1
|
Sun Y, Alseekh S, Fernie AR. Plant secondary metabolic responses to global climate change: A meta-analysis in medicinal and aromatic plants. GLOBAL CHANGE BIOLOGY 2023; 29:477-504. [PMID: 36271675 DOI: 10.1111/gcb.16484] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Plant secondary metabolites (SMs) play crucial roles in plant-environment interactions and contribute greatly to human health. Global climate changes are expected to dramatically affect plant secondary metabolism, yet a systematic understanding of such influences is still lacking. Here, we employed medicinal and aromatic plants (MAAPs) as model plant taxa and performed a meta-analysis from 360 publications using 1828 paired observations to assess the responses of different SMs levels and the accompanying plant traits to elevated carbon dioxide (eCO2 ), elevated temperature (eT), elevated nitrogen deposition (eN) and decreased precipitation (dP). The overall results showed that phenolic and terpenoid levels generally respond positively to eCO2 but negatively to eN, while the total alkaloid concentration was increased remarkably by eN. By contrast, dP promotes the levels of all SMs, while eT exclusively exerts a positive influence on the levels of phenolic compounds. Further analysis highlighted the dependence of SM responses on different moderators such as plant functional types, climate change levels or exposure durations, mean annual temperature and mean annual precipitation. Moreover, plant phenolic and terpenoid responses to climate changes could be attributed to the variations of C/N ratio and total soluble sugar levels, while the trade-off supposition contributed to SM responses to climate changes other than eCO2 . Taken together, our results predicted the distinctive SM responses to diverse climate changes in MAAPs and allowed us to define potential moderators responsible for these variations. Further, linking SM responses to C-N metabolism and growth-defence balance provided biological understandings in terms of plant secondary metabolic regulation.
Collapse
Affiliation(s)
- Yuming Sun
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources/The Jiangsu Provincial Platform for Conservation and Utilization of Agricultural Germplasm, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden, Memorial Sun Yat-Sen), Nanjing, China
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| |
Collapse
|
2
|
Song R, Xia Y, Zhao Z, Yang X, Zhang N. Effects of plant growth regulators on the contents of rutin, hyperoside and quercetin in Hypericum attenuatum Choisy. PLoS One 2023; 18:e0285134. [PMID: 37134044 PMCID: PMC10156007 DOI: 10.1371/journal.pone.0285134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 04/14/2023] [Indexed: 05/04/2023] Open
Abstract
To explore the accumulation of rutin, hyperoside and quercetin in Hypericum attenuatum Choisy under treatment with different plant growth regulators, 100 mg/L, 200 mg/L and 300 mg/L cycocel, 100 mg/L, 200 mg/L and 300 mg/L mepiquat chloride and 1 mg/L, 2 mg/L and 3 mg/L naphthalene acetic acid were foliage sprayed on Hypericum attenuatum Choisy plants at the early growth stage. We sampled and determined the important flavonoid contents at the flowering stage. The results showed that the three plant growth regulators had different effects on the accumulation of rutin, hyperoside and quercetin in the leaves, stems and flowers of Hypericum attenuatum Choisy at the flowering stage. After spraying 1 mg/L naphthalene acetic acid at the early growth stage, the rutin contents in the leaves, stems and flowers increased by approximately 60.33%, 223.85% and 192.02%, respectively (P < 0.05). Spraying 100 mg/L mepiquat chloride increased the hyperoside contents in the leaves and flowers by approximately 7.77% and 12.87%, respectively (P < 0.05). Spraying 2 mg/L naphthalene acetic acid significantly increased the quercetin contents in the flowers and leaves by approximately 95.62% and 47.85%, respectively (P < 0.05). Therefore, at the early growth stage, spraying 1 mg/L naphthalene acetic acid significantly increased rutin content, spraying 100 mg/L mepiquat chloride significantly increased hyperoside content, and spraying 2 mg/L naphthalene acetic acid significantly increased quercetin content in Hypericum attenuatum Choisy. In conclusion, the accumulation of flavonoids in Hypericum attenuatum Choisy was regulated by plant growth regulators.
