1
|
Lin CH, Lee BY, Ou YT, Chiang MJ, Chen CY. Salicylic Acid, Hypersensitive Response and RBOHD-Mediated Hydrogen Peroxide Accumulation Play Key Roles in Black Rot Resistance of Crucifers. PLANT, CELL & ENVIRONMENT 2025; 48:4286-4300. [PMID: 39945095 DOI: 10.1111/pce.15423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/21/2024] [Accepted: 01/23/2025] [Indexed: 05/06/2025]
Abstract
Black rot caused by hemibiotrophic Xanthomonas campestris pv. campestris (Xcc) is a great problem in crucifer crop production. Various host responses are activated upon Xcc attack; however, their roles in black rot resistance remain ambiguous. In this study, a highly black rot resistance of host plants was achieved by applying a field-screened systemic resistance-eliciting Bacillus velezensis strain 37-1. The contributions of strain 37-1-altered host responses to Xcc resistance were then investigated in Arabidopsis. Hypersensitive response and hydrogen peroxide accumulation were demonstrated beneficial for Xcc infection by using nrg1 and rbohd mutants, histochemical staining against host cell death and reactive oxygen species, detection of antioxidant enzyme activity and RT-qPCR assay. By contrast, salicylic acid was proven essential for black rot suppression by using NahG transformant, mutants impaired in defence hormone synthesis and signalling pathway, and RT-qPCR assay. Additionally, both isochorismate synthase and phenylalanine ammonia-lyase pathways for salicylic acid biosynthesis were found to be involved in resistance to Xcc. These findings improve the knowledge of host defence responses crucial for fighting off hemibiotrophic Xcc.
Collapse
Affiliation(s)
- Chia-Hua Lin
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Bo-Yi Lee
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Yun-Ting Ou
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Min-Jui Chiang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
| | - Chao-Ying Chen
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan, Republic of China
- Master Program for Plant Medicine, National Taiwan University, Taipei, Taiwan, Republic of China
| |
Collapse
|
2
|
Zhang L, Hoagland L, Yang Y, Becchi PP, Sobolev AP, Scioli G, La Nasa J, Biale G, Modugno F, Lucini L. The combination of hyperspectral imaging, untargeted metabolomics and lipidomics highlights a coordinated stress-related biochemical reprogramming triggered by polyethylene nanoparticles in lettuce. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178604. [PMID: 39862496 DOI: 10.1016/j.scitotenv.2025.178604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
Polyethylene nanoplastics (NPs) are widely diffused in terrestrial environments, including soil ecosystems, but the stress mechanisms in plants are not well understood. This study aimed to investigate the effects of two increasing concentrations of NPs (20 and 200 mg kg-1 of soil) in lettuce. To this aim, high-throughput hyperspectral imaging was combined with metabolomics, covering both primary (using NMR) and secondary metabolism (using LC-HRMS), along with lipidomics profiling (using ion-mobility-LC-HRMS) and plant performance. Hyperspectral imaging highlighted a reduced plant growth pattern. Several vegetative indexes indicated plant toxicity, with 20 mg kg-1 NPs significantly decreasing lettuce density and vegetation health (as indicated by NDVI and plant senescence reflectance indexes). Consistently, photosynthetic activity also decreased. At the biochemical level, metabolomics and lipidomics pointed out a multi-layered broad biochemical reprogramming of primary and secondary metabolism involving a decrease in sterols, sphingolipids, glycolipids, and glycerophospholipids in response to NPs. The reduction in phosphatidylinositol coincided with an accumulation of diacylglycerols (DAG), suggesting the activation of the phospholipase C lipid signaling pathway. Moreover, nanoplastic treatments down-modulated different biosynthetic pathways, particularly those involved in N-containing compounds and phenylpropanoids. Our mechanistic basis of NPs stress in plants will contribute to a better understanding of their environmental impact.
Collapse
Affiliation(s)
- Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Lori Hoagland
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Yang Yang
- Institute for Plant Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Pier Paolo Becchi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Anatoly P Sobolev
- Institute for Biological Systems, National Research Council (CNR), 00015 Monterotondo, Rome, Italy
| | - Giuseppe Scioli
- Institute for Biological Systems, National Research Council (CNR), 00015 Monterotondo, Rome, Italy
| | - Jacopo La Nasa
- Department of Chemistry and Industrial Chemistry, University of Pisa, 52125 Pisa, Italy
| | - Greta Biale
- Department of Chemistry and Industrial Chemistry, University of Pisa, 52125 Pisa, Italy
| | - Francesca Modugno
- Department of Chemistry and Industrial Chemistry, University of Pisa, 52125 Pisa, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy.
| |
Collapse
|
3
|
Dimaria G, Sicilia A, Modica F, Russo M, Bazzano MC, Massimino ME, Piero ARL, Bella P, Catara V. Biocontrol efficacy of Pseudomonas mediterranea PVCT 3C against Plenodomus tracheiphilus: In vitro and in planta mechanisms at early disease stages. Microbiol Res 2024; 287:127833. [PMID: 39032265 DOI: 10.1016/j.micres.2024.127833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/08/2024] [Accepted: 07/04/2024] [Indexed: 07/23/2024]
Abstract
In this study, we investigated the biocontrol activity of the P. mediterranea strain PVCT 3C against Mal secco, a severe disease of citrus caused by the vascular fungus Plenodomus tracheiphilus. In vitro, bacterial diffusible compounds, volatile organic compounds and culture filtrates produced by PVCT 3C reduced the mycelial growth and conidial germination of P. tracheiphilus, also affecting the mycelial pigmentation. The application of bacterial suspensions by leaf-spraying before the inoculation with the pathogen on plants of the highly susceptible species sour orange and lemon led to an overall reduction in incidence and disease index, above all during the early disease stage. PVCT 3C genome was subjected to whole-genome shotgun sequencing to study the molecular mechanisms of action of this strain. In silico annotation of biosynthetic gene clusters for secondary metabolites revealed the presence of numerous clusters encoding antimicrobial compounds (e.g. cyclic lipopeptides, hydrogen cyanide, siderophores) and candidate novel products. During the asymptomatic disease phase (seven days post-inoculation), bacterial treatments interfered with the expression of different fungal genes, as assessed with an NGS and de novo assembly RNA-seq approach. These results suggest that P. mediterranea PVCT 3C or its secondary metabolites may offer a potential effective and sustainable alternative to contain P. tracheiphilus infections via integrated management.
Collapse
Affiliation(s)
- Giulio Dimaria
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Angelo Sicilia
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Francesco Modica
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | | | | | - Maria Elena Massimino
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Angela Roberta Lo Piero
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy
| | - Patrizia Bella
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Palermo 90128, Italy
| | - Vittoria Catara
- Department of Agriculture, Food, and Environment, University of Catania, Via Santa Sofia 100, Catania 95123, Italy.
| |
Collapse
|
4
|
Montejano-Ramírez V, Ávila-Oviedo JL, Campos-Mendoza FJ, Valencia-Cantero E. Microbial Volatile Organic Compounds: Insights into Plant Defense. PLANTS (BASEL, SWITZERLAND) 2024; 13:2013. [PMID: 39124131 PMCID: PMC11314544 DOI: 10.3390/plants13152013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/06/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
Volatile organic compounds (VOCs) are low molecular weight molecules that tend to evaporate easily at room temperature because of their low boiling points. VOCs are emitted by all organisms; therefore, inter- and intra-kingdom interactions have been established, which are fundamental to the structuring of life on our planet. One of the most studied interactions through VOCs is between microorganism VOCs (mVOCs) and plants, including those of agricultural interest. The mVOC interactions generate various advantages for plants, ranging from promoting growth to the activation of defense pathways triggered by salicylic acid (systemic acquired resistance) and jasmonic acid (induced systemic resistance) to protect them against phytopathogens. Additionally, mVOCs directly inhibit the growth of phytopathogens, thereby providing indirect protection to plants. Among the current agricultural problems is the extensive use of chemicals, such as fertilizers, intended to combat production loss, and pesticides to combat phytopathogen infection. This causes problems in food safety and environmental pollution. Therefore, to overcome this problem, it is important to identify alternatives that do not generate environmental impacts, such as the application of mVOCs. This review addresses the protective effects of mVOCs emitted by microorganisms from different kingdoms and their implications in plant defense pathways.
Collapse
Affiliation(s)
| | | | | | - Eduardo Valencia-Cantero
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edifico B3, Ciudad Universitaria, Morelia 58030, Mexico; (V.M.-R.); (J.L.Á.-O.); (F.J.C.-M.)
| |
Collapse
|
5
|
Yeo YJ, Park AR, Vuong BS, Kim JC. Biocontrol of Fusarium head blight in rice using Bacillus velezensis JCK-7158. Front Microbiol 2024; 15:1358689. [PMID: 38915299 PMCID: PMC11194345 DOI: 10.3389/fmicb.2024.1358689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Fusarium head blight (FHB) is a destructive disease caused by several species of Fusarium, such as Fusarium graminearum and F. asiaticum. FHB affects cereal crops, including wheat, barley, and rice, worldwide. Fusarium-infected kernels not only cause reduced yields but also cause quality loss by producing mycotoxins, such as trichothecenes and zearalenone, which are toxic to animals and humans. For decades, chemical fungicides have been used to control FHB because of their convenience and high control efficacy. However, the prolonged use of chemical fungicides has caused adverse effects, including the emergence of drug resistance to pathogens and environmental pollution. Biological control is considered one of the most promising alternatives to chemicals and can be used for integrated management of FHB due to the rare possibility of environment pollution and reduced health risks. In this study, Bacillus velezensis JCK-7158 isolated from rice was selected as an ecofriendly alternative to chemical fungicides for the management of FHB. JCK-7158 produced the extracellular enzymes protease, chitinase, gelatinase, and cellulase; the plant growth hormone indole-3-acetic acid; and the 2,3-butanediol precursor acetoin. Moreover, JCK-7158 exhibited broad antagonistic activity against various phytopathogenic fungi and produced iturin A, surfactin, and volatile substances as active antifungal compounds. It also enhanced the expression of PR1, a known induced resistance marker gene, in transgenic Arabidopsis plants expressing β-glucuronidase (GUS) fused with the PR1 promoter. Under greenhouse conditions, treatments with the culture broth and suspension concentrate formulation of JCK-7158 at a 1,000-fold dilution inhibited the development of FHB by 50 and 66%, respectively. In a field experiment, treatment with the suspension concentrate formulation of JCK-7158 at a 1,000-fold dilution effectively controlled the development of FHB with a control value of 55% and reduced the production of the mycotoxin nivalenol by 40%. Interestingly, treatment with JCK-7158 enhanced the expression of plant defense-related genes in salicylic acid, jasmonic acid, ethylene, and reactive oxygen species (ROS) signaling pathways before and after FHB pathogen inoculation. Taken together, our findings support that JCK-7158 has the potential to serve as a new biocontrol agent for the management of FHB.
Collapse
Affiliation(s)
- Yu Jeong Yeo
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
- Plant Healthcare Research Institute, JAN153 Biotech Incorporated, Gwangju, Republic of Korea
| | - Bien Sy Vuong
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju, Republic of Korea
- Plant Healthcare Research Institute, JAN153 Biotech Incorporated, Gwangju, Republic of Korea
| |
Collapse
|
6
|
Liu S, Xie J, Luan W, Liu C, Chen X, Chen D. Papiliotrema flavescens, a plant growth-promoting fungus, alters root system architecture and induces systemic resistance through its volatile organic compounds in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108474. [PMID: 38430787 DOI: 10.1016/j.plaphy.2024.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/01/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
The current trend in agricultural development is the establishment of sustainable agricultural systems. This involves utilizing and implementing eco-friendly biofertilizers and biocontrol agents as alternatives to conventional fertilizers and pesticides. A plant growth-promoting fungal strain, that could alter root system architecture and promote the growth of Arabidopsis seedlings in a non-contact manner by releasing volatile organic compounds (VOCs) was isolated in this study. 26S rDNA sequencing revealed that the strain was a yeast-like fungus, Papiliotrema flavescens. Analysis of plant growth-promoting traits revealed that the fungus could produce indole-3-acetic acid and ammonia and fix nitrogen. Transcriptome analysis in combination with inhibitor experiments revealed that P. flavescens VOCs triggered metabolic alterations, promoted auxin accumulation and distribution in the roots, and coordinated ethylene signaling, thus inhibiting primary root elongation and inducing lateral root formation in Arabidopsis. Additionally, transcriptome analysis and fungal infection experiments confirmed that pretreatment with P. flavescens stimulated the defense response of Arabidopsis to boost its resistance to the pathogenic fungus Botrytis cinerea. Solid-phase microextraction, which was followed by gas chromatography-mass spectrometry analysis, identified three VOCs (acetoin, naphthalene and indole) with significant plant growth-promoting attributes. Their roles were confirmed using further pharmacological experiments and upregulated expression of auxin- and ethylene-related genes. Our study serves as an essential reference for utilizing P. flavescens as a potential biological fertilizer and biocontrol agent.
Collapse
Affiliation(s)
- Siyue Liu
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jinge Xie
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wenqi Luan
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Chen Liu
- Institute of Vegetables, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Xiwen Chen
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Defu Chen
- Department of Genetics and Cell Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China; Southwest United Graduate School, Kunming, 650092, China.
| |
Collapse
|
7
|
Chang PE, Wu YH, Tai CY, Lin IH, Wang WD, Tseng TS, Chuang HW. Examining the Transcriptomic and Biochemical Signatures of Bacillus subtilis Strains: Impacts on Plant Growth and Abiotic Stress Tolerance. Int J Mol Sci 2023; 24:13720. [PMID: 37762026 PMCID: PMC10531026 DOI: 10.3390/ijms241813720] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Rhizobacteria from various ecological niches display variations in physiological characteristics. This study investigates the transcriptome profiling of two Bacillus subtilis strains, BsCP1 and BsPG1, each isolated from distinct environments. Gene expression linked to the synthesis of seven types of antibiotic compounds was detected in both BsCP1 and BsPG1 cultures. Among these, the genes associated with plipastatin synthesis were predominantly expressed in both bacterial strains. However, genes responsible for the synthesis of polyketide, subtilosin, and surfactin showed distinct transcriptional patterns. Additionally, genes involved in producing exopolysaccharides (EPS) showed higher expression levels in BsPG1 than in BsCP1. Consistently with this, a greater quantity of EPS was found in the BsPG1 culture compared to BsCP1. Both bacterial strains exhibited similar effects on Arabidopsis seedlings, promoting root branching and increasing seedling fresh weight. However, BsPG1 was a more potent enhancer of drought, heat, and copper stress tolerance than BsCP1. Treatment with BsPG1 had a greater impact on improving survival rates, increasing starch accumulation, and stabilizing chlorophyll content during the post-stress stage. qPCR analysis was used to measure transcriptional changes in Arabidopsis seedlings in response to BsCP1 and BsPG1 treatment. The results show that both bacterial strains had a similar impact on the expression of genes involved in the salicylic acid (SA) and jasmonic acid (JA) signaling pathways. Likewise, genes associated with stress response, root development, and disease resistance showed comparable responses to both bacterial strains. However, treatment with BsCP1 and BsPG1 induced distinct activation of genes associated with the ABA signaling pathway. The results of this study demonstrate that bacterial strains from different ecological environments have varying abilities to produce beneficial metabolites for plant growth. Apart from the SA and JA signaling pathways, ABA signaling triggered by PGPR bacterial strains could play a crucial role in building an effective resistance to various abiotic stresses in the plants they colonize.
Collapse
Affiliation(s)
| | | | | | | | | | - Tong-Seung Tseng
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan (C.-Y.T.); (I.-H.L.)
| | - Huey-wen Chuang
- Department of Agricultural Biotechnology, National Chiayi University, Chiayi 600355, Taiwan (C.-Y.T.); (I.-H.L.)
| |
Collapse
|
8
|
Liu Z, Wu X, Hou L, Ji S, Zhang Y, Fan W, Li T, Zhang L, Liu P, Yang L. Effects of cadmium on transcription, physiology, and ultrastructure of two tobacco cultivars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161751. [PMID: 36690104 DOI: 10.1016/j.scitotenv.2023.161751] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metal pollutants worldwide. Tobacco is an important cash crop; however, the accumulation of Cd in its biomass is very high. Cadmium may enter the body of smokers with contaminated tobacco and the surrounding environment via smoke. Therefore, it is important to understand the mechanisms of Cd accumulation and tolerance in tobacco plants, especially in the leaves. In this study, the effects of Cd on the growth, accumulation, and biochemical indices of two tobacco varieties, K326 (Cd resistant) and NC55 (Cd sensitive), were studied through transcriptomic and physiological experiments. Transcriptome and physiological analyses showed differences in the expression of Cd transport and Cd resistance related genes between NC55 and K326 under Cd stress. The root meristem cells of NC55 were more severely damaged. The antioxidant enzyme activity, ABA and ZT content, chlorophyll content, photosynthetic rate, and nitrogen metabolism enzyme activity in K326 leaves were higher than in NC55. These data elucidate the mechanisms of low Cd accumulation and high Cd tolerance in K326 leaves and provide a theoretical basis for cultivating tobacco varieties with low Cd accumulation and high Cd resistance.
Collapse
Affiliation(s)
- Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Lei Hou
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Shengzhe Ji
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Yao Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Weiru Fan
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Tong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China.
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China.
| |
Collapse
|
9
|
Li TY, Ye C, Zhang YJ, Zhang JX, Yang M, He XH, Mei XY, Liu YX, Zhu YY, Huang HC, Zhu SS. 2,3-Butanediol from the leachates of pine needles induces the resistance of Panax notoginseng to the leaf pathogen Alternaria panax. PLANT DIVERSITY 2023; 45:104-116. [PMID: 36876306 PMCID: PMC9975478 DOI: 10.1016/j.pld.2022.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 06/03/2023]
Abstract
Compared with the use of monocultures in the field, cultivation of medicinal herbs in forests is an effective strategy to alleviate disease. Chemical interactions between herbs and trees play an important role in disease suppression in forests. We evaluated the ability of leachates from needles of Pinus armandii to induce resistance in Panax notoginseng leaves, identified the components via gas chromatography-mass spectrometry (GC-MS), and then deciphered the mechanism of 2,3-Butanediol as the main component in the leachates responsible for resistance induction via RNA sequencing (RNA-seq). Prespraying leachates and 2,3-Butanediol onto leaves could induce the resistance of P. notoginseng to Alternaria panax. The RNA-seq results showed that prespraying 2,3-Butanediol onto leaves with or without A. panax infection upregulated the expression of large number of genes, many of which are involved in transcription factor activity and the mitogen-activated protein kinase (MAPK) signaling pathway. Specifically, 2,3-Butanediol spraying resulted in jasmonic acid (JA) -mediated induced systemic resistance (ISR) by activating MYC2 and ERF1. Moreover, 2,3-Butanediol induced systemic acquired resistance (SAR) by upregulating pattern-triggered immunity (PTI)- and effector-triggered immunity (ETI)-related genes and activated camalexin biosynthesis through activation of WRKY33. Overall, 2,3-Butanediol from the leachates of pine needles could activate the resistance of P. notoginseng to leaf disease infection through ISR, SAR and camalexin biosynthesis. Thus, 2,3-Butanediol is worth developing as a chemical inducer for agricultural production.
Collapse
Affiliation(s)
- Tian-Yao Li
- School of Agriculture, Yunnan University, Kunming, 650500, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Chen Ye
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Yi-Jie Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Jun-Xing Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Min Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Xia-Hong He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
- Southwest Forestry University, Kunming, 650224, China
| | - Xin-Yue Mei
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Yi-Xiang Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - You-Yong Zhu
- School of Agriculture, Yunnan University, Kunming, 650500, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Hui-Chuan Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| | - Shu-Sheng Zhu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
10
|
Duraisamy K, Ha A, Kim J, Park AR, Kim B, Song CW, Song H, Kim JC. Enhancement of Disease Control Efficacy of Chemical Fungicides Combined with Plant Resistance Inducer 2,3-Butanediol against Turfgrass Fungal Diseases. THE PLANT PATHOLOGY JOURNAL 2022; 38:182-193. [PMID: 35678051 PMCID: PMC9343906 DOI: 10.5423/ppj.oa.02.2022.0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Turfgrass, the most widely grown ornamental crop, is severely affected by fungal pathogens including Sclerotinia homoeocarpa, Rhizoctonia solani, and Magnaporthe poae. At present, turfgrass fungal disease management predominantly relies on synthetic fungicide treatments. However, the extensive application of fungicides to the soil increases residual detection frequency, raising concerns for the environment and human health. The bacterial volatile compound, 2,3-butanediol (BDO), was found to induce plant resistance. In this study, we evaluated the disease control efficacy of a combination of stereoisomers of 2,3-BDO and commercial fungicides against turfgrass fungal diseases in both growth room and fields. In the growth room experiment, the combination of 0.9% 2R,3R-BDO (levo) soluble liquid (SL) formulation and 9% 2R,3S-BDO (meso) SL with half concentration of fungicides significantly increased the disease control efficacy against dollar spot and summer patch disease when compared to the half concentration of fungicide alone. In field experiments, the disease control efficiency of levo 0.9% and meso 9% SL, in combination with a fungicide, was confirmed against dollar spot and large patch disease. Additionally, the induction of defense-related genes involved in the salicylic acid and jasmonic acid/ethylene signaling pathways and reactive oxygen species detoxification-related genes under Clarireedia sp. infection was confirmed with levo 0.9% and meso 9% SL treatment in creeping bentgrass. Our findings suggest that 2,3-BDO isomer formulations can be combined with chemical fungicides as a new integrated tool to control Clarireedia sp. infection in turfgrass, thereby reducing the use of chemical fungicides.
Collapse
Affiliation(s)
- Kalaiselvi Duraisamy
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
- Plant Healthcare Research Institute, JAN153 Biotech Incorporated, Gwangju 61186,
Korea
| | - Areum Ha
- Plant Healthcare Research Institute, JAN153 Biotech Incorporated, Gwangju 61186,
Korea
| | - Jongmun Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Bora Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
| | - Chan Woo Song
- Research and Development Center, GS Caltex Corporation, Daejeon 34122,
Korea
| | - Hyohak Song
- Research and Development Center, GS Caltex Corporation, Daejeon 34122,
Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186,
Korea
- Plant Healthcare Research Institute, JAN153 Biotech Incorporated, Gwangju 61186,
Korea
| |
Collapse
|
11
|
Majumder S, Ghosh A, Chakraborty S, Bhattacharya M. Brewing and biochemical characterization of Camellia japonica petal wine with comprehensive discussion on metabolomics. FOOD PRODUCTION, PROCESSING AND NUTRITION 2022; 4:29. [PMCID: PMC9673215 DOI: 10.1186/s43014-022-00109-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A novel wine has been developed from Camellia japonica’s petal by fermenting the decoction with Saccharomyces cerevisiae or brewer’s yeast. pH, brix, specific gravity and alcohol percentage were tested to study the physicochemical properties of the wine. Qualitative tests indicated presence of phenols such as flavonoids, coumarins; protein; glycosides; glycerin; terpenoids; steroids; and fatty acids in the wine. Total phenol content was found high in the decoction and in its fermented form as well. In vitro biological activities such as antioxidant activity, antidiabetic activity and lipid peroxidation inhibition power were assessed in samples. Furthermore, GC-MS analysis helped to detect volatiles present in the unfermented decoction and understand the effect of fermentation on its changing metabolome while column chromatography assisted the separation of solvent-based fractions. Notable outcomes from this study were detection of bioactive compound quinic acid in the decoction and a proposed pathway of its metabolic breakdown after fermentation. Results of this research revealed biochemical and physicochemical acceptability of this wine prepared from an underutilized flower.
Collapse
Affiliation(s)
- Soumya Majumder
- grid.412222.50000 0001 1188 5260Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, Darjeeling, West Bengal 734013 India
| | - Arindam Ghosh
- grid.412222.50000 0001 1188 5260Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, Darjeeling, West Bengal 734013 India
| | - Sourav Chakraborty
- grid.412222.50000 0001 1188 5260Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, Darjeeling, West Bengal 734013 India ,Postgraduate Department of Botany, Darjeeling Government College, Darjeeling, West Bengal 734101 India
| | - Malay Bhattacharya
- grid.412222.50000 0001 1188 5260Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, Darjeeling, West Bengal 734013 India
| |
Collapse
|
12
|
Iakimova ET, Yordanova ZP, Cristescu SM, Harren FFM, Woltering EJ. Cell death associated release of volatile organic sulphur compounds with antioxidant properties in chemical-challenged tobacco BY-2 suspension cultured cells. JOURNAL OF PLANT PHYSIOLOGY 2020; 251:153223. [PMID: 32645555 DOI: 10.1016/j.jplph.2020.153223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/24/2020] [Accepted: 06/30/2020] [Indexed: 05/24/2023]
Abstract
The production of volatile organic compounds (VOCs) during programmed cell death (PCD) is still insufficiently studied and their implication in the process is not well understood. The present study demonstrates that the release of VOSCs with presumed antioxidant capacity (methanethiol, dimethylsulfide and dimethyldisulfide) accompanies the cell death in chemical-stressed tobacco BY-2 suspension cultured cells. The cells were exposed to cell death inducers of biotic nature mastoparan (MP, wasp venom) and camptothecin (CPT, alkaloid), and to the abiotic stress agent CdSO4. The VOCs emission was monitored by proton-transfer reaction mass spectrometry (PTR-MS). The three chemicals induced PCD expressing apoptotic-like phenotype. The identified VOSCs were emitted in response to MP and CPT but not in presence of Cd. The VOSCs production occurred within few hours after the administration of the elicitors, peaked up when 20-50 % of the cells were dead and further levelled off with cell death advancement. This suggests that VOSCs with antioxidant activity may contribute to alleviation of cell death-associated oxidative stress at medium severity of cell death in response to the stress factors of biotic origin. The findings provide novel information about cell death defence mechanisms in chemical-challenged BY-2 cells and show that PCD related VOSCs synthesis depends on the type of inducer.
Collapse
Affiliation(s)
- Elena T Iakimova
- Wageningen University & Research, Horticulture and Product Physiology Group, Droevendaalsesteeg 1, P.O. Box 630, 6700AP, Wageningen, the Netherlands
| | - Zhenia P Yordanova
- Radboud University, Institute for Molecules and Materials, Department of Molecular and Laser Physics, Life Science Trace Gas Facility & Trace Gas Research Group, P.O. Box, 9010, NL-6500 GL, Nijmegen, the Netherlands.
| | - Simona M Cristescu
- Radboud University, Institute for Molecules and Materials, Department of Molecular and Laser Physics, Life Science Trace Gas Facility & Trace Gas Research Group, P.O. Box, 9010, NL-6500 GL, Nijmegen, the Netherlands.
| | - Frans F M Harren
- Radboud University, Institute for Molecules and Materials, Department of Molecular and Laser Physics, Life Science Trace Gas Facility & Trace Gas Research Group, P.O. Box, 9010, NL-6500 GL, Nijmegen, the Netherlands.
| | - Ernst J Woltering
- Wageningen University & Research, Horticulture and Product Physiology Group, Droevendaalsesteeg 1, P.O. Box 630, 6700AP, Wageningen, the Netherlands; Wageningen Food and Biobased Research, Bornse Weilanden 9, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
13
|
Zhou M, Li P, Wu S, Zhao P, Gao H. Bacillus subtilis CF-3 Volatile Organic Compounds Inhibit Monilinia fructicola Growth in Peach Fruit. Front Microbiol 2019; 10:1804. [PMID: 31440224 PMCID: PMC6692483 DOI: 10.3389/fmicb.2019.01804] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/22/2019] [Indexed: 11/13/2022] Open
Abstract
In this study, we evaluated the effects of volatile organic compounds (VOCs) produced by Bacillus subtilis CF-3 in inhibiting Monilinia fructicola in vitro and in vivo. In the in vitro experiments, the effect of VOCs on the growth of the pathogenic fungi was explored by using plate enthalpy test; mycelial morphology was studied by scanning electron and transmission electron microscopy; and fatty acid contents in the cell membrane were assessed by gas chromatography-mass spectrometry (GC-MS). The results indicated that treatment with benzothiazole and CF-3 for 24 h, in the form of a fermentation broth (24hFB), significantly inhibited the germination of fungal spores, modified hyphal and cell morphology, and decreased the cell membrane fluidity and integrity. In the in vivo experiments, the effect of VOCs on the defense mechanism of peach fruit toward M. fructicola was studied, and we found that benzothiazole and CF-3 24hFB inhibited the activity of the pathogenic enzymes (pectinase, cellulase) secreted by M. fructicola to reduce the decomposition of plant tissues, activate the antioxidant enzymes (peroxidase, polyphenol oxidase, catalase, and superoxide dismutase) in the fruit to eliminate excessive reactive oxygen species in order to reduce plant cell damage, and trigger the disease-resistant enzymes (phenylalanine ammonia-lyase, chitinases, and β-1,3-glucanase) to enhance the resistance of peach fruit to M. fructicola and inhibit its growth. This study suggests that CF-3 VOCs could activate disease-resistant enzymes to prevent the invasion of pathogenic fungi and induce resistance in peach, thereby providing a theoretical basis for future applications.
Collapse
Affiliation(s)
- Minshun Zhou
- School of Life Sciences, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Bio-Energy Crops, Shanghai, China
| | - Peizhong Li
- School of Life Sciences, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Bio-Energy Crops, Shanghai, China
| | - Shiyuan Wu
- School of Life Sciences, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Bio-Energy Crops, Shanghai, China
| | - Pengyu Zhao
- School of Life Sciences, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Bio-Energy Crops, Shanghai, China
| | - Haiyan Gao
- School of Life Sciences, Shanghai University, Shanghai, China.,Shanghai Key Laboratory of Bio-Energy Crops, Shanghai, China
| |
Collapse
|
14
|
Tian L, Chang C, Ma L, Nasir F, Zhang J, Li W, Tran LSP, Tian C. Comparative study of the mycorrhizal root transcriptomes of wild and cultivated rice in response to the pathogen Magnaporthe oryzae. RICE (NEW YORK, N.Y.) 2019; 12:35. [PMID: 31076886 PMCID: PMC6510786 DOI: 10.1186/s12284-019-0287-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 04/09/2019] [Indexed: 05/21/2023]
Abstract
BACKGROUND Rice, which serves as a staple food for more than half of the world's population, is very susceptible to the pathogenic fungus, Magnaporthe oryzae. However, common wild rice (Oryza rufipogon), which is the ancestor of Asian cultivated rice (O. sativa), has significant potential as a genetic source of resistance to M. oryzae. Recent studies have shown that the domestication of rice has altered its relationship to symbiotic arbuscular mycorrhizae. A comparative response of wild and domestic rice inhabited by mycorrhizae to infection by M. oryzae has not been documented. RESULTS In the current study, roots of wild and cultivated rice colonized with the arbuscular mycorrhizal (AM) fungus (AMF) Rhizoglomus intraradices were used to compare the transcriptomic responses of the two species to infection by M. oryzae. Phenotypic analysis indicated that the colonization of wild and cultivated rice with R. intraradices improved the resistance of both genotypes to M. oryzae. Wild AM rice, however, was more resistant to M. oryzae than the cultivated AM rice, as well as nonmycorrhizal roots of wild rice. Transcriptome analysis indicated that the mechanisms regulating the responses of wild and cultivated AM rice to M. oryzae invasion were significantly different. The expression of a greater number of genes was changed in wild AM rice than in cultivated AM rice in response to the pathogen. Both wild and cultivated AM rice exhibited a shared response to M. oryzae which included genes related to the auxin and salicylic acid pathways; all of these play important roles in pathogenesis-related protein synthesis. In wild AM rice, secondary metabolic and biotic stress-related analyses indicated that the jasmonic acid synthesis-related α-linolenic acid pathway, the phenolic and terpenoid pathways, as well as the phenolic and terpenoid syntheses-related mevalonate (MVA) pathway were more affected by the pathogen. Genes related to these pathways were more significantly enriched in wild AM rice than in cultivated AM rice in response to M. oryzae. On the other hand, genes associated with the 'brassinosteroid biosynthesis' were more enriched in cultivated AM rice. CONCLUSIONS The AMF R. intraradices-colonized rice plants exhibited greater resistance to M. oryzae than non-AMF-colonized plants. The findings of the current study demonstrate the potential effects of crop domestication on the benefits received by the host via root colonization with AMF(s), and provide new information on the underlying molecular mechanisms. In addition, results of this study can also help develop guidelines for the applications of AMF(s) when planting rice.
Collapse
Affiliation(s)
- Lei Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
| | - Chunling Chang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lina Ma
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fahad Nasir
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- School of Life Sciences, Northeast Normal University, Changchun City, Jilin China
| | - Jianfeng Zhang
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
- College of Life Science, Jilin Agricultural University, Changchun, Jilin China
| | - Weiqiang Li
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
| | - Lam-Son Phan Tran
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, 1-7-22, Suehiro-cho, Tsurumi, Yokohama, 230-0045 Japan
- Institute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, 550000 Vietnam
| | - Chunjie Tian
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102 China
| |
Collapse
|