isolating OB membrane proteins. These insights may provide a foundational framework for the practical utilization of OB membrane proteins in diverse applications within the realm of AOB technology, including biological and probiotic delivery, protein purification, enzyme immobilization, astringency detection, and antibody production.
Collapse
Affiliation(s)
- Yi Liao
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhenxiao Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yukun Pei
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Shizhang Yan
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Tianyao Chen
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Baokun Qi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yang Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- Intelligent Equipment Research Center for the Development of Special Medicinal and Food Resources, Harbin Institute of Technology Chongqing Research Institute, Chongqing, China
| |
Collapse
|
5
|
Pasaribu B, Purba NP, Dewanti LP, Pasaribu D, Khan AMA, Harahap SA, Syamsuddin ML, Ihsan YN, Siregar SH, Faizal I, Herawati T, Irfan M, Simorangkir TPH, Kurniawan TA. Lipid Droplets in Endosymbiotic Symbiodiniaceae spp. Associated with Corals. PLANTS (BASEL, SWITZERLAND) 2024; 13:949. [PMID: 38611478 PMCID: PMC11013053 DOI: 10.3390/plants13070949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
Symbiodiniaceae species is a dinoflagellate that plays a crucial role in maintaining the symbiotic mutualism of reef-building corals in the ocean. Reef-building corals, as hosts, provide the nutrition and habitat to endosymbiotic Symbiodiniaceae species and Symbiodiniaceae species transfer the fixed carbon to the corals for growth. Environmental stress is one of the factors impacting the physiology and metabolism of the corals-dinoflagellate association. The environmental stress triggers the metabolic changes in Symbiodiniaceae species resulting in an increase in the production of survival organelles related to storage components such as lipid droplets (LD). LDs are found as unique organelles, mainly composed of triacylglycerols surrounded by phospholipids embedded with some proteins. To date, it has been reported that investigation of lipid droplets significantly present in animals and plants led to the understanding that lipid droplets play a key role in lipid storage and transport. The major challenge of investigating endosymbiotic Symbiodiniaceae species lies in overcoming the strategies in isolating lesser lipid droplets present in its intercellular cells. Here, we review the most recent highlights of LD research in endosymbiotic Symbiodiniaceae species particularly focusing on LD biogenesis, mechanism, and major lipid droplet proteins. Moreover, to comprehend potential novel ways of energy storage in the symbiotic interaction between endosymbiotic Symbiodiniaceae species and its host, we also emphasize recent emerging environmental factors such as temperature, ocean acidification, and nutrient impacting the accumulation of lipid droplets in endosymbiotic Symbiodiniaceae species.
Collapse
Affiliation(s)
- Buntora Pasaribu
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia; (N.P.P.); (S.A.H.); (M.L.S.); (Y.N.I.); (I.F.)
- Shallow Coastal and Aquatic Research Forensic (SCARF) Laboratory, Faculty of Fishery and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
| | - Noir Primadona Purba
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia; (N.P.P.); (S.A.H.); (M.L.S.); (Y.N.I.); (I.F.)
| | - Lantun Paradhita Dewanti
- Department of Fisheries, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia;
| | - Daniel Pasaribu
- Faculty of Law, Social, and Political Sciences, Universitas Terbuka, Tangerang 15437, Indonesia;
| | - Alexander Muhammad Akbar Khan
- Tropical Marine Fisheries Undergraduate Programme for Pangandaran Campus, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia;
| | - Syawaludin Alisyahbana Harahap
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia; (N.P.P.); (S.A.H.); (M.L.S.); (Y.N.I.); (I.F.)
| | - Mega Laksmini Syamsuddin
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia; (N.P.P.); (S.A.H.); (M.L.S.); (Y.N.I.); (I.F.)
| | - Yudi Nurul Ihsan
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia; (N.P.P.); (S.A.H.); (M.L.S.); (Y.N.I.); (I.F.)
| | - Sofyan Husein Siregar
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Riau, Pekanbaru 28291, Indonesia;
| | - Ibnu Faizal
- Department of Marine Science, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia; (N.P.P.); (S.A.H.); (M.L.S.); (Y.N.I.); (I.F.)
