1
|
Hura T, Hura K, Ostrowska A, Gadzinowska J, Urban K, Pawłowska B. The role of invasive plant species in drought resilience in agriculture: the case of sweet briar (Rosa rubiginosa L.). JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2799-2810. [PMID: 36124695 DOI: 10.1093/jxb/erac377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/05/2022] [Indexed: 06/06/2023]
Abstract
Sweet briar (Rosa rubiginosa) belongs to the group of wild roses. Under natural conditions it grows throughout Europe, and was introduced also into the southern hemisphere, where it has efficiently adapted to dry lands. This review focuses on the high adaptation potential of sweet briar to soil drought in the context of global climatic changes, especially considering steppe formation and desertification of agricultural, orchard, and horticultural areas. We provide a comprehensive overview of current knowledge on sweet briar traits associated with drought tolerance and particularly water use efficiency, sugar accumulation, accumulation of CO2 in intercellular spaces, stomatal conductance, gibberellin level, effective electron transport between photosystem II and photosystem I, and protein content. We discuss the genetics and potential applications in plant breeding and suggest future directions of study concerning invasive populations of R. rubiginosa. Finally, we point out that sweet briar can provide new genes for breeding in the context of depleting gene pools of the crop plants.
Collapse
Affiliation(s)
- Tomasz Hura
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Niezapominajek 21, 30-239 Kraków, Poland
| | - Katarzyna Hura
- Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and Economics, Agricultural University, Podłużna 3, 30-239 Kraków, Poland
| | - Agnieszka Ostrowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Niezapominajek 21, 30-239 Kraków, Poland
| | - Joanna Gadzinowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Niezapominajek 21, 30-239 Kraków, Poland
| | - Karolina Urban
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Niezapominajek 21, 30-239 Kraków, Poland
| | - Bożena Pawłowska
- Department of Ornamental Plants and Garden Arts, Agricultural University, 29 Listopada 54 Avenue, 31-425 Kraków, Poland
| |
Collapse
|
2
|
Seeds of Stevia rebaudiana Bertoni as a Source of Plant Growth-Promoting Endophytic Bacteria with the Potential to Synthesize Rebaudioside A. Int J Mol Sci 2023; 24:ijms24032174. [PMID: 36768498 PMCID: PMC9917351 DOI: 10.3390/ijms24032174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
In this study, a new strain of Pantoea vagans, SRS89, was isolated from surface-sterilized stevia seeds. The isolate was evaluated using morphological, molecular, and biochemical methods. The bacterium was 1.5 μm long, yellowish in color, and classified as Gram-negative. Whole genome sequencing of our strain revealed the presence of a 4,610,019 bp chromosome, and genome annotation resulted in the detection of 4283 genes encoding 4204 putative coding sequences. Phylogenic analysis classified the genome of our strain close to the MP7 and LMG 24199 strains of P. vagans. Functional analysis showed that the highest number of genes within the analyzed bacterium genome were involved in transcription, amino acid transport and metabolism, and carbohydrate transport and metabolism. We also identified genes for enzymes involved in the biosynthesis of carotenoids and terpenoids. Furthermore, we showed the presence of growth regulators, with the highest amount noted for gibberellic acid A3, indole-3-acetic acid, and benzoic acid. However, the most promising property of this strain is its ability to synthesize rebaudioside A; the estimated amount quantified using reversed-phase (RP)-HPLC was 4.39 mg/g of the dry weight of the bacteria culture. The isolated endophytic bacterium may be an interesting new approach to the production of this valuable metabolite.
Collapse
|
3
|
Hura T, Hura K, Dziurka K, Ostrowska A, Urban K. Cell dehydration of intergeneric hybrid induces subgenome-related specific responses. PHYSIOLOGIA PLANTARUM 2023; 175:e13855. [PMID: 36648214 PMCID: PMC10108068 DOI: 10.1111/ppl.13855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/10/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The aim was to identify subgenome-related specific responses in two types of triticale, that is, of the wheat-dominated genome (WDG) and rye-dominated genome (RDG), to water stress induced in the early phase (tillering) of plant growth. Higher activity of the primary metabolism of carbohydrates is a feature of the WDG type, while the dominance of the rye genome is associated with a higher activity of the secondary metabolism of phenolic compounds in the RDG type. The study analyzed carbohydrates and key enzymes of their synthesis, free phenolic compounds and carbohydrate-related components of the cell wall, monolignols, and shikimic acid (ShA), which is a key link between the primary and secondary metabolism of phenolic compounds. Under water stress, dominance of the wheat genome in the WDG type was manifested by an increased accumulation of the large subunit of Rubisco and sucrose phosphate synthase and a higher content of raffinose and stachyose compared with the RDG type. In dehydrated RDG plants, higher activity of L-phenylalanine ammonia lyase (PAL) and L-tyrosine ammonia lyase (TAL), as well as a higher level of ShA, free and cell wall-bound p-hydroxybenzoic acid, free homovanillic acid, free sinapic acid, and cell wall-bound syringic acid can be considered biochemical indicators of the dominance of the rye genome.
