1
|
da Silva TFO, Ferrarezi AA, da Silva Santos É, Ribeiro STC, de Oliveira AJB, Gonçalves RAC. Bioactivities and biotechnological tools for obtaining bioactive metabolites from Stevia rebaudiana. Food Sci Biotechnol 2025; 34:1679-1697. [PMID: 40151612 PMCID: PMC11936867 DOI: 10.1007/s10068-024-01776-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 03/29/2025] Open
Abstract
Several natural compounds have already been isolated from the leaves of the Stevia rebaudiana, the main ones are stevioside and rebaudiosides, which are used commercially in the food and pharmaceutical industries because they are considered a low-calorie alternative for sweetening. Thus, the development of different strategies to increase the production of steviol glycosides, as well as the health benefits of these compounds with a sweet characteristic, are well-documented in the literature. However, there is a limited number of published works on the other bioactive metabolites present in S. rebaudiana. The objective of this review is to report the main basal and specialized metabolites present in the plant, their biological activities, and the different biotechnological tools used to obtain these metabolites from S. rebaudiana. The use of new natural sources of bioactive compounds with functional properties, such as S. rebaudiana, is highly relevant to the food and pharmaceutical industries. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01776-w.
Collapse
Affiliation(s)
- Thaila Fernanda Oliveira da Silva
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Arthur Antunes Ferrarezi
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Éverton da Silva Santos
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Susana Tavares Cotrim Ribeiro
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Arildo José Braz de Oliveira
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| | - Regina Aparecida Correia Gonçalves
- Departamento de Farmácia, Programa de Pós-Graduação em Ciências Farmacêuticas, Laboratório de Biotecnologia de Produtos Naturais e Sintéticos (LABIPROS), Universidade Estadual de Maringá, (UEM), Av. Colombo 5790, Maringá, PR Brazil
| |
Collapse
|
2
|
Pervaiz S, Gul H, Rauf M, Mohamed HI, Ur Rehman K, Wasila H, Ahmad I, Shah ST, Basit A, Ahmad M, Akbar S, Fahad S. Screening of Linum usitatissimum Lines Using Growth Attributes, Biochemical Parameters and Ionomics Under Salinity Stress. GESUNDE PFLANZEN 2023; 75:2591-2609. [DOI: 10.1007/s10343-023-00880-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 03/21/2023] [Indexed: 10/26/2023]
|
3
|
Sarath NG, Shackira AM, Puthur JT. Adaptive physio-anatomical modulations and ionomics of Volkameria inermis L. in response to NaCl. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:114-130. [PMID: 37405369 DOI: 10.1080/15226514.2023.2229443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
This study illustrates the salinity tolerance mechanisms in Volkameria inermis (a mangrove-associate), making it an ideal candidate for establishment in saline lands. The plant was exposed to 100, 200, 300, and 400 mM NaCl and the TI value indicates that the stress-imparting concentration was 400 mM. There was a decrease in biomass and tissue water, and a gradual increase in osmolytes like soluble sugars, proline, and free amino acids content was observed in plantlets with the increase in NaCl concentrations. Higher number of lignified cells in the vascular region of the plantlet's leaves treated with NaCl (400 mM) may influence the transport through the conducting tissues. SEM data reveals the presence of thick-walled xylem elements, an increased number of trichomes, and partially/fully closed stomata in the 400 mM NaCl-treated samples of V. inermis. In general, macro and micronutrient distribution tend to be affected in the NaCl-treated plantlets. However, Na content increased remarkably in plantlets treated with NaCl, and the highest accumulation was observed in roots (5.58-fold). Volkameria inermis can be a good option for phytodesalination in salt-affected areas since it is equipped with strong NaCl tolerance strategies and can be exploited for desalinization purpose of salt affected lands.