| | - Titin Herawati
- Department of Plant Biology and Pathology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA;
- Master Program of Marine Conservation, Faculty of Fisheries and Marine Science, Universitas Padjadjaran, Bandung 40600, Indonesia
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14850, USA;
| | | | | |
Collapse
|
6
|
Xu K, Zou W, Peng B, Guo C, Zou X. Lipid Droplets from Plants and Microalgae: Characteristics, Extractions, and Applications. BIOLOGY 2023; 12:biology12040594. [PMID: 37106794 PMCID: PMC10135979 DOI: 10.3390/biology12040594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Plant and algal LDs are gaining popularity as a promising non-chemical technology for the production of lipids and oils. In general, these organelles are composed of a neutral lipid core surrounded by a phospholipid monolayer and various surface-associated proteins. Many studies have shown that LDs are involved in numerous biological processes such as lipid trafficking and signaling, membrane remodeling, and intercellular organelle communications. To fully exploit the potential of LDs for scientific research and commercial applications, it is important to develop suitable extraction processes that preserve their properties and functions. However, research on LD extraction strategies is limited. This review first describes recent progress in understanding the characteristics of LDs, and then systematically introduces LD extraction strategies. Finally, the potential functions and applications of LDs in various fields are discussed. Overall, this review provides valuable insights into the properties and functions of LDs, as well as potential approaches for their extraction and utilization. It is hoped that these findings will inspire further research and innovation in the field of LD-based technology.
Collapse
Affiliation(s)
- Kaiwei Xu
- Institute of Systems Security and Control, College of Computer Science and Technology, Xi'an University of Science and Technology, Xi'an 710054, China
- Shaanxi Provincial Key Laboratory of Land Consolidation, Chang'an University, Xi'an 710074, China
| | - Wen Zou
- State Owned SIDA Machinery Manufacturing, Xianyang 712201, China
| | - Biao Peng
- Shaanxi Provincial Key Laboratory of Land Consolidation, Chang'an University, Xi'an 710074, China
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an 710021, China
| | - Chao Guo
- Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an 710021, China
| | - Xiaotong Zou
- Faculty of Printing, Packaging Engineering and Digital Media Technology, Xi'an University of Technology, Xi'an 710048, China
| |
Collapse
|
7
|
Chen K, Yin Y, Ding Y, Chao H, Li M. Characterization of Oil Body and Starch Granule Dynamics in Developing Seeds of Brassica napus. Int J Mol Sci 2023; 24:ijms24044201. [PMID: 36835614 PMCID: PMC9967339 DOI: 10.3390/ijms24044201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Brassica napus is the most important oilseed crop in the world, and the lipid was stored in the oil body (OB) in the form of triacylglycerol. At present, most of studies on the relationship between oil body morphology and seed oil content in B. napus was focused on mature seeds. In the present study, the OBs in different developing seeds of B. napus with relatively high oil content (HOC) of about 50% and low oil content (LOC) of about 39% were analyzed. It was revealed that the size of OBs was first increased and then decreased in both materials. And in late seed developmental stages, the average OB size of rapeseed with HOC was higher than that of LOC, while it was reversed in the early seed developmental stages. No significant difference was observed on starch granule (SG) size in HOC and LOC rapeseed. Further results indicated that the expression of genes that involved in malonyl-CoA metabolism, fatty acid carbon chain extension, lipid metabolism, and starch synthesis in the rapeseed with HOC was higher than that of rapeseed with LOC. These results give some new insight for understanding the dynamics of OBs and SGs in embryos of B. napus.
Collapse
Affiliation(s)
- Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Yiran Ding
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan 430074, China
- Correspondence:
| |
Collapse
|
8
|
Abstract
Plant lipids are stored as emulsified lipid droplets also called lipid bodies, spherosomes, oleosomes or oil bodies. Oil bodies are found in many seeds such as cereals, legumes, or in microorganisms such as microalgae, bacteria or yeast. Oil Bodies are unique subcellular organelles with sizes ranging from 0.2 to 2.5 μm and are made of a triacylglycerols hydrophobic core that is surrounded by a unique monolayer membrane made of phospholipids and anchored proteins. Due to their unique properties, in particular their resistance to coalescence and aggregation, oil bodies have an interest in food formulations as they can constitute natural emulsified systems that does not need the addition of external emulsifier. This manuscript focuses on how extraction processes and other factors impact the oxidative stability of isolated oil bodies. The potential role of oil bodies in the oxidative stability of intact foods is also discussed. In particular, we discuss how constitutive components of oil bodies membranes are associated in a strong network that may have an antioxidant effect either by physical phenomenon or by chemical reactivities. Moreover, the importance of the selected process to extract oil bodies is discussed in terms of oxidative stability of the recovered oil bodies.