Collapse
Affiliation(s)
- Tomasz Hura
- Polish Academy of SciencesThe Franciszek Górski Institute of Plant PhysiologyKrakówPoland
| | - Katarzyna Hura
- Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and EconomicsAgricultural UniversityKrakówPoland
| | - Kinga Dziurka
- Polish Academy of SciencesThe Franciszek Górski Institute of Plant PhysiologyKrakówPoland
| | - Agnieszka Ostrowska
- Polish Academy of SciencesThe Franciszek Górski Institute of Plant PhysiologyKrakówPoland
| | - Karolina Urban
- Polish Academy of SciencesThe Franciszek Górski Institute of Plant PhysiologyKrakówPoland
| |
Collapse
|
4
|
Mohi Ud Din A, Mao HT, Khan A, Raza MA, Ahmed M, Yuan M, Zhang ZW, Yuan S, Zhang HY, Liu ZH, Su YQ, Chen YE. Photosystems and antioxidative system of rye, wheat and triticale under Pb stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114356. [PMID: 36508799 DOI: 10.1016/j.ecoenv.2022.114356] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Lead (Pb2+) pollution in the soil sub-ecosystem has been a continuously growing problem due to economic development and ever-increasing anthropogenic activities across the world. In this study, the photosynthetic performance and antioxidant capacity of Triticeae cereals (rye, wheat and triticale) were compared to assess the activities of antioxidants, the degree of oxidative damage, photochemical efficiency and the levels of photosynthetic proteins under Pb stress (0.5 mM, 1 mM and 2 mM Pb (NO3)2). Compared with triticale, Pb treatments imposed severe oxidative damage in rye and wheat. In addition, the highest activity of major antioxidant enzymes (SOD, POD, CAT, and GPX) was also found to be elevated. Triticale accumulated the highest Pb contents in roots. The concentration of mineral ions (Mg, Ca, and K) was also high in its leaves, compared with rye and wheat. Consistently, triticale showed higher photosynthetic activity under Pb stress. Immunoblotting of proteins revealed that rye and wheat have significantly lower levels of D1 (photosystem II subunit A, PsbA) and D2 (photosystem II subunit D, PsbD) proteins, while no obvious decrease was noticed in triticale. The amount of light-harvesting complex II b6 (Lhcb6; CP24) and light-harvesting complex II b5 (Lhcb5; CP26) was significantly increased in rye and wheat. However, the increase in PsbS (photosystem II subunit S) protein only occurred in wheat and triticale exposed to Pb treatment. Taken together, these findings demonstrate that triticale shows higher antioxidant capacity and photosynthetic efficiency than wheat and rye under Pb stress, suggesting that triticale has high tolerance to Pb and could be used as a heavy metal-tolerant plant.
Collapse
Affiliation(s)
- Atta Mohi Ud Din
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China; Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; National Research Center of Intercropping, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hao-Tian Mao
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Ahsin Khan
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Muhammad Ali Raza
- National Research Center of Intercropping, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Mukhtar Ahmed
- Department of Agronomy, PMAS Arid Agricultural University, Rawalpindi 46300, Pakistan
| | - Ming Yuan
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Zhong-Wei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Huai-Yu Zhang
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Zheng-Hui Liu
- Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan-Qiu Su
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Yang-Er Chen
- College of Life Science, Sichuan Agricultural University, 625014 Ya'an, China.
