1
|
Huang X, Zhan J, Wei H, Lou S, Bian H, Wang J, Han N. Dynamic changes in DNA methylation play a regulatory role in gene expression during the formation of callus from immature barley embryos. BMC PLANT BIOLOGY 2025; 25:515. [PMID: 40269680 PMCID: PMC12016361 DOI: 10.1186/s12870-025-06527-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 04/08/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND Inducing embryogenic callus with regenerative potential is a pivotal step in barley transformation. Our previous research suggests that epigenetic regulatory factors might influence barley callus formation and regeneration capacity, though the exact mechanisms remain unclear. RESULTS In this study, we utilized RNA sequencing (RNA-seq) and whole-genome bisulfite sequencing (WGBS) to examine transcriptional and DNA methylome alterations during callus induction from immature embryos of the barley cultivar Golden Promise. Our findings revealed a slight decline in overall DNA methylation content and distinct 5-methylcytosine (5mC) enrichment patterns in CG, CHG, and CHH sequence contexts within genes and transposable elements. By integrating DNA methylation and transcriptome data, we identified differentially expressed genes (DEGs) associated with differentially methylated regions (DMRs) in the CG (879 DEGs), CHG (229 DEGs), and CHH (2020 DEGs) contexts. Notably, DMRs linked to 210, 94, and 1,214 DEGs were located in the 2 kb upstream regions in the CG, CHG, and CHH contexts, respectively. A negative correlation was observed between promoter methylation levels and transcript abundances of key regeneration-associated genes, such as HvKRP4, HvCYCD1;1, HvSCR, HvRAP2.6L/ERF113, HvWIND4, HvWOX5, HvE2Fa, HvPHV, and HvLBD16. This indicates a regulatory function of DNA methylation in transcriptional regulation during callus induction. Furthermore, treatment with the DNA methylation inhibitor 5-Aza-2'-deoxycytidine (5-Aza-dC) suppressed callus formation. Comparative RNA sequencing analysis between control and treated groups revealed 2,628 and 1,224 DEGs potentially regulated by DNA methylation, at 2- and 9-days post-induction, respectively. These genes were primarily associated with cell cycle and abscisic acid signalling pathways, influenced directly and indirectly by the global reduction in DNA methylation induced by 5-Aza-dC treatment. CONCLUSIONS This study provides insights into the intricate relationship between DNA methylation and gene expression during barley callus formation. It could inform future efforts to enhance regeneration and transformation in this significant crop species. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Xinguo Huang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Jing Zhan
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Haonan Wei
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Siying Lou
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Hongwu Bian
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Junhui Wang
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Ning Han
- Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
2
|
Kiełkowska A, Brąszewska A. Demethylating drugs alter protoplast development, regeneration, and the genome stability of protoplast-derived regenerants of cabbage. BMC PLANT BIOLOGY 2025; 25:463. [PMID: 40217153 PMCID: PMC11987290 DOI: 10.1186/s12870-025-06473-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/26/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND Methylation is a major DNA modification contributing to the epigenetic regulation of nuclear gene expression and genome stability. DNA methyltransferases (DNMT) inhibitors are widely used in epigenetic and cancer research, but their biological effects and the mechanisms of their action are not well recognized in plants. This research focuses on comparing the effects of two DNMT inhibitors, namely 5-azacytidine (AZA) and zebularine (ZEB), on cellular processes, including organogenesis in vitro. Protoplasts are a unique single-cell system to analyze biological processes in plants; therefore in our study, both inhibitors were applied to protoplast culture medium or the medium used for the regeneration of protoplast-derived calluses. RESULTS AZA induced a dose-dependent reduction in protoplast viability, delayed cell wall reconstruction, and reduced mitotic activity, while ZEB in low concentration (2.5 µM) promoted mitoses and stimulated protoplast-derived callus development. The higher effectiveness of shoot regeneration was observed when drugs were applied directly to protoplasts compared to protoplast-derived callus treatments. Our findings reveal that both drugs affected the genome stability of the obtained regenerants by inducing polyploidization. Both drugs induced hypomethylation and modulated the distribution patterns of methylated DNA in the protoplast-derived callus. CONCLUSION AZA was more toxic to plant protoplasts compared to ZEB. Both inhibitors affect the ploidy status of protoplast-derived regenerants. A comparison of the data on global methylation levels with the regeneration efficiency suggests that organogenesis in cabbage is partially controlled by variations in DNA methylation levels.