Collapse
Affiliation(s)
- Eric A Decker
- Department of Food Science, University of Massachusetts, Chenoweth Laboratory, Amherst, Massachusetts, USA
| | - Pierre Villeneuve
- CIRAD, UMR Qualisud, Montpellier, France
- Qualisud, Univ. Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
| |
Collapse
|
9
|
Jin W, Yang X, Shang W, Wu Y, Guo C, Huang W, Deng Q, Peng D. Assembled structure and interfacial properties of oleosome-associated proteins from Camellia oleifera as natural surface-active agents. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
10
|
Genome-Wide Identification and Characterization of Oil-Body-Membrane Proteins in Polyploid Crop Brassica napus. PLANTS 2022; 11:plants11172241. [PMID: 36079626 PMCID: PMC9460193 DOI: 10.3390/plants11172241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022]
Abstract
Oil-body-membrane proteins (OBMPs) are essential structural molecules of oil bodies and also versatile metabolic enzymes involved in multiple cellular processes such as lipid metabolism, hormone signaling and stress responses. However, the global landscape for OBMP genes in oil crops is still lacking. Here, we performed genome-wide identification and characterization of OBMP genes in polyploid crop Brassica napus. B. napus contains up to 88 BnaOBMP genes including 53 oleosins, 20 caleosins and 15 steroleosins. Both whole-genome and tandem duplications have contributed to the expansion of the BnaOBMP gene family. These BnaOBMP genes have extensive sequence polymorphisms, and some harbor strong selection signatures. Various cis-acting regulatory elements involved in plant growth, phytohormones and abiotic and biotic stress responses are detected in their promoters. BnaOBMPs exhibit differential expression at various developmental stages from diverse tissues. Importantly, some BnaOBMP genes display spatiotemporal patterns of seed-specific expression, which could be orchestrated by transcriptional factors such as EEL, GATA3, HAT2, SMZ, DOF5.6 and APL. Altogether, our data lay the foundations for studying the regulatory mechanism of the seed oil storage process and provide candidate genes and alleles for the genetic improvement and breeding of rapeseed with high seed oil content.
Collapse
|
11
|
zaaboul F, Zhao Q, Xu Y, Liu Y. Soybean oil bodies: A review on composition, properties, food applications, and future research aspects. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107296] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Chaparro-Encinas LA, Parra-Cota FI, Cruz-Mendívil A, Santoyo G, Peña-Cabriales JJ, Castro-Espinoza L, de Los Santos-Villalobos S. Transcriptional regulation of cell growth and reprogramming of systemic response in wheat (Triticum turgidum subsp. durum) seedlings by Bacillus paralicheniformis TRQ65. PLANTA 2022; 255:56. [PMID: 35106645 DOI: 10.1007/s00425-022-03837-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/23/2022] [Indexed: 06/14/2023]
Abstract
Bacillus paralicheniformis TRQ65 reprograms the gene expression patterns associated with systemic response to potentially facilitate its colonization and stimulate cell growth and plant biomass. Plant growth-promoting rhizobacteria (PGPR) carry out numerous mechanisms that enhance growth in seedlings, such as nutrient solubilization, phytohormone production, biocontrol activity, and regulation of induced systemic resistance (ISR) and acquired systemic resistance (ASR). Bacillus paralicheniformis TRQ65 is a biological and plant growth-promoting bacterium isolated from wheat (Triticum turgidum subsp. durum) rhizosphere. In this study, we performed a transcriptomic analysis of wheat seedlings inoculated with the native rhizobacterium Bacillus paralicheniformis TRQ65 (1 × 107 cells∙g -1 of soil) at early development stages (GS15). A morphometrical assay was carried out to confirm growth promotion and after the cultivation period, TRQ65 was re-isolated to define inoculum persistence. Inoculated seedlings showed a significant (P < 0.05) increase in shoot length (93.48%) and dry weight in both shoot (117.02%) and root (48.33%) tissues; also, the strain persisted in the soil at 1.4 × 107 UFC∙g-1 of soil. A total of 228 differentially expressed genes (DEGs) (FDR < 0.05 and |log2 fold change|≥ 1.3) were observed in response to TRQ65 inoculation, of which 185 were down-regulated and 43 were up-regulated. The transcriptional patterns were characterized by the regulation of multidimensional cell growth (ROS, Ca+2 channel, and NADPH oxidases activity), suppression of defense mechanism (PR proteins, PDFs, ROS, transcription factors), induction of central stimuli receptors (RALF, WAK, MAPK), carbohydrate metabolism (invertase activity) and phytohormone-related transport (ABCG transporter and AAAP). These results suggest that B. paralicheniformis TRQ65 is a promising bioinoculant agent for increasing wheat growth and development by reprogramming ISR and ASR simultaneously, suppressing defense mechanisms and inducing central stimuli response.