| |
Collapse
|
5
|
Chernook AG, Bazhenov MS, Kroupin PY, Ermolaev AS, Kroupina AY, Vukovic M, Avdeev SM, Karlov GI, Divashuk MG. Compensatory Effect of the ScGrf3-2R Gene in Semi-Dwarf Spring Triticale (x Triticosecale Wittmack). PLANTS (BASEL, SWITZERLAND) 2022; 11:3032. [PMID: 36432759 PMCID: PMC9695017 DOI: 10.3390/plants11223032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/03/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The dwarfness in many triticale cultivars is provided by the dominant Ddw1 (Dominant dwarf 1) allele found in rye. However, along with conferring semi-dwarf phenotype to improve resistance to lodging, this gene also reduces grain size and weight and delays heading and flowering. Grf (Growth-regulating factors) genes are plant-specific transcription factors that regulate plant growth, including stem growth, in terms of length and thickness, and leaf and fruit size. In this work, we partially sequenced the rye gene ScGrf3 on chromosome 2R homologous to the wheat Grf3 gene, and found multiple polymorphisms in intron 3 and exon 4 complying with two alternative alleles (haplotypes ScGrf3-2Ra and ScGrf3-2Rb). For the identification of these, we developed a codominant PCR marker. Using a new marker, we studied the effect of ScGrf3-2R alleles in combination with the Ddw1 dwarf gene on economically valuable traits in F4 and F5 recombinant lines of spring triticale from the hybrid combination Valentin 90 x Dublet, grown in the Non-Chernozem zone for 2 years. Allele ScGrf3-2Ra was associated with greater thousand-grain weight, higher spike productivity, and earlier heading and flowering, which makes ScGrf3-2R a perspective compensator for negative effects of Ddw1 on these traits and increases prospects for its involvement in breeding semi-dwarf cultivars of triticale.
Collapse
Affiliation(s)
| | - Mikhail S. Bazhenov
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Pavel Yu. Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Aleksey S. Ermolaev
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | | | - Milena Vukovic
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Sergey M. Avdeev
- Moscow Timiryazev Agricultural Academy, Russian State Agrarian University, 127434 Moscow, Russia
| | - Gennady I. Karlov
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| | - Mikhail G. Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, 127550 Moscow, Russia
| |
Collapse
|
6
|
Ptak A, Morańska E, Warchoł M, Gurgul A, Skrzypek E, Dziurka M, Laurain-Mattar D, Spina R, Jaglarz A, Simlat M. Endophytic bacteria from in vitro culture of Leucojum aestivum L. a new source of galanthamine and elicitor of alkaloid biosynthesis. Sci Rep 2022; 12:13700. [PMID: 35953692 PMCID: PMC9371375 DOI: 10.1038/s41598-022-17992-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 08/03/2022] [Indexed: 11/28/2022] Open
Abstract
Leucojum aestivum is known for its ability to biosynthesize alkaloids with therapeutic properties, among which galanthamine used for the treatment of Alzheimer's disease. New sources of this alkaloid are still being explored. In this study, a novel strain PLV of endophytic bacterium Paenibacillus lautus was isolated from in vitro L. aestivum plants. We report the whole genome sequence of that strain and its capacity to produce alkaloids and growth regulators. The effect of elicitation with autoclaved bacteria on the production of alkaloids was examined. Ten alkaloids were identified in bacteria extracts: galanthamine, lycorine, ismine, lycoramine, haemanthamine, tazettine, galanthine, homolycorine, 1,2-dihydrochlidanthine, and hippeastrine. The mean contents of galanthamine and lycorine were 37.51 µg/g of dry weight (DW) and 129.93 µg/g of DW, respectively. Moreover, isolated P. lautus strain synthesized: indole-3-acetic acid, t-zeatin, c-zeatin, kinetin, gibberellin A1, abscisic acid, salicylic acid, benzoic acid. In vitro elicitation of cultures with P. lautus increased dry biomass, stimulated galanthamine and lycorine production, contributed to 8,9-desmethylenebis (oxy)-7,9 dimethoxy-crinan biosynthesis, change pigments content, and antioxidant enzymes activities. Our findings for the first time point out that galanthamine can be synthesized by an microorganism. Moreover isolated strain can be used as a new elictor of Amaryllidaceae alkaloids biosynthesis.