Collapse
Affiliation(s)
- Nair G Sarath
- Department of Botany, Plant Physiology and Biochemistry Division, University of Calicut, Calicut, Kerala, India
| | | | - Jos T Puthur
- Department of Botany, Plant Physiology and Biochemistry Division, University of Calicut, Calicut, Kerala, India
| |
Collapse
|
4
|
Ghorbani A, Ghasemi-Omran VO, Chen M. The Effect of Glycine Betaine on Nitrogen and Polyamine Metabolisms, Expression of Glycoside-Related Biosynthetic Enzymes, and K/Na Balance of Stevia under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:1628. [PMID: 37111852 PMCID: PMC10141388 DOI: 10.3390/plants12081628] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
The beneficial role of glycine betaine (GB) in the adaptation of plants to abiotic stresses is well known; therefore, the study of physiological and molecular responses induced by exogenous GB under NaCl stress can provide a suitable reference for the application of this compound to enhance the adaptation of plants to salinity. The present study was conducted under in vitro conditions to evaluate the effect of GB (25 and 50 mM) on the growth, physiological, and molecular traits of Stevia rebaudiana during NaCl toxicity (50 mM). The results showed that applying NaCl treatment increased Na accumulation, induced oxidative stress, and disrupted N metabolism and K/Na homeostasis, which, as a result, decreased the stevia plant's growth and biomass. However, application of GB improved the adaptation of NaCl-stressed plants by improving N metabolism and modulating the metabolism of polyamines. By increasing the activity of antioxidant enzymes, GB diminished oxidative stress, protected the plasma membrane, and restored photosynthetic pigments under NaCl toxicity. By reducing Na accumulation and increasing K accumulation, GB maintained the K/Na balance and reduced the effects of toxicity caused by the high Na concentration in stevia leaves. GB increased the leaf accumulation of rebaudioside A in NaCl-stressed plants by modulating the expression of genes (KAH, UGT74G1, UGT76G1, and UGT85C2) involved in the sugar compounds of the stevia plants. Our results provide a broad understanding of GB-induced responses in NaCl-stressed plants, which can help increase our knowledge of the role of GB in the defense mechanisms of plants under abiotic stresses.
Collapse
Affiliation(s)
- Abazar Ghorbani
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Vali Ollah Ghasemi-Omran
- Department of Agronomy, Genetics and Agricultural Biotechnology Institute of Tabarestan, Sari Agricultural Science and Natural Resources University, Sari 68984, Iran
| | - Moxian Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Wang Y, Cao H, Wang S, Guo J, Dou H, Qiao J, Yang Q, Shao R, Wang H. Exogenous γ-aminobutyric acid (GABA) improves salt-inhibited nitrogen metabolism and the anaplerotic reaction of the tricarboxylic acid cycle by regulating GABA-shunt metabolism in maize seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114756. [PMID: 36924595 DOI: 10.1016/j.ecoenv.2023.114756] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/10/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Salinity stress hampers the growth of most crop plants and reduces yield considerably. In addition to its role in metabolism, γ-aminobutyric acid (GABA) plays a special role in the regulation of salinity stress tolerance in plants, though the underlying physiological mechanism remains poorly understood. In order to study the physiological mechanism of GABA pathway regulated carbon and nitrogen metabolism and tis relationship with salt resistance of maize seedlings, we supplemented seedlings with exogenous GABA under salt stress. In this study, we showed that supplementation with 0.5 mmol·L-1 (0.052 mg·g-1) GABA alleviated salt toxicity in maize seedling leaves, ameliorated salt-induced oxidative stress, and increased antioxidant enzyme activity. Applying exogenous GABA maintained chloroplast structure and relieved chlorophyll degradation, thus improving the photosynthetic performance of the leaves. Due to the improvement in photosynthesis, sugar accumulation also increased. Endogenous GABA content and GABA transaminase (GABA-T) and succinate semialdehyde dehydrogenase (SSADH) activity were increased, while glutamate decarboxylase (GAD) activity was decreased, via the exogenous application of GABA under salt stress. Meanwhile, nitrogen metabolism and the tricarboxylic acid (TCA) cycle were activated by the supply of GABA. In general, through the regulation of GABA-shunt metabolism, GABA activated enzymes related to nitrogen metabolism and replenished the key substrates of the TCA cycle, thereby improving the balance of carbon and nitrogen metabolism of maize and improving salt tolerance.