Collapse
Affiliation(s)
- Agnieszka Kiełkowska
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Al. 29-Listopada 54, Krakow, 31-425, Poland.
| | - Agnieszka Brąszewska
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 28 Jagiellonska Street, Katowice, 40-032, Poland
| |
Collapse
|
3
|
Hussain SS, Li Y, Liu J, Abbas M, Li Q, Deng H, Abbas S, Han K, Han J, Sun Y, Li Y. DNA Hypomethylation Activates the RpMYB2-Centred Gene Network to Enhance Regeneration of Adventitious Roots. PLANT, CELL & ENVIRONMENT 2025; 48:1674-1691. [PMID: 39468797 DOI: 10.1111/pce.15236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024]
Abstract
Plants, being immobile, are exposed to environmental adversities such as wind, snow and animals that damage their structure, making regeneration essential for their survival. The adventitious roots (ARs) primarily emerge from a detached explant to uptake nutrients; therefore, the molecular network involved in their regeneration needs to be explored. DNA methylation, a key epigenetic mark, influences molecular pathways, and recent studies suggested its role in regeneration. In our research, the application of 5-azacytidine (5-azaC), an inhibitor of DNA methylation, caused the earlier initiation and development of root primordia and consequently enhanced the AR regeneration rate in Robinia psuedoacacia L (black locust). The whole-genome bisulfite sequencing (WGBS) revealed a decrease in global methylation and an increase in hypomethylated cytosine sites and regions across all contexts including CHH, CHG and mergedCG caused transcriptional variations in 5-azaC-treated sample. The yeast two-hybrid (Y2H) assay revealed a RpMYB2-centred network of transcriptionally activated transcription factors (TFs) including RpWRKY23, RpGATA23, RpSPL16 and other genes like RpSDP, RpSS1, RpBEN1, RpGULL05 and RpCUV with nuclear localization suggesting their potential co-localization. Additionally, yeast one-hybrid (Y1H) assay showed the interaction of RpMYB2 interactors, RpGATA23 and RpWRKY23, with promoters of RpSK6 and RpCDC48, and luciferase reporting assay (LRA) validated their binding with RpSK6. Our results revealed that hypomethylation-mediated transcriptomic modifications activated the RpMYB2-centred gene network to enhance AR regeneration in black locust hypocotyl cuttings. These findings pave the way for genetic modification to improve plant regeneration ability and increase wood production while withstanding environmental damage.
Collapse
Affiliation(s)
- Syed Sarfaraz Hussain
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yapeng Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jie Liu
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Manzar Abbas
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, China
| | - Quanzi Li
- Department of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou, China
| | - Houyin Deng
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Sammar Abbas
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Kunjin Han
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Juan Han
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
4
|
Hesami M, Pepe M, Spitzer-Rimon B, Eskandari M, Jones AMP. Epigenetic factors related to recalcitrance in plant biotechnology. Genome 2025; 68:1-11. [PMID: 39471459 DOI: 10.1139/gen-2024-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
This review explores the challenges and potential solutions in plant micropropagation and biotechnology. While these techniques have proven successful for many species, certain plants or tissues are recalcitrant and do not respond as desired, limiting the application of these technologies due to unattainable or minimal in vitro regeneration rates. Indeed, traditional in vitro culture techniques may fail to induce organogenesis or somatic embryogenesis in some plants, leading to classification as in vitro recalcitrance. This paper focuses on recalcitrance to somatic embryogenesis due to its promise for regenerating juvenile propagules and applications in biotechnology. Specifically, this paper will focus on epigenetic factors that regulate recalcitrance as understanding them may help overcome these barriers. Transformation recalcitrance is also addressed, with strategies proposed to improve transformation frequency. The paper concludes with a review of CRISPR-mediated genome editing's potential in modifying somatic embryogenesis-related epigenetic status and strategies for addressing transformation recalcitrance.
Collapse
Affiliation(s)
- Mohsen Hesami
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Marco Pepe
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ben Spitzer-Rimon
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
- Institute of Plant Sciences, Agricultural Research Organization-Volcani, HaMaccabbim Road 68, 7505101, Rishon LeZion, Israel
| | - Milad Eskandari
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada
| | | |
Collapse
|
5
|
Chen Y, Guo P, Dong Z. The role of histone acetylation in transcriptional regulation and seed development. PLANT PHYSIOLOGY 2024; 194:1962-1979. [PMID: 37979164 DOI: 10.1093/plphys/kiad614] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 11/20/2023]
Abstract
Histone acetylation is highly conserved across eukaryotes and has been linked to gene activation since its discovery nearly 60 years ago. Over the past decades, histone acetylation has been evidenced to play crucial roles in plant development and response to various environmental cues. Emerging data indicate that histone acetylation is one of the defining features of "open chromatin," while the role of histone acetylation in transcription remains controversial. In this review, we briefly describe the discovery of histone acetylation, the mechanism of histone acetylation regulating transcription in yeast and mammals, and summarize the research progress of plant histone acetylation. Furthermore, we also emphasize the effect of histone acetylation on seed development and its potential use in plant breeding. A comprehensive knowledge of histone acetylation might provide new and more flexible research perspectives to enhance crop yield and stress resistance.
Collapse
Affiliation(s)
- Yan Chen
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Peiguo Guo
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Zhicheng Dong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
6
|
Singh VK, Ahmed S, Saini DK, Gahlaut V, Chauhan S, Khandare K, Kumar A, Sharma PK, Kumar J. Manipulating epigenetic diversity in crop plants: Techniques, challenges and opportunities. Biochim Biophys Acta Gen Subj 2024; 1868:130544. [PMID: 38104668 DOI: 10.1016/j.bbagen.2023.130544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Epigenetic modifications act as conductors of inheritable alterations in gene expression, all while keeping the DNA sequence intact, thereby playing a pivotal role in shaping plant growth and development. This review article presents an overview of techniques employed to investigate and manipulate epigenetic diversity in crop plants, focusing on both naturally occurring and artificially induced epialleles. The significance of epigenetic modifications in facilitating adaptive responses is explored through the examination of how various biotic and abiotic stresses impact them. Further, environmental chemicals are explored for their role in inducing epigenetic changes, particularly focusing on inhibitors of DNA methylation like 5-AzaC and zebularine, as well as inhibitors of histone deacetylation including trichostatin A and sodium butyrate. The review delves into various approaches for generating epialleles, including tissue culture techniques, mutagenesis, and grafting, elucidating their potential to induce heritable epigenetic modifications in plants. In addition, the ground breaking CRISPR/Cas is emphasized for its accuracy in targeting specific epigenetic changes. This presents a potent tools for deciphering the intricacies of epigenetic mechanisms. Furthermore, the intricate relationship between epigenetic modifications and non-coding RNA expression, including siRNAs and miRNAs, is investigated. The emerging role of exo-RNAi in epigenetic regulation is also introduced, unveiling its promising potential for future applications. The article concludes by addressing the opportunities and challenges presented by these techniques, emphasizing their implications for crop improvement. Conclusively, this extensive review provides valuable insights into the intricate realm of epigenetic changes, illuminating their significance in phenotypic plasticity and their potential in advancing crop improvement.
Collapse
Affiliation(s)
| | - Shoeb Ahmed
- Ch. Charan Singh University, Meerut 250004, India
| | - Dinesh Kumar Saini
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | - Vijay Gahlaut
- University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
| | | | - Kiran Khandare
- Center of Innovative and Applied Bioprocessing, Mohali 140308, Punjab, India
| | - Ashutosh Kumar
- Center of Innovative and Applied Bioprocessing, Mohali 140308, Punjab, India
| | - Pradeep Kumar Sharma
- Ch. Charan Singh University, Meerut 250004, India; Maharaja Suhel Dev State University, Azamgarh 276404, U.P., India
| | - Jitendra Kumar
- National Agri-Food Biotechnology Institute, Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
7
|
Lepri A, Longo C, Messore A, Kazmi H, Madia VN, Di Santo R, Costi R, Vittorioso P. Plants and Small Molecules: An Up-and-Coming Synergy. PLANTS (BASEL, SWITZERLAND) 2023; 12:1729. [PMID: 37111951 PMCID: PMC10145415 DOI: 10.3390/plants12081729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 06/19/2023]
Abstract
The emergence of Arabidopsis thaliana as a model system has led to a rapid and wide improvement in molecular genetics techniques for studying gene function and regulation. However, there are still several drawbacks that cannot be easily solved with molecular genetic approaches, such as the study of unfriendly species, which are of increasing agronomic interest but are not easily transformed, thus are not prone to many molecular techniques. Chemical genetics represents a methodology able to fill this gap. Chemical genetics lies between chemistry and biology and relies on small molecules to phenocopy genetic mutations addressing specific targets. Advances in recent decades have greatly improved both target specificity and activity, expanding the application of this approach to any biological process. As for classical genetics, chemical genetics also proceeds with a forward or reverse approach depending on the nature of the study. In this review, we addressed this topic in the study of plant photomorphogenesis, stress responses and epigenetic processes. We have dealt with some cases of repurposing compounds whose activity has been previously proven in human cells and, conversely, studies where plants have been a tool for the characterization of small molecules. In addition, we delved into the chemical synthesis and improvement of some of the compounds described.
Collapse
Affiliation(s)
- A. Lepri
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - C. Longo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - A. Messore
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - H. Kazmi
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| | - V. N. Madia
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - R. Di Santo
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - R. Costi
- Department of Chemistry and Technology of Drug, Istituto Pasteur Italia—Fondazione Cenci Bolognetti, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (A.M.); (V.N.M.); (R.D.S.); (R.C.)
| | - P. Vittorioso
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.L.); (H.K.)
| |
Collapse
|
8
|
Zhao P, Ma B, Cai C, Xu J. Transcriptome and methylome changes in two contrasting mungbean genotypes in response to drought stress. BMC Genomics 2022; 23:80. [PMID: 35078408 PMCID: PMC8790888 DOI: 10.1186/s12864-022-08315-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
Background Due to drought stress, the growth, distribution, and production of mungbean is severely restricted. Previous study combining physiological and transcriptomic data indicated different genotypes of mungbean exhibited variable responses when exposed to drought stress. Aside from the genetic variation, the modifications of environmentally induced epigenetics alterations on mungbean drought-stress responses were still elusive. Results In this study, firstly, we compared the drought tolerance capacity at seedling stage by detecting physiological parameters in two contrasting genotypes wild mungbean 61 and cultivar 70 in response to drought stress. We found that wild mungbean 61 showed lower level of MDA and higher levels of POD and CAT, suggesting wild mungbean 61 exhibited stronger drought resistance. Transcriptomic analysis indicated totally 2859 differentially expressed genes (DEGs) were detected when 70 compared with 61 (C70 vs C61), and the number increased to 3121 in the comparison of drought-treated 70 compared with drought-treated 61 (D70 vs D61). In addition, when drought-treated 61 and 70 were compared with their controls, the DEGs were 1117 and 185 respectively, with more down-regulated DEGs than up-regulated in D61 vs C61, which was opposite in D70 vs C70. Interestingly, corresponding to this, after drought stress, more hypermethylated differentially methylated regions (DMRs) in 61 were detected and more hypomethylated DMRs in 70 were detected. Further analysis suggested that the main variations between 61 and 70 existed in CHH methylation in promoter. Moreover, the preference of methylation status alterations in D61 vs C61 and D70 vs C70 also fell in CHH sequence context. Further analysis of the correlation between DMRs and DEGs indicated in both D61 vs C61 and D70 vs C70, the DMRs in gene body was significantly negatively correlated with DEGs. Conclusions The physiological parameters in this research suggested that wild mungbean 61 was more resistant to drought stress, with more hypermethylated DMRs and less hypomethylated DMRs after drought stress, corresponding to more down-regulated DEGs than up-regulated DEGs. Among the three DNA methylation contexts CG, CHG, and CHH, asymmetric CHH contexts were more dynamic and prone to be altered by drought stress and genotypic variations. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08315-z.
Collapse
|
9
|
Liu D, Mu Q, Li X, Xu S, Li Y, Gu T. The callus formation capacity of strawberry leaf explant is modulated by DNA methylation. HORTICULTURE RESEARCH 2022; 9:uhab073. [PMID: 35043170 PMCID: PMC8947209 DOI: 10.1093/hr/uhab073] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/16/2021] [Accepted: 11/04/2021] [Indexed: 05/30/2023]
Abstract
Shoot regeneration from leaf tissue requires de-differentiation of cells from a highly differentiated state into an active dividing state, but how this physiological transition occurs and is regulated especially at epigenetic level remains obscure. Here we have characterized the DNA methylome represented by 5-methylcytosine (5mC) in leaf and the callus tissue derived from the leaf explant of woodland strawberry Fragaria vesca. We detected an overall increase of DNA methylation and distinct 5mC enrichment patterns in the CG, CHG and CHH sequence contexts in genetic and transposable elements. Our analyses revealed an intricate relation between DNA methylation and gene expression levels in leaf or leaf-derived callus. However, when considering the genes involved in callus formation and shoot regeneration, e.g. FvePLT3/7, FveWIND3, FveWIND4, FveLOG4 and FveIAA14, their dynamic transcription levels were associated with the differentially methylated regions located in the promoters or gene bodies, indicating a regulatory role of DNA methylation in the transcriptional regulation of pluripotency acquisition in strawberry. Furthermore, application of a DNA methyltransferase inhibitor 5'-azacytidine (5'-Aza) hampered both callus formation and shoot regeneration from the leaf explant. We further showed that 5'-Aza down-regulated the genes involved in cell wall integrity, such as expansin, pectin lyase and pectin methylesterase genes, suggesting an essential role of cell wall metabolism during callus formation. This study reveals the contribution of DNA methylation in callus formation capacity and will provide a basis for developing a strategy to improve shoot regeneration for basic and applied research applications.
Collapse
Affiliation(s)
- Decai Liu
- State Key Laboratory of Plant Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Qin Mu
- State Key Laboratory of Plant Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Xianyang Li
- State Key Laboratory of Plant Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Sheng Xu
- State Key Laboratory of Plant Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA
| | - Tingting Gu
- State Key Laboratory of Plant Genetics and Germplasm Enhancement and College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
10
|
Xu H, Guo Y, Qiu L, Ran Y. Progress in Soybean Genetic Transformation Over the Last Decade. FRONTIERS IN PLANT SCIENCE 2022; 13:900318. [PMID: 35755694 PMCID: PMC9231586 DOI: 10.3389/fpls.2022.900318] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/11/2022] [Indexed: 05/13/2023]
Abstract
Soybean is one of the important food, feed, and biofuel crops in the world. Soybean genome modification by genetic transformation has been carried out for trait improvement for more than 4 decades. However, compared to other major crops such as rice, soybean is still recalcitrant to genetic transformation, and transgenic soybean production has been hampered by limitations such as low transformation efficiency and genotype specificity, and prolonged and tedious protocols. The primary goal in soybean transformation over the last decade is to achieve high efficiency and genotype flexibility. Soybean transformation has been improved by modifying tissue culture conditions such as selection of explant types, adjustment of culture medium components and choice of selection reagents, as well as better understanding the transformation mechanisms of specific approaches such as Agrobacterium infection. Transgenesis-based breeding of soybean varieties with new traits is now possible by development of improved protocols. In this review, we summarize the developments in soybean genetic transformation to date, especially focusing on the progress made using Agrobacterium-mediated methods and biolistic methods over the past decade. We also discuss current challenges and future directions.
Collapse
Affiliation(s)
- Hu Xu
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
| | - Yong Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lijuan Qiu