Collapse
Affiliation(s)
- Agata Ptak
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Łobzowska 24, 31-140, Krakow, Poland.
| | - Emilia Morańska
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Łobzowska 24, 31-140, Krakow, Poland
| | - Marzena Warchoł
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland
| | - Artur Gurgul
- Centre for Experimental and Innovative Medicine, University of Agriculture in Krakow, Rędzina 1C, 30-248, Krakow, Poland
| | - Edyta Skrzypek
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Krakow, Poland
| | | | - Rosella Spina
- INRAE, LAE, Université de Lorraine, 54000, Nancy, France
| | - Anita Jaglarz
- Moredun Research Institute, Pentland Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | - Magdalena Simlat
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Krakow, Łobzowska 24, 31-140, Krakow, Poland
| |
Collapse
|
7
|
Divashuk M, Chernook A, Kroupina A, Vukovic M, Karlov G, Ermolaev A, Shirnin S, Avdeev S, Igonin V, Pylnev V, Kroupin P. TaGRF3-2A Improves Some Agronomically Valuable Traits in Semi-Dwarf Spring Triticale. PLANTS (BASEL, SWITZERLAND) 2021; 10:2012. [PMID: 34685820 PMCID: PMC8537337 DOI: 10.3390/plants10102012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/16/2022]
Abstract
The breeding improvement of triticale is tightly associated with the introgression of dwarfing genes, in particular, gibberellin (GA)-insensitive Ddw1 from rye. Despite the increase in harvest index and resistance to lodging, this gene adversely affects grain weight and size. Growth regulation factor (GRF) genes are plant-specific transcription factors that play an important role in plant growth, including GA-induced stem elongation. This study presents the results of a two-year field experiment to assess the effect of alleles of the TaGRF3-2A gene in interaction with DDW1 on economically valuable traits of spring triticale plants grown in the Non-Chernozem zone. Our results show that, depending on the allelic state, the TaGRF3-2A gene in semi-dwarf spring triticale plants influences the thousand grain weight and the grain weight of the main spike in spring triticale, which makes it possible to use it to compensate for the negative effects of the dwarfing allele Ddw1. The identified allelic variants of the TaGRF3-2A gene can be included in marker-assisted breeding for triticale to improve traits.
Collapse
Affiliation(s)
- Mikhail Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street, 49, 127550 Moscow, Russia; (S.A.); (V.P.)
| | - Anastasiya Chernook
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| | - Aleksandra Kroupina
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| | - Milena Vukovic
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| | - Gennady Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| | - Aleksey Ermolaev
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| | - Sergey Shirnin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| | - Sergey Avdeev
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street, 49, 127550 Moscow, Russia; (S.A.); (V.P.)
| | - Vladimir Igonin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street, 49, 127550 Moscow, Russia; (S.A.); (V.P.)
| | - Vladimir Pylnev
- Institute of Agrobiotechnology, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, Timiryazevskaya Street, 49, 127550 Moscow, Russia; (S.A.); (V.P.)
| | - Pavel Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550 Moscow, Russia; (A.C.); (A.K.); (M.V.); (G.K.); (A.E.); (S.S.); (V.I.); (P.K.)
| |
Collapse
|
8
|
Mikuła A, Tomaszewicz W, Dziurka M, Kaźmierczak A, Grzyb M, Sobczak M, Zdańkowski P, Rybczyński J. The Origin of the Cyathea delgadii Sternb. Somatic Embryos Is Determined by the Developmental State of Donor Tissue and Mutual Balance of Selected Metabolites. Cells 2021; 10:cells10061388. [PMID: 34199921 PMCID: PMC8229038 DOI: 10.3390/cells10061388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022] Open
Abstract
Somatic embryogenesis is the formation of a plant embryo from a cell other than the product of gametic fusion. The need to recognize the determinants of somatic cell fate has prompted investigations on how endogenous factors of donor tissues can determine the pattern of somatic embryo origin. The undertaking of this study was enabled by the newly developed experimental system of somatic embryogenesis of the tree fern Cyathea delgadii Sternb., in which the embryos are produced in hormone-free medium. The contents of 89 endogenous compounds (such as sugars, auxins, cytokinins, gibberellins, stress-related hormones, phenolic acids, polyamines, and amino acids) and cytomorphological features were compared between two types of explants giving rise to somatic embryos of unicellular or multicellular origin. We found that a large content of maltose, 1-kestose, abscisic acid, biologically active gibberellins, and phenolic acids was characteristic for single-cell somatic embryo formation pattern. In contrast, high levels of starch, callose, kinetin riboside, arginine, and ethylene promoted their multicellular origin. Networks for visualization of the relations between studied compounds were constructed based on the data obtained from analyses of a Pearson correlation coefficient heatmap. Our findings present for the first time detailed features of donor tissue that can play an important role in the somatic-to-embryogenic transition and the somatic embryo origin.