Collapse
Affiliation(s)
- Yongchao Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center of crop Chemical Control, Zhengzhou 450046, China
| | - Hongzhang Cao
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Shancong Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiameng Guo
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center of crop Chemical Control, Zhengzhou 450046, China
| | - Hangyu Dou
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jiangfang Qiao
- Cereal Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450099, China
| | - Qinghua Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center of crop Chemical Control, Zhengzhou 450046, China
| | - Ruixin Shao
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center of crop Chemical Control, Zhengzhou 450046, China.
| | - Hao Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China; Henan Engineering Research Center of crop Chemical Control, Zhengzhou 450046, China.
| |
Collapse
|
6
|
Lu X, Ma L, Zhang C, Yan H, Bao J, Gong M, Wang W, Li S, Ma S, Chen B. Grapevine (Vitis vinifera) responses to salt stress and alkali stress: transcriptional and metabolic profiling. BMC PLANT BIOLOGY 2022; 22:528. [PMID: 36376811 PMCID: PMC9661776 DOI: 10.1186/s12870-022-03907-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Soil salinization and alkalization are widespread environmental problems that limit grapevine (Vitis vinifera L.) growth and yield. However, little is known about the response of grapevine to alkali stress. This study investigated the differences in physiological characteristics, chloroplast structure, transcriptome, and metabolome in grapevine plants under salt stress and alkali stress. RESULTS We found that grapevine plants under salt stress and alkali stress showed leaf chlorosis, a decline in photosynthetic capacity, a decrease in chlorophyll content and Rubisco activity, an imbalance of Na+ and K+, and damaged chloroplast ultrastructure. Fv/Fm decreased under salt stress and alkali stress. NPQ increased under salt stress whereas decreased under alkali stress. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment showed the differentially expressed genes (DEGs) induced by salt stress and alkali stress were involved in different biological processes and have varied molecular functions. The expression of stress genes involved in the ABA and MAPK signaling pathways was markedly altered by salt stress and alkali stress. The genes encoding ion transporter (AKT1, HKT1, NHX1, NHX2, TPC1A, TPC1B) were up-regulated under salt stress and alkali stress. Down-regulation in the expression of numerous genes in the 'Porphyrin and chlorophyll metabolism', 'Photosynthesis-antenna proteins', and 'Photosynthesis' pathways were observed under alkali stress. Many genes in the 'Carbon fixation in photosynthetic organisms' pathway in salt stress and alkali stress were down-regulated. Metabolome showed that 431 and 378 differentially accumulated metabolites (DAMs) were identified in salt stress and alkali stress, respectively. L-Glutamic acid and 5-Aminolevulinate involved in chlorophyll synthesis decreased under salt stress and alkali stress. The abundance of 19 DAMs under salt stress related to photosynthesis decreased. The abundance of 16 organic acids in salt stress and 22 in alkali stress increased respectively. CONCLUSIONS Our findings suggested that alkali stress had more adverse effects on grapevine leaves, chloroplast structure, ion balance, and photosynthesis than salt stress. Transcriptional and metabolic profiling showed that there were significant differences in the effects of salt stress and alkali stress on the expression of key genes and the abundance of pivotal metabolites in grapevine plants.
Collapse
Affiliation(s)
- Xu Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - Lei Ma
- Agronomy College, Gansu Agricultural University, Lanzhou, 730070 China
| | - CongCong Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - HaoKai Yan
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - JinYu Bao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| | - MeiShuang Gong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070 China
| | - WenHui Wang
- Basic Experimental Teaching Center, Gansu Agricultural University, Lanzhou, 730070 China
| | - Sheng Li
- College of HorticultureCollege of Life Science and Technology, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070 China
| | - ShaoYing Ma
- Basic Experimental Teaching Center, Gansu Agricultural University, Lanzhou, 730070 China
| | - BaiHong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 China
| |
Collapse
|
7
|
Lee E, Park SY, Moon JY, Ko JY, Kim TK, Im GI. Metabolic Switch Under Glucose Deprivation Leading to Discovery of NR2F1 as a Stimulus of Osteoblast Differentiation. J Bone Miner Res 2022; 37:1382-1399. [PMID: 35462433 DOI: 10.1002/jbmr.4565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 12/13/2022]
Abstract