Collapse
Affiliation(s)
- Luis A Chaparro-Encinas
- Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P. 85000, Col. Centro, Ciudad Obregón, Sonora, México
- Universidad Autónoma Agraria Antonio Narro (UAAAN) Unidad Laguna, Periférico Raúl López Sánchez, Valle Verde, 27054, Torreón, Coahuila, México
| | - Fannie I Parra-Cota
- Campo Experimental Norman E. Borlaug-CIRNO. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Norman E. Borlaug Km. 12, CP 85000, Valle del Yaqui, Ciudad Obregón, Sonora, México
| | - Abraham Cruz-Mendívil
- Cátedras CONACYT, Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para el Desarrollo Integral Regional (CIIDIR) Unidad Sinaloa, Guasave, Sinaloa, México
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Michoacán, México
| | - Juan J Peña-Cabriales
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional Campus Guanajuato, Irapuato Guanajuato, México
| | - Luciano Castro-Espinoza
- Instituto Tecnológico de Sonora, 5 de febrero 818 Sur, C.P. 85000, Col. Centro, Ciudad Obregón, Sonora, México
| | | |
Collapse
|
13
|
Effects of pH on the Composition and Physical Stability of Peanut Oil Bodies from Aqueous Enzymatic Extraction. J CHEM-NY 2021. [DOI: 10.1155/2021/2441385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Peanut oil body (POB), which is rich in unsaturated fatty acids and bioactive substances, is widely used in cosmetics, food, and medicine. Compared with synthetic emulsifiers, peanut oil bodies have health advantages as natural emulsions. The physicochemical properties of oil bodies affect their food processing applications. To improve peanut oil body yield, cell-wall-breaking enzymes were screened for aqueous enzymatic extraction. The optimum conditions were as follows: enzymatic hydrolysis time, 2 h; material-to-liquid ratio, 1 : 5 (
); enzyme concentration, 2% (
); and temperature, 50°C. Oil body stability was closely related to pH. With increasing pH, the average particle size and zeta-potential of the oil bodies increased, indicating aggregation, as confirmed by microstructure analysis. At pH 11, exogenous proteins at the oil body interface were eluted, leaving endogenous proteins, which led to a decreased interfacial protein content and oil body aggregation. Therefore, oil body stability decreased under alkaline pH conditions, but no demulsification occurred.
Collapse
|
14
|
Abdullah, Weiss J, Zhang H. Recent advances in the composition, extraction and food applications of plant-derived oleosomes. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.10.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Chmielewska A, Kozłowska M, Rachwał D, Wnukowski P, Amarowicz R, Nebesny E, Rosicka-Kaczmarek J. Canola/rapeseed protein - nutritional value, functionality and food application: a review. Crit Rev Food Sci Nutr 2020; 61:3836-3856. [PMID: 32907356 DOI: 10.1080/10408398.2020.1809342] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Plant-based diet and plant proteins specifically are predestined to meet nutritional requirements of growing population of humans and simultaneously reduce negative effects of food production on the environment. While searching for new sources of proteins, special emphasis should be placed on oilseeds of Brassica family comprising varieties of rapeseed and canola as they contain nutritionally valuable proteins, which have potential to be used in food, but are now rarely or not used as food components. The purpose of the present work is to provide a comprehensive review of main canola/rapeseed proteins: cruciferin and napin, with the focus on their nutritional and functional features, putting special emphasis on their possible applications in food. Technological challenges to obtain rapeseed protein products that are free from anti-nutritional factors are also addressed. As molecular structure of cruciferin and napin differs, they exhibit distinct features, such as solubility, emulsifying, foaming or gelling properties. Potential allergenic effect of 2S napin has to be taken under consideration. Overall, rapeseed proteins demonstrate beneficial nutritional value and functional properties and are deemed to play important roles both in food, as well as, non-food and non-feed applications.