Collapse
Affiliation(s)
- Anna Mikuła
- Center for Biological Diversity Conservation in Powsin—Polish Academy of Sciences Botanical Garden, Prawdziwka 2, 02-973 Warsaw, Poland; (W.T.); (M.G.); (J.R.)
- Correspondence:
| | - Wojciech Tomaszewicz
- Center for Biological Diversity Conservation in Powsin—Polish Academy of Sciences Botanical Garden, Prawdziwka 2, 02-973 Warsaw, Poland; (W.T.); (M.G.); (J.R.)
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland;
| | - Andrzej Kaźmierczak
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Łódź, Pomorska 141/143, 90-236 Łódź, Poland;
| | - Małgorzata Grzyb
- Center for Biological Diversity Conservation in Powsin—Polish Academy of Sciences Botanical Garden, Prawdziwka 2, 02-973 Warsaw, Poland; (W.T.); (M.G.); (J.R.)
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787 Warsaw, Poland;
| | - Piotr Zdańkowski
- Institute of Micromechanics and Photonics, Warsaw University of Technology, Św. Andrzeja Boboli 8, 02-525 Warsaw, Poland;
| | - Jan Rybczyński
- Center for Biological Diversity Conservation in Powsin—Polish Academy of Sciences Botanical Garden, Prawdziwka 2, 02-973 Warsaw, Poland; (W.T.); (M.G.); (J.R.)
| |
Collapse
|
9
|
Muszyńska E, Tokarz KM, Dziurka M, Labudda M, Dziurka K, Tokarz B. Photosynthetic apparatus efficiency, phenolic acid profiling and pattern of chosen phytohormones in pseudometallophyte Alyssum montanum. Sci Rep 2021; 11:4135. [PMID: 33603085 PMCID: PMC7892566 DOI: 10.1038/s41598-021-83695-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 02/05/2021] [Indexed: 12/27/2022] Open
Abstract
The present study investigated the response of non-metallicolous (NM) and metallicolous (M) Alyssum montanum shoots cultured in vitro on a medium supplemented simultaneously with heavy metals (HMs) to identify mechanisms involved in alleviating metal-induced damage. Plant status in respect to photosynthetic apparatus efficiency was determined and linked with changes in biochemical composition of shoots, namely phenolic acids' and stress-related phytohormones. Results showed the considerable inter-ecotype differences in (1) the photosynthetic pigments' amount, (2) the functioning of membrane electron transporters as well as (3) the linear and alternative electron transport pathways, whose lower values were reported in NM than in M HM-treated culture. Photosynthetic apparatus protection in M specimens was assured by the activation of cinnamic acid synthesis (by phenylalanine ammonia lyase) and its further transformations to benzoic acid derivatives with high ability to counteract oxidative stress, that was accompanied by the overexpression of jasmonic acid stimulating antioxidant machinery. In turn, detrimental HM effects on NM shoots could result from the diminution of most phenolics' accumulation, and only the content of coumarate (produced by bifunctional phenylalanine/tyrosine ammonia lyase) and rosmarinic acid increased. All these together with an enhanced concentration of abscisic acid might suggest that NM strategy to cope with HMs is based mostly on a restriction of metal movement with transpiration flow and their limited distribution in leaves. Summarizing, our findings for the first time point out the physiological and metabolic adaptation of pseudometallophyte A. montanum to adverse conditions.
Collapse
Affiliation(s)
- Ewa Muszyńska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland.
| | - Krzysztof M Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Michał Dziurka
- Department of Developmental Biology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Mateusz Labudda
- Department of Biochemistry and Microbiology, Institute of Biology, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland
| | - Kinga Dziurka
- Department of Developmental Biology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Barbara Tokarz
- Department of Botany, Physiology and Plant Protection, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29 Listopada 54, 31-425, Kraków, Poland
| |
Collapse
|
10
|
Hornyák M, Słomka A, Sychta K, Dziurka M, Kopeć P, Pastuszak J, Szczerba A, Płażek A. Reducing Flower Competition for Assimilates by Half Results in Higher Yield of Fagopyrum esculentum. Int J Mol Sci 2020; 21:ijms21238953. [PMID: 33255746 PMCID: PMC7728371 DOI: 10.3390/ijms21238953] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 11/16/2022] Open
Abstract
Despite abundant flowering throughout the season, common buckwheat develops a very low number of kernels probably due to competition for assimilates. We hypothesized that plants with a shorter flowering period may give a higher seed yield. To verify the hypothesis, we studied nutrient stress in vitro and in planta and analyzed different embryological and yield parameters, including hormone profile in the flowers. In vitro cultivated flowers on media with strongly reduced nutrient content demonstrated a drastic increase in degenerated embryo sacs. In in planta experiments, where 50% or 75% of flowers or all lateral ramifications were removed, the reduction of the flower competition by half turned out to be the most promising treatment for improving yield. This treatment increased the frequency of properly developed embryo sacs, the average number of mature seeds per plant, and their mass. Strong seed compensation under 50% inflorescence removal could result from increased production of salicylic and jasmonic acid that both favor more effective pollinator attraction. Plants in single-shoot cultivation finished their vegetation earlier, and they demonstrated greater single seed mass per plant than in control. This result suggests that plants of common buckwheat with shorter blooming period could deliver higher seed yield.