Poor survival of grafted cells is the major impediment of successful cell-based therapies for bone regeneration. Implanted cells undergo rapid death in an ischemic environment largely because of hypoxia and metabolic stress from glucose deficiency. Understanding the intracellular metabolic processes and finding genes that can improve cell survival in these inhospitable conditions are necessary to enhance the success of cell therapies. Thus, the purpose of this study was to investigate changes of metabolic profile in glucose-deprived human bone marrow stromal/stem cells (hBMSCs) through metabolomics analysis and discover genes that could promote cell survival and osteogenic differentiation in a glucose-deprived microenvironment. Metabolomics analysis was performed to determine metabolic changes in a glucose stress metabolic model. In the absence of glucose, expression levels of all metabolites involved in glycolysis were significantly decreased than those in a glucose-supplemented state. In glucose-deprived osteogenic differentiation, reliance on tricarboxylic acid cycle (TCA)-predicted oxidative phosphorylation instead of glycolysis as the main mechanism for energy production in osteogenic induction. By comparing differentially expressed genes between glucose-deprived and glucose-supplemented hBMSCs, NR2F1 (Nuclear Receptor Subfamily 2 Group F Member 1) gene was discovered to be associated with enhanced survival and osteogenic differentiation in cells under metabolic stress. Small, interfering RNA (siRNA) for NR2F1 reduced cell viability and osteogenic differentiation of hBMSCs under glucose-supplemented conditions whereas NR2F1 overexpression enhanced osteogenic differentiation and cell survival of hBMSCs in glucose-deprived osteogenic conditions via the protein kinase B (AKT)/extracellular signal-regulated kinase (ERK) pathway. NR2F1-transfected hBMSCs significantly enhanced new bone formation in a critical size long-bone defect of rats compared with control vector-transfected hBMSCs. In conclusion, the results of this study provide an understanding of the metabolic profile of implanted cells in an ischemic microenvironment and demonstrate that NR2F1 treatment may overcome this deprivation by enhancing AKT and ERK regulation. These findings can be utilized in regenerative medicine for bone regeneration. © 2022 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Eugene Lee
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Seo-Young Park
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Jae-Yeon Moon
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Ji-Yun Ko
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Tae Kyung Kim
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea
| | - Gun-Il Im
- Research Institute for Integrative Regenerative Biomedical Engineering, Dongguk University, Goyang, Republic of Korea.,Department of Orthopaedics, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| |
Collapse
|
8
|
Sanaz Adalatzadeh-Aghdam, Toorchi M, Zarei M. Fennel (Foeniculum vulgare Mill) Plants Responses to Salicylic Acid Foliar Application as Chemical Priming Agent under Salt Stress. BIOL BULL+ 2021. [DOI: 10.1134/s1062359022010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Dos Santos Araújo G, de Oliveira Paula-Marinho S, de Paiva Pinheiro SK, de Castro Miguel E, de Sousa Lopes L, Camelo Marques E, de Carvalho HH, Gomes-Filho E. H 2O 2 priming promotes salt tolerance in maize by protecting chloroplasts ultrastructure and primary metabolites modulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110774. [PMID: 33487358 DOI: 10.1016/j.plantsci.2020.110774] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/19/2020] [Accepted: 11/24/2020] [Indexed: 05/21/2023]
Abstract
Hydrogen peroxide priming has emerged as a powerful strategy to trigger multiple responses involved in plant acclimation that reinforce tolerance to abiotic stresses, including salt stress. Thus, this study aimed to investigate the impact of foliar H2O2 priming on the physiological, biochemical, and ultrastructural traits related to photosynthesis of salt-stressed plants. Besides, we provided comparative leaf metabolomic profiles of Zea mays plants under such conditions. For this, H2O or H2O2 pretreated plants were grown under saline conditions for 12-days. Salinity drastically affected photosynthetic parameters and structural chloroplasts integrity, also increased reactive oxygen species contents promoting disturbance in the plant metabolism when compared to non-saline conditions. Our results suggest that H2O2-pretreated plants improved photosynthetic performance avoiding salinity-induced energy excess and ultrastructural damage by preserving stacking thylakoids. It displayed modulation of some metabolites, as arabitol, glucose, asparagine, and tyrosine, which may contribute to the maintenance of osmotic balance and reduced oxidative stress. Hence, our study brings new insights into an understanding of plant acclimation to salinity by H2O2 priming based on photosynthesis maintenance and metabolite modulation.