Collapse
Affiliation(s)
- Anna Chmielewska
- NapiFeryn BioTech Ltd, Lodz, Poland.,Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | | | | | | | - Ryszard Amarowicz
- NapiFeryn BioTech Ltd, Lodz, Poland.,Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Olsztyn, Poland
| | - Ewa Nebesny
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| | - Justyna Rosicka-Kaczmarek
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Lodz, Poland
| |
Collapse
|
16
|
Pasaribu B, Fu JH, Jiang PL. Identification and characterization of caleosin in Cycas revoluta pollen. PLANT SIGNALING & BEHAVIOR 2020; 15:1779486. [PMID: 32552503 PMCID: PMC8570736 DOI: 10.1080/15592324.2020.1779486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Oil bodies are essential energy storage organelles that are generally present in the seeds of plants. Caleosin protein has been identified in the seed oil bodies of Cycas revolutaseed. In this study, mature Cycas revoluta pollen grains were collected from cycad elliptical cones. However, the isolation and identification of oil bodies protein from mature Cycas revoluta grains have never been experimentally determined. Ultrastructural studies have shown that the oil bodies were present in pollen Cycas revoluta grains. Lipid analysis showed that oil bodies are predominantly composed of triacylglycerol. Complete cDNA fragments encoding the caleosin were obtained by PCR cloning. Phylogenetic tree analyzes showed that cycad pollen caleosin is closely related to the caleosin of Cycas revoluta seeds. Fresh Cycas revoluta pollen grains were allowed to germinate for 48 h in a germination medium containing 2% sucrose and 0.01% H3BO3. Pollen germination were recorded periodically from day one to day 10 and the results showed that the Cycas revoluta pollen elongate the tube and increasing of triacylglycerol(TAG) after 4 days.
Collapse
Affiliation(s)
- Buntora Pasaribu
- Department of Plant Biology & Pathology, Rutgers University, New Brunswick, USA
| | - Jou-Hsuan Fu
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
| | - Pei-Luen Jiang
- Department of Biotechnology, National Formosa University, Yunlin, Taiwan
- CONTACT Pei-Luen Jiang Department of Biotechnology, National Formosa University, Yunlin, Taiwan; Buntora Pasaribu Department of Plant Biology & Pathology, Rutgers University, 59 Dudley Road, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
17
|
Shao Q, Liu X, Su T, Ma C, Wang P. New Insights Into the Role of Seed Oil Body Proteins in Metabolism and Plant Development. FRONTIERS IN PLANT SCIENCE 2019; 10:1568. [PMID: 31921234 PMCID: PMC6914826 DOI: 10.3389/fpls.2019.01568] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/08/2019] [Indexed: 05/10/2023]
Abstract
Oil bodies (OBs) are ubiquitous dynamic organelles found in plant seeds. They have attracted increasing attention recently because of their important roles in plant physiology. First, the neutral lipids stored within these organelles serve as an initial, essential source of energy and carbon for seed germination and post-germinative growth of the seedlings. Secondly, they are involved in many other cellular processes such as stress responses, lipid metabolism, organ development, and hormone signaling. The biological functions of seed OBs are dependent on structural proteins, principally oleosins, caleosins, and steroleosins, which are embedded in the OB phospholipid monolayer. Oleosin and caleosin proteins are specific to plants and mainly act as OB structural proteins and are important for the biogenesis, stability, and dynamics of the organelle; whereas steroleosin proteins are also present in mammals and play an important role in steroid hormone metabolism and signaling. Significant progress using new genetic, biochemical, and imaging technologies has uncovered the roles of these proteins. Here, we review recent work on the structural or metabolic roles of these proteins in OB biogenesis, stabilization and degradation, lipid homeostasis and mobilization, hormone signal transduction, stress defenses, and various aspects of plant growth and development.