Collapse
Affiliation(s)
- Marta Hornyák
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland; (M.H.); (J.P.); (A.S.); (A.P.)
| | - Aneta Słomka
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Kraków, Poland;
- Correspondence: ; Tel.: +48-(126)-645-020
| | - Klaudia Sychta
- Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University in Kraków, Gronostajowa 9, 30-387 Kraków, Poland;
| | - Michał Dziurka
- F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (P.K.)
| | - Przemysław Kopeć
- F. Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland; (M.D.); (P.K.)
| | - Jakub Pastuszak
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland; (M.H.); (J.P.); (A.S.); (A.P.)
| | - Anna Szczerba
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland; (M.H.); (J.P.); (A.S.); (A.P.)
| | - Agnieszka Płażek
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland; (M.H.); (J.P.); (A.S.); (A.P.)
| |
Collapse
|
11
|
Gadzinowska J, Dziurka M, Ostrowska A, Hura K, Hura T. Phytohormone synthesis pathways in sweet briar rose (Rosa rubiginosa L.) seedlings with high adaptation potential to soil drought. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:745-750. [PMID: 32768989 DOI: 10.1016/j.plaphy.2020.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
The study aimed to determine the phytohormone profile of sweet briar rose (Rosa rubiginosa L.) seedlings and privileged synthesis pathways of individual hormones including gibberellins, cytokinins and auxins in response to long-term soil drought. We detected eight gibberellins, nine auxins and fifteen cytokinins. Abscisic acid (ABA) was also detected as a sensitive indicator of water stress. Thirty days of soil drought induced significant increase of ABA content and species-specific quantitative changes of other phytohormones. We established preferred synthesis pathways for three gibberellins, six auxins and eight cytokinins. Both an increase and decrease in gibberellin and cytokinin levels may modulate sweet briar's response to soil water shortage. In the case of auxins, induction of effective adaptation mechanisms to extremely dry environments is mostly triggered by their rising levels. Under drought stress, sweet briar seedlings increased their gibberellin pool at the expense of reducing the pool of cytokinins and auxins. This may indicate a specific role of gibberellins in adaptation mechanisms to long-term soil water deficit developed by sweet briar.
Collapse
Affiliation(s)
- Joanna Gadzinowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Kraków, Poland
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Kraków, Poland
| | - Agnieszka Ostrowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Kraków, Poland
| | - Katarzyna Hura
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Podłużna 3, 30-239, Kraków, Poland
| | - Tomasz Hura
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Kraków, Poland.
| |
Collapse
|
12
|
Wiszniewska A, Muszyńska E, Hanus-Fajerska E, Dziurka K, Dziurka M. Evaluation of the protective role of exogenous growth regulators against Ni toxicity in woody shrub Daphne jasminea. PLANTA 2018; 248:1365-1381. [PMID: 30116887 PMCID: PMC6244662 DOI: 10.1007/s00425-018-2979-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/08/2018] [Indexed: 05/04/2023]
Abstract
The results provide a significant verification of the activity of exogenously applied phytohormones: gibberellic acid, jasmonic acid, and brassinolide in the modulation of the plant's response to nickel treatment. The study investigated nickel accumulation and its toxicity to Daphne jasminea shoots cultured in vitro with or without exogenous supplementation with phytohormones: gibberellic acid (GA3), jasmonic acid (JA), and brassinolide (BL). The aim was to verify the modulatory effect of exogenous plant growth regulators (PGRs) on plant reaction to Ni excess. The combined action of Ni and PGRs was evaluated at the anatomical, ultrastructural, and biochemical levels. Nickel toxicity was manifested in decreased biomass accretion and growth tolerance index (83-53.6%), attributed to enhanced synthesis of growth inhibitors, mainly abscisic acid. As a defence reaction, endogenous gibberellins accumulated. Exogenous GA3 ameliorated the plant reaction to Ni stress, inducing proliferation and growth rate. Ni tolerance in the presence of GA3 was attributed to peroxisomal reactions that stimulated the synthesis of endogenous JA. In contrast, the application of BL caused enhanced Ni accumulation. Plants suffered from pronounced stress due to massive oxidation. The defence strategy of plants subjected to Ni and BL involved cell wall rearrangements. Exogenous JA stimulated the synthesis of active auxins and salicylic acid, contributing to enhanced mitotic activity within explants. However, JA disturbed the integrity of chloroplasts and lamellar compartments. Our study revealed that an action of exogenous PGRs may either enhance tolerance to Ni or increase metal toxicity in D. jasminea. Particularly in in vitro culture, where explants are subjected to external phytohormonal stimuli, the combined effects of supplemental PGRs may enhance stress and substantially affect plant development. Our results provide a significant verification of exogenous PGRs activity in the modulation of plant response to nickel.