Collapse
Affiliation(s)
| | | | | | - Emílio de Castro Miguel
- Department of Metallurgical and Materials Engineering and Analytical Center, Federal University of Ceará, Fortaleza, Brazil.
| | | | - Elton Camelo Marques
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil.
| | | | - Enéas Gomes-Filho
- Department of Biochemistry and Molecular Biology and National Institute of Science and Technology in Salinity (INCTSal/CNPq), Federal University of Ceará, Pici Campus St., 60455-760, Fortaleza, CE, Brazil.
| |
Collapse
|
10
|
Zou X, Tan Q, Goh BH, Lee LH, Tan KL, Ser HL. ‘Sweeter’ than its name: anti-inflammatory activities of Stevia rebaudiana. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1771434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Xiaomin Zou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006 Guangzhou, People’s Republic of China
| | - QiWen Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006 Guangzhou, People’s Republic of China
| | - Bey-Hing Goh
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Learn-Han Lee
- Institute of Pharmaceutical Science, University of Veterinary and Animal Science, Lahore, Pakistan
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| | - Kai-Leng Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006 Guangzhou, People’s Republic of China
| | - Hooi-Leng Ser
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, 510006 Guangzhou, People’s Republic of China
- Novel Bacteria and Drug Discovery (NBDD) Research Group, Microbiome and Bioresource Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor Darul Ehsan, Malaysia
| |
Collapse
|
11
|
Steviol glycosides profile in Stevia rebaudiana Bertoni hairy roots cultured under oxidative stress-inducing conditions. Appl Microbiol Biotechnol 2020; 104:5929-5941. [PMID: 32468157 DOI: 10.1007/s00253-020-10661-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/01/2020] [Accepted: 04/30/2020] [Indexed: 12/25/2022]
Abstract
The ability to synthesize particular steviol glycosides (SvGls) was studied in Stevia rebaudiana Bertoni hairy roots (HR) grown in the light or in the dark under the influence of different osmotic active compounds. Manipulation of culture conditions led to changes in the morphology and growth rate of HR, as well as to an increase in oxidative stress manifested as an enhancement in endogenous hydrogen peroxide concentration in the cultured samples. The highest level of H2O2 was noted in HR cultured under light or in the medium with the highest osmotic potential. This correlated with the highest increase in the expression level of ent-kaurenoic acid hydroxylase, responsible for the redirection of metabolic route to SvGls biosynthesis pathway. An analysis of transcriptional activity of some UDPglucosyltransferase (UGT85c2, UGT74g1, UGT76g1) revealed that all of them were upregulated due to the manipulation of culture conditions. However, the level of their upregulation depended on the type of stress factor used in our experiment. Analysis of SvGls content revealed that HR grown under all applied conditions were able to synthesize and accumulate several SvGls but their concentration differed between the samples across the different conditions. The level of rebaudioside A concentration exceeded the content of stevioside in HR in all tested conditions. Concomitantly, the presence of some minor SvGls, such as steviolbioside and rebaudioside F, was confirmed only in HR cultured in the lowest osmotic potential of the medium while rebaudioside D was also detected in the samples cultured in the media supplemented with NaCl or PEG.Key Points● Several steviol glycosides are synthesized in hairy roots of S. rebaudiana.● Light or osmotic factors cause enhancement in oxidative stress level in hairy roots.● It correlates with a significant increase in the level of KAH expression.● UGTs expression and steviol glycosides content depends on culture conditions.
Collapse
|
12
|
Ji J, Shi Z, Xie T, Zhang X, Chen W, Du C, Sun J, Yue J, Zhao X, Jiang Z, Shi S. Responses of GABA shunt coupled with carbon and nitrogen metabolism in poplar under NaCl and CdCl 2 stresses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 193:110322. [PMID: 32109582 DOI: 10.1016/j.ecoenv.2020.110322] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 02/05/2020] [Accepted: 02/08/2020] [Indexed: 05/20/2023]
Abstract
The γ-aminobutyric acid (GABA) shunt is closely associated with plant tolerance; however, little is known about its mechanism. This study aimed to decipher the responses of the GABA shunt and related carbon-nitrogen metabolism in poplar seedlings (Populus alba × Populus glandulosa) treated with different NaCl and CdCl2 concentrations for 30 h. The results showed that the activities of glutamate decarboxylase (GAD) and GABA-transaminase (GABA-T) were activated, as well as α-ketoglutarate dehydrogenase (α-KGDH) and succinate dehydrogenase (SDH) activities were enhanced by NaCl and CdCl2 stresses, except for SDH under CdCl2 stress. Meanwhile, the expression levels of GADs, GABA-Ts SDHs, succinyl-CoA ligases (SCSs), and succinic acid aldehyde dehydrogenases (SSADHs) were also increased. Notably, significant increases in the key components of GABA shunt, Glu and GABA, were observed under both stresses. Soluble sugars and free amino acids were enhanced, whereas citrate, malate and succinate were almost inhibited by both NaCl and CdCl2 stresses except that citrate was not changed or just increased by 50-mM NaCl stress. Thus, these results suggested that the carbon-nitrogen balance could be altered by activating the GABA shunt when main TCA-cycle intermediates were inhibited under NaCl and CdCl2 stresses. This study can enhance the understanding about the functions of the GABA shunt in woody plants under abiotic stresses and may be applied to the genetic improvement of trees for phytoremediation.