Collapse
Affiliation(s)
| | | | | | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Pingping Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
18
|
Zhou LZ, Chen FS, Hao LH, Du Y, Liu C. Peanut Oil Body Composition and Stability. J Food Sci 2019; 84:2812-2819. [PMID: 31546282 DOI: 10.1111/1750-3841.14801] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/27/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022]
Abstract
This study was aimed to assess the effect of membrane structure on the stability of peanut oil bodies extracted by enzyme-assisted extraction. The influence of pH, NaCl concentration, and temperature on the physicochemical properties of peanut oil bodies was characterized using ζ-potential and particle size. The results indicated that the peanut oil bodies had strong stability (ζ-potential, >20 mV) at pH values away from the isoelectric point (pH 4.8), at a low salt concentration (NaCl concentration, <10 mM), and in a certain temperature range (35 to 55 °C). The stable structure of the oil body was closely related to its structure. Phospholipids, along with membrane proteins, were major components of the oil body membrane. Therefore, the phospholipid composition and content were measured and the types of membrane proteins of the oil bodies were identified. The results showed that phosphatidylcholine and phosphatidylserine were major components of the oil body phospholipids. Two-dimensional electrophoresis showed that the oil bodies contained both intrinsic proteins and extrinsic proteins, which might play an important role in the stability of oil bodies during enzyme-assisted extraction processing.
Collapse
Affiliation(s)
- Long-Zheng Zhou
- College of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, 450001, China
| | - Fu-Sheng Chen
- College of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, 450001, China
| | - Li-Hua Hao
- College of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, 450001, China.,Henan Institute of Product Quality Supervision and Inspection
| | - Yan Du
- College of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, 450001, China
| | - Chen Liu
- College of Food Science and Technology, Henan Univ. of Technology, Zhengzhou, 450001, China
| |
Collapse
|
19
|
Pasaribu B, Chen CS, Liao YK, Jiang PL, Tzen JTC. Identification of caleosin and oleosin in oil bodies of pine pollen. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 111:20-29. [PMID: 27889638 DOI: 10.1016/j.plaphy.2016.11.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 05/25/2023]
Abstract
Unique proteins including steroleosin, caleosin, oleosin-L, and oleosin-G have been identified in seed oil bodies of pine (Pinus massoniana). In this study, mature pollen grains with wing-like bladders were collected from pine (Pinus elliottii). Ultrastructural studies showed that oil bodies were present in pollen grains, but not the attached bladders, and the presence of oil bodies was further confirmed by fluorescent staining with BODIPY 493/503. Stable oil bodies were successfully purified from pine pollen grains, and analyzed to be mainly composed of triacylglycerols. Putative oleosin and caleosin in pine pollen oil bodies were detected by immunoassaying with antibodies against sesame seed caleosin and lily pollen oleosin. Complete cDNA fragments encoding these two pollen oil-body proteins were obtained by PCR cloning. Sequence alignment showed that pine pollen caleosin (27 kDa) was highly homologous to pine seed caleosin (28 kDa) except for the lack of an appendix of eight residues at the C-terminus in accord with the 1 kDa difference in their molecular masses. Pine pollen oleosin (15 kDa) was highly homologous to pine seed oleosin-G (14 kDa) except for an insertion of eight residues at the N-terminus in accord with the 1 kDa difference in their molecular masses.
Collapse
Affiliation(s)
- Buntora Pasaribu
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan
| | - Chii-Shiarng Chen
- Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan; Institute of Marine Biotechnology, National Dong-Hwa University, Pingtung 944, Taiwan
| | - Yue Ken Liao
- Department of Forestry and Natural Resources, National Chiayi University, Chiayi 600, Taiwan
| | - Pei-Luen Jiang
- Taiwan Coral Research Center, National Museum of Marine Biology and Aquarium, Pingtung 944, Taiwan; Institute of Marine Biotechnology, National Dong-Hwa University, Pingtung 944, Taiwan.
| | - Jason T C Tzen
- Graduate Institute of Biotechnology, National Chung-Hsing University, Taichung 402, Taiwan.
| |
Collapse
|