Collapse
Affiliation(s)
- Alina Wiszniewska
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. 29 Listopada 54, 31-425, Kraków, Poland.
| | - Ewa Muszyńska
- Department of Botany, Faculty of Agriculture and Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, Building 37, 02-776, Warsaw, Poland
| | - Ewa Hanus-Fajerska
- Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, Al. 29 Listopada 54, 31-425, Kraków, Poland
| | - Kinga Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239, Kraków, Poland
| |
Collapse
|
13
|
Płażek A, Dubert F, Kopeć P, Dziurka M, Kalandyk A, Pastuszak J, Waligórski P, Wolko B. Long-Term Effects of Cold on Growth, Development and Yield of Narrow-Leaf Lupine May Be Alleviated by Seed Hydropriming or Butenolide. Int J Mol Sci 2018; 19:E2416. [PMID: 30115849 PMCID: PMC6121490 DOI: 10.3390/ijms19082416] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 08/02/2018] [Accepted: 08/08/2018] [Indexed: 01/06/2023] Open
Abstract
In this article, the effects of cold on the development of Lupine angustifolius and the possibility of mitigating it, via seed hydropriming or pre-treatment with butenolide (10-6 M⁻10-4 M), are investigated in two cultivars, differing in their ability to germinate at low temperature. Physiological background of plant development after cold stress was investigated in imbibed seeds. For the first four weeks, the seedlings grew at 7 °C or 13 °C. Seeds well germinating at 7 °C demonstrated higher activity of α-amylase and higher levels of gibberellins, IAA and kinetin. Germination ability at low temperature correlated with dehydrogenase activity and membrane permeability. Seed pre-treatment improved germination at low temperature by decreasing abscisic acid content. Seed hydropriming alleviated cold effects on plant development rate and yield, while butenolide accelerated vegetative development but delayed the generative phase. Potential seed yield may be predicted based on the seed germination vigour and the photosynthetic efficiency measured before flowering.
Collapse
Affiliation(s)
- Agnieszka Płażek
- Department of Plant Physiology, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland.
| | - Franciszek Dubert
- Polish Academy of Sciences, Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland.
| | - Przemysław Kopeć
- Polish Academy of Sciences, Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland.
| | - Michał Dziurka
- Polish Academy of Sciences, Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland.
| | - Agnieszka Kalandyk
- Polish Academy of Sciences, Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland.
| | - Jakub Pastuszak
- Department of Plant Physiology, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland.
| | - Piotr Waligórski
- Polish Academy of Sciences, Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland.
| | - Bogdan Wolko
- Polish Academy of Sciences, Institute of Plant Genetics, Strzeszyńska 34, 60-479 Poznań, Poland.
| |
Collapse
|
14
|
Płażek A, Dubert F, Kopeć P, Dziurka M, Kalandyk A, Pastuszak J, Wolko B. Seed Hydropriming and Smoke Water Significantly Improve Low-Temperature Germination of Lupinus angustifolius L. Int J Mol Sci 2018; 19:E992. [PMID: 29587459 PMCID: PMC5979301 DOI: 10.3390/ijms19040992] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 12/01/2022] Open
Abstract
Seed imbibition under cold temperature is dangerous when dry seeds have relatively low water content. The aim of this study was to investigate germination of 20 lines/cultivars of narrow-leaf lupine at 7 °C (cold) and 13 °C (control) under the influence of smoke water and following seed hydropriming for 3 h at 20 °C. The efficacy of individual treatments was examined with regard to seed protection during low-temperature germination. Based on seed germination, vigour at cold was evaluated four days after sowing by means of hypocotyl length, the studied lines/cultivars were divided into three groups with low, high and very high germination rates. Germination vigour correlated with cell membrane permeability, dehydrogenase activity and abscisic acid (ABA) content and was analysed in the seeds one day after sowing. Gibberellin content did not correlate with germination vigour. The seeds of weakly germinating lines/cultivars had the highest cell permeability and ABA content as well as the lowest amylolytic activity at both studied temperatures. Additionally, the vigour of weakly germinating seeds at 7 °C correlated with dehydrogenase activity. Three-hour hydropriming was the most effective for seed germination under cold due to reduced cell membrane permeability and ABA level. Stimulating effects of smoke water on germination under cold could be explained by enhanced dehydrogenase activity.
Collapse
Affiliation(s)
- Agnieszka Płażek
- Department of Plant Physiology, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland.
| | - Franciszek Dubert
- Polish Academy of Sciences, Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland.
| | - Przemysław Kopeć
- Polish Academy of Sciences, Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland.
| | - Michał Dziurka
- Polish Academy of Sciences, Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland.
| | - Agnieszka Kalandyk
- Polish Academy of Sciences, Institute of Plant Physiology, Niezapominajek 21, 30-239 Kraków, Poland.
| | - Jakub Pastuszak
- Department of Plant Physiology, University of Agriculture, Podłużna 3, 30-239 Kraków, Poland.
| | - Bogdan Wolko
- Polish Academy of Sciences, Institute of Plant Genetics, Strzeszyńska 34, 60-479 Poznań, Poland.
| |
Collapse
|
15
|
Płażek A, Pociecha E, Augustyniak A, Masajada K, Dziurka M, Majka J, Perlikowski D, Pawłowicz I, Kosmala A. Dissection of resistance to Microdochium nivale in Lolium multiflorum/Festuca arundinacea introgression forms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:43-53. [PMID: 29223067 DOI: 10.1016/j.plaphy.2017.11.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 11/28/2017] [Accepted: 11/30/2017] [Indexed: 06/07/2023]
Abstract
The potential of resistance to Microdochium nivale is still not recognized for numerous plant species. The forage grasses of Lolium-Festuca complex are important for grass-biomass production in the temperate regions. Lolium multiflorum is a grass with a high forage quality and productivity but also a relatively low resistance to M. nivale. On the contrary, F. arundinacea has a higher potential of resistance but simultaneously a significantly lower forage quality. These two species cross with each other and the intergeneric hybrids possess complementary characters of both genera. Herein, for the first time, we perform the research on L. multiflorum/F. arundinacea introgression forms to decipher mechanisms of resistance to M. nivale in that group of plants. Two forms with distinct levels of resistance were used as models in cytogenetic and biochemical studies. The resistant plant was shown to be a tetraploid with 28 L. multiflorum chromosomes, including one with three F. arundinacea introgressions. The susceptible introgression form revealed the unbalanced genomic structure and only 25 chromosomes. Twenty four chromosomes were shown to be L. multiflorum chromosomes, including one chromosome with F. arundinacea segment. One Festuca chromosome with additional two interstitial F. arundinacea segments, was also revealed in the susceptible form. The selected introgression forms differed in the accumulation profiles of total soluble carbohydrates, phytohormones, and phenolics in the leaf and crown tissue under the control and infection conditions. The higher amount of carbohydrates and salicylic acid in the leaves and crowns as well as a lower amount of abscisic acid in both studied organs and jasmonic acid in the crowns, were shown to be crucial for the expression of resistance to M. nivale in the analyzed hybrids.
Collapse
Affiliation(s)
- Agnieszka Płażek
- Department of Plant Physiology, University of Agriculture in Cracow, Podłużna 3, 30-239 Cracow, Poland.
| | - Ewa Pociecha
- Department of Plant Physiology, University of Agriculture in Cracow, Podłużna 3, 30-239 Cracow, Poland.
| | - Adam Augustyniak
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Katarzyna Masajada
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Michał Dziurka
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Cracow, Poland.
| | - Joanna Majka
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Dawid Perlikowski
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Izabela Pawłowicz
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| | - Arkadiusz Kosmala
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland.
| |
Collapse
|