Collapse
Affiliation(s)
- Jing Ji
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 1958 Box, Beijing, 100091, China
| | - Zheng Shi
- Research Institute of Forest Ecology, Environment and Protection, Key Laboratory of Forest Ecology and Environment of State Forestry and Grassland Administration, Chinese Academy of Forestry, 1958 Box, Beijing, 100091, China
| | - Tiantian Xie
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 1958 Box, Beijing, 100091, China
| | - Xiaoman Zhang
- College of Landscape Architecture and Tourism, Hebei Agricultural University, No. 289 Lingyusi Street, Baoding, 071001, Hebei, China
| | - Wei Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 1958 Box, Beijing, 100091, China
| | - Changjian Du
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 1958 Box, Beijing, 100091, China
| | - Jiacheng Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 1958 Box, Beijing, 100091, China
| | - Jianyun Yue
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 1958 Box, Beijing, 100091, China
| | - Xiulian Zhao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 1958 Box, Beijing, 100091, China
| | - Zeping Jiang
- Research Institute of Forest Ecology, Environment and Protection, Key Laboratory of Forest Ecology and Environment of State Forestry and Grassland Administration, Chinese Academy of Forestry, 1958 Box, Beijing, 100091, China
| | - Shengqing Shi
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, 1958 Box, Beijing, 100091, China.
| |
Collapse
|
13
|
Prakash J, Arora NK. Development of Bacillus safensis-based liquid bioformulation to augment growth, stevioside content, and nutrient uptake in Stevia rebaudiana. World J Microbiol Biotechnol 2019; 36:8. [PMID: 31858273 DOI: 10.1007/s11274-019-2783-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
The application of chemical fertilizers to enhance crop production is a major concern due to associated environmental pollution and health hazards. Hence, there is an urgent need to develop an eco-friendly solution to improve crop production and promote sustainable agriculture simultaneously. Stevia rebaudiana is an important medicinal crop being substitute for sugar, superior flavor outline, extensive medicinal properties, and also of agronomic interest. In the present study, bacterium STJP isolated from the rhizospheric soil of S. rebaudiana and identified as Bacillus safensis on the basis of 16S rRNA gene sequencing, showed good amount of zinc (4.4 mg/L) and potassium (5.4 mg/L) solubilization. Paneer-whey (a dairy waste) based bioformulation (P-WBF) was developed utilizing isolate B. safensis STJP (accession number NAIMCC TB-2833) and inspected for the quality and ability to enhance the growth, nutrients uptake, and stevioside content in S. rebaudiana. The application of P-WBF displayed a significantly higher concentration (153.12%) of stevioside in S. rebaudiana as compared to control. P-WBF treated Stevia plants showed significantly higher fresh and dry weight as well (as compared to control). Further, enhancement of phosphorous, nitrogen, potassium, and zinc uptake in plant tissue was also recorded by application of P-WBF. This study suggests the use of P-WBF based biofertilizer using B. safensis STJP to increase stevioside content in Stevia plant by a nutrient(s) linked mechanism. This novel approach can also be beneficial for utilization of a dairy waste in preparation of bioformulation and, for enhancement of crop yield by an ecofriendly manner leading to sustainable agriculture.