Collapse
Affiliation(s)
- Rui Song
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Yunrui Xia
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Zhe Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Xing Yang
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, Jilin Province, China
| | - Nanyi Zhang
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, Jilin Province, China
| |
Collapse
|
3
|
The Effect of Low Positive Temperatures on the Formation of Secondary Metabolites in Rhodiola quadrifida (Pall.) Fisch. et C.A. Mey. In Vitro Cultures. Processes (Basel) 2022. [DOI: 10.3390/pr11010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Global warming is one of the most serious problems leading to changes in the distribution areas of species and biodiversity. Rhodiola quadrifida is a rare plant with adaptogenic properties and grows in the highlands in a narrow temperature range of 2–15 °C. The aim of our work was to study the growth and content of the main metabolites in two in vitro cultures of Rhodiola quadrifida at temperatures of 5, 15 and 25 °C. Hairy roots and calli were cultivated on agar medium for 28 days. The maximum values of the growth index were observed at 25 °C (2.32 and 2.12 for calli and hairy roots, respectively). HPLC-MS showed the absence of tyrosol and rosarin in both cultures, and rosin in the root culture. The content of salidroside changed slightly in calli and roots. Cultivation at 5 °C significantly stimulated the formation of rosin in calli. Only a residual amount of rosavin was noted in the roots, regardless of temperature. The content of rosin was higher in calli at 15 °C with a maximum content at the end of the cultivation cycle 25 µg/g DW. Thus, Rhodiola quadrifida will be able to grow with an increase in temperature by 10 °C but this will be accompanied by a significant reduction in its medicinal value
Collapse
|
4
|
Bruňáková K, Bálintová M, Petijová L, Čellárová E. Does phenotyping of Hypericum secondary metabolism reveal a tolerance to biotic/abiotic stressors? FRONTIERS IN PLANT SCIENCE 2022; 13:1042375. [PMID: 36531362 PMCID: PMC9748567 DOI: 10.3389/fpls.2022.1042375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
In this review we summarize the current knowledge about the changes in Hypericum secondary metabolism induced by biotic/abiotic stressors. It is known that the extreme environmental conditions activate signaling pathways leading to triggering of enzymatic and non-enzymatic defense systems, which stimulate production of secondary metabolites with antioxidant and protective effects. Due to several groups of bioactive compounds including naphthodianthrones, acylphloroglucinols, flavonoids, and phenylpropanes, the world-wide Hypericum perforatum represents a high-value medicinal crop of Hypericum genus, which belongs to the most diverse genera within flowering plants. The summary of the up-to-date knowledge reveals a relationship between the level of defense-related phenolic compounds and interspecific differences in the stress tolerance. The chlorogenic acid, and flavonoids, namely the amentoflavone, quercetin or kaempferol glycosides have been reported as the most defense-related metabolites associated with plant tolerance against stressful environment including temperature, light, and drought, in association with the biotic stimuli resulting from plant-microbe interactions. As an example, the species-specific cold-induced phenolics profiles of 10 Hypericum representatives of different provenances cultured in vitro are illustrated in the case-study. Principal component analysis revealed a relationship between the level of defense-related phenolic compounds and interspecific differences in the stress tolerance indicating a link between the provenance of Hypericum species and inherent mechanisms of cold tolerance. The underlying metabolome alterations along with the changes in the activities of ROS-scavenging enzymes, and non-enzymatic physiological markers are discussed. Given these data it can be anticipated that some Hypericum species native to divergent habitats, with interesting high-value secondary metabolite composition and predicted high tolerance to biotic/abiotic stresses would attract the attention as valuable sources of bioactive compounds for many medicinal purposes.
Collapse
|
5
|
Su H, Jin L, Li M, Paré PW. Low temperature modifies seedling leaf anatomy and gene expression in Hypericum perforatum. FRONTIERS IN PLANT SCIENCE 2022; 13:1020857. [PMID: 36237502 PMCID: PMC9552896 DOI: 10.3389/fpls.2022.1020857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Hypericum perforatum, commonly known as St John's wort, is a perennial herb that produces the anti-depression compounds hypericin (Hyp) and hyperforin. While cool temperatures increase plant growth, Hyp accumulation as well as changes transcript profiles, alterations in leaf structure and genes expression specifically related to Hyp biosynthesis are still unresolved. Here, leaf micro- and ultra-structure is examined, and candidate genes encoding for photosynthesis, energy metabolism and Hyp biosynthesis are reported based on transcriptomic data collected from H. perforatum seedlings grown at 15 and 22°C. Plants grown at a cooler temperature exhibited changes in macro- and micro-leaf anatomy including thicker leaves, an increased number of secretory cell, chloroplasts, mitochondria, starch grains, thylakoid grana, osmiophilic granules and hemispherical droplets. Moreover, genes encoding for photosynthesis (64-genes) and energy (35-genes) as well as Hyp biosynthesis (29-genes) were differentially regulated with an altered growing temperature. The anatomical changes and genes expression are consistent with the plant's ability to accumulate enhanced Hyp levels at low temperatures.
Collapse
Affiliation(s)
- Hongyan Su
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, China
| | - Mengfei Li
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Paul W. Paré
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbuck, TX, United States
| |
Collapse
|
6
|
He J, Yao L, Pecoraro L, Liu C, Wang J, Huang L, Gao W. Cold stress regulates accumulation of flavonoids and terpenoids in plants by phytohormone, transcription process, functional enzyme, and epigenetics. Crit Rev Biotechnol 2022:1-18. [PMID: 35848841 DOI: 10.1080/07388551.2022.2053056] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plants make different defense mechanisms in response to different environmental stresses. One common way is to produce secondary metabolites. Temperature is the main environmental factor that regulates plant secondary metabolites, especially flavonoids and terpenoids. Stress caused by temperature decreasing to 4-10 °C is conducive to the accumulation of flavonoids and terpenoids. However, the accumulation mechanism under cold stress still lacks a systematic explanation. In this review, we summarize three aspects of cold stress promoting the accumulation of flavonoids and terpenoids in plants, that is, by affecting (1) the content of endogenous plant hormones, especially jasmonic acid and abscisic acid; (2) the expression level and activity of important transcription factors, such as bHLH and MYB families. This aspect also includes post-translational modification of transcription factors caused by cold stress; (3) key enzyme genes expression and activity in the biosynthesis pathway, in addition, the rate-limiting enzyme and glycosyltransferases genes are responsive to cold stress. The systematic understanding of cold stress regulates flavonoids, and terpenoids will contribute to the future research of genetic engineering breeding, metabolism regulation, glycosyltransferases mining, and plant synthetic biology.
Collapse
Affiliation(s)
- Junping He
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lu Yao
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lorenzo Pecoraro
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Changxiao Liu
- Tianjin Pharmaceutical Research Institute, Tianjin, China
| | - Juan Wang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
7
|
Abstract
The Hypericum genus contains one of the few genera of flowering plants that contains a species with authorization for marketing as a traditional medicine, H. perforatum. Due to the fact that this is a large genus, comprising numerous species, a large amount of interest has been shown over the years in the study of its various pharmacological activities. The chemical composition of these species is quite similar, containing compounds belonging to the class of phloroglucinol derivatives, naphthodianthrones, phenols, flavonoids and essential oils. Taking all of this into consideration, the present study aims to offer an overview of the species of the genus from the point of view of their extraction techniques and analysis methods. An extensive study on the scientific literature was performed, and it revealed a wide range of solvents and extraction methods, among which ethanol and methanol, together with maceration and ultrasonication, are the most frequent. Regarding analysis methods, separation and spectral techniques are the most employed. Therefore, the present study provides necessary data for future studies on the species of the genus, offering a complete overview and a possible basis for their development.
Collapse
|
8
|
Li M, Cui X, Jin L, Li M, Wei J. Bolting reduces ferulic acid and flavonoid biosynthesis and induces root lignification in Angelica sinensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:171-179. [PMID: 34891073 DOI: 10.1016/j.plaphy.2021.12.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/27/2021] [Accepted: 12/04/2021] [Indexed: 06/13/2023]
Abstract
Angelica sinensis is a perennial herbaceous species that produces the bioactive metabolites ferulic acid and alkylphthalides widely applied in the treatment of cardio-cerebrovascular diseases. While the effects of bolting on plant biomass and metabolites accumulation have been partly investigated, the mechanism of bolting reducing metabolites biosynthesis is still limited. In this study, the root biomass, accumulations of ferulic acid, flavonoids and lignin, antioxidant capacity, and related genes expression at four different bolting stages were investigated. The results showed that there was a 2.2-, 2.4- and 2.9-fold decrease of the root biomass, ferulic acid and flavonoids contents, while a 2.9-fold increase of lignin content on a per plant basis during the bolting stages. The antioxidant capacity also exhibited significant decrease with growth and development. The differential expression levels of the 20 genes, which are involved in biosynthesis of ferulic acid (e.g. AsPAL1, As4CLs and AsHCT), flavonoids (e.g. AsCHS, AsCHI and AsI3'H) and lignin (e.g. AsCAD1 and AsLACs), were consistent with changes in the above metabolites accumulation. The findings will provide useful references for improving the production of bioactive metabolites in A. sinensis.
Collapse
Affiliation(s)
- Meiling Li
- Key Lab of Aridland Crop Science / College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xiuwen Cui
- Key Lab of Aridland Crop Science / College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Mengfei Li
- Key Lab of Aridland Crop Science / College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
9
|
Su H, Li J, Chen S, Sun P, Xing H, Yang D, Zhang X, Li M, Wei J. Physiological and Transcriptomic Analysis Provide Insight into Low Temperature Enhancing Hypericin Biosynthesis in Hypericum perforatum. Molecules 2021; 26:molecules26082294. [PMID: 33921038 PMCID: PMC8071384 DOI: 10.3390/molecules26082294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 11/26/2022] Open
Abstract
Hypericin (Hyp), well-known as an antidepressant, is mainly extracted from Hypericum perforatum. Although Hyp accumulation and biomass are greater at lower compared to higher temperature, the regulation mechanism has not been reported. Here, the physiological characteristics and transcriptome of H. perforatum grown at 15 and 22 °C were determined and analyzed by HPLC and de novo sequencing. The results showed that the stomatal density and opening percentages were 1.1- and 1.4-fold more, and the Hyp content was 4.5-fold greater at 15 °C compared to 22 °C. A total of 1584 differentially expressed genes (DEGs) were observed at 15 versus 22 °C, with 749 characterized genes, 421 upregulated (UR) and 328 downregulated (DR). Based on biological functions, 150 genes were associated with Hyp biosynthesis, plant growth and the stress response, including photosynthesis, carbohydrate metabolism, fatty acids metabolism, cytochrome P450 (CYPs), morpho-physiological traits, heat shock proteins (HSPs), cold-responsive proteins (CRPs) and transcription factors (TFs). The differential expression levels of the master genes were confirmed by qRT-PCR and almost consistent with their Reads Per kb per Million (RPKM) values. This physiological and transcriptomic analyses provided insight into the regulation mechanisms of low temperature enhancing Hyp biosynthesis in H. perforatum.
Collapse
Affiliation(s)
- Hongyan Su
- Key Lab of Arid Land Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.S.); (J.L.); (S.C.); (P.S.); (H.X.); (D.Y.)
| | - Jie Li
- Key Lab of Arid Land Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.S.); (J.L.); (S.C.); (P.S.); (H.X.); (D.Y.)
| | - Sijin Chen
- Key Lab of Arid Land Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.S.); (J.L.); (S.C.); (P.S.); (H.X.); (D.Y.)
| | - Ping Sun
- Key Lab of Arid Land Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.S.); (J.L.); (S.C.); (P.S.); (H.X.); (D.Y.)
| | - Hua Xing
- Key Lab of Arid Land Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.S.); (J.L.); (S.C.); (P.S.); (H.X.); (D.Y.)
| | - Delong Yang
- Key Lab of Arid Land Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.S.); (J.L.); (S.C.); (P.S.); (H.X.); (D.Y.)
| | - Xiaona Zhang
- Gansu Herbal Medicine Planting Co., Ltd., Lanzhou 730000, China;
| | - Mengfei Li
- Key Lab of Arid Land Crop Science/College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China; (H.S.); (J.L.); (S.C.); (P.S.); (H.X.); (D.Y.)
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (M.L.); (J.W.)
| | - Jianhe Wei
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
- Correspondence: (M.L.); (J.W.)
| |
Collapse
|
10
|
Tavakoli F, Rafieiolhossaini M, Ravash R, Ebrahimi M. Subject: UV-B radiation and low temperature promoted hypericin biosynthesis in adventitious root culture of Hypericum perforatum. PLANT SIGNALING & BEHAVIOR 2020; 15:1764184. [PMID: 32419579 PMCID: PMC8570718 DOI: 10.1080/15592324.2020.1764184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/23/2020] [Accepted: 04/29/2020] [Indexed: 05/06/2023]
Abstract
The hypericin is assumed as a highly demanded and key bioactive compound, which has antiviral, antimicrobial, antioxidant, and antitumor properties isolated from Hypericum perforatum. Nowadays, increasing bioactive molecules' contents through generating novel compounds is one of the major research objectives of H. perforatum biotechnology; however, this plant remains recalcitrant and unmanageable to Agrobacterium mediated transformation and genetic improvement programs. In order to overcome these challenges, many researchers have focused on this unruly herb using biotic and abiotic eliciting strategies. Therefore, two experiments were separately designed for the evaluation of two types of abiotic elicitors, aiming at increasing the productivity of hypericin in the adventitious root suspension culture of H. perforatum. The first one was accomplished to evaluate the effect of UV-B light elicitors (the exposure time of 30, 60, and 90 min) and the recovery treatment (with or without) on hypericin content while the second one was assessed the effect of various temperatures (4°C, 8°C, 16°C, and 25°C) in three different exposure times (24 h, 72 h, and 7 d). Based on the results, UV-B (60 min) treatment followed by the recovery produced 0.430 µg/g DW hypericin and was distinguished as the most effective UV-B elicitation treatment. In addition, a temperature of 4°C for a period of 72 hours is required to get the highest amount of hypericin content. These findings indicate the fact that hypericin biosynthesis is notably affected by UV-B exposure time and Low-temperature. The data also clearly elucidate further mechanisms of hypericin production in H. perforatum adventitious root culture.
Collapse
Affiliation(s)
- Farahnaz Tavakoli
- Agronomy Department, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | | | - Rudabeh Ravash
- Plant Breeding and Biotechnology Department, Faculty of Agriculture, Shahrekord University, Shahrekord, Iran
| | - Morteza Ebrahimi
- Plant Tissue Culture Department, Agricultural Biotechnology Research Institute of Iran – Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|