Collapse
Affiliation(s)
- Jai Prakash
- Department of Environmental Microbiology (DEM), School for Environmental Sciences (SES), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India
| | - Naveen Kumar Arora
- Department of Environmental Science (DES), School for Environmental Sciences (SES), Babasaheb Bhimrao Ambedkar University (A Central University), Vidya Vihar, Raebareli Road, Lucknow, 226025, Uttar Pradesh, India.
| |
Collapse
|
14
|
Salehi B, López MD, Martínez-López S, Victoriano M, Sharifi-Rad J, Martorell M, F Rodrigues C, Martins N. Stevia rebaudiana Bertoni bioactive effects: From in vivo to clinical trials towards future therapeutic approaches. Phytother Res 2019; 33:2904-2917. [PMID: 31423662 DOI: 10.1002/ptr.6478] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 01/14/2023]
Abstract
Stevia rebaudiana Bertoni, a plant from South America and indigenous of Paraguay, has shown several biological effects and healthy properties, although it is especially used in South America and some Asiatic regions. In addition, it is a natural sweetener, almost 300 times sweeter than sucrose, being attributed to its phytoconstituents prominent antioxidant, antimicrobial, antidiabetic (antihyperglycemic, insulinotropic, and glucagonostatic), antiplatelet, anticariogenic, and antitumor effects. In this sense, this work aims to provide an extensive overview on the historical practices of stevia and its effects in human health based on its chemical composition and applications for both food and pharmaceutical industries.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Maria Dolores López
- Department of Plant Production, Faculty of Agronomy, Universidad de Concepción, Chillán, Chile
| | - Sara Martínez-López
- Department of Pharmacy, Biotechnology, and Nutrition, School of Biomedical Sciences, European University of Madrid (UEM), Madrid, Spain
| | - Montserrat Victoriano
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion, Chile
| | - Célia F Rodrigues
- LEPABE-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
15
|
Zhao Y, Xu F, Liu J, Guan F, Quan H, Meng F. The adaptation strategies of Herpetospermum pedunculosum (Ser.) Baill at altitude gradient of the Tibetan plateau by physiological and metabolomic methods. BMC Genomics 2019; 20:451. [PMID: 31159723 PMCID: PMC6547600 DOI: 10.1186/s12864-019-5778-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 05/07/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Herpetospermum pedunculosum (Ser.) Baill is annual scandent herbs. They are used in the treatment of piles, inflammation of the stomach and the intestines. It can survive the extreme environment of the Tibetan Plateau (TP). However, the underlying mechanisms of this adaptation to H. pedunculosum from TP remain unclear. Here, we combined physiological and metabolomics methods to analyze H. pedunculosum response to altitude gradient differences. RESULTS At high altitude, increases in the activities of Ascorbate peroxidase (APX), Glutathione reductase (GR), Dehydroascorbate reductase (DHAR), Monodehydroascorbate reductase (MDHAR), Superoxide dismutase (SOD) have been observed in leaves. Total Glutathion content, total Ascorbate content and the ASA (ascorbic acid)/docosahexaenoic acid (DHA) ration were highly elevated from low altitude to high altitude. In addition, high altitude induces decrease of the Anthocyanidin content (ANTH) and increase of abscisic acid content (ABA). The GC-MS analyses identified of 50 metabolites from leaves of H. pedunculosum. In addition, a metabolic network was constructed based on metabolomic datasets using a weighted correlation network analysis (WGCNA) approach. The network analysis uncovered 4 distinguished metabolic modules highly associated with I, II, III and IV respectively. Furthermore, the analysis successfully classified 50 samples into seven groups: carbohydrates, amino acids, organic acids, lipid components, polyamine, secondary metabolism and others. CONCLUSIONS In the present study, the content of parts of amino acid components increased in samples collected at higher altitudes, and most of metabolites, including carbohydrates and organic acids were assigned to the carbon metabolic pathway comprising reductive pentose phosphate pathway, glycolysis and TCA cycle, indicating the direct relationship between adaptability and the carbon metabolic pathway and amino acids in H. pedunculosum response to high altitude. The results of this study laid the foundation of the molecular mechanism on H. pedunculosum from high altitude.
Collapse
Affiliation(s)
- Yong Zhao
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Fuling Xu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Jia Liu
- Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, 150040, China
| | - Fachun Guan
- Jilin Academy of Agricultural Science, Changchun, 130033, China
- Tibet Agriculture and Animal Husbandry College, Nyingchi, 860000, China
| | - Hong Quan
- Tibet Agriculture and Animal Husbandry College, Nyingchi, 860000, China
| | - Fanjuan Meng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
16
|
Westworth S, Ashwath N, Cozzolino D. Application of FTIR-ATR spectroscopy to detect salinity response in Beauty Leaf Tree (Calophyllum inophyllum L). ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.egypro.2019.02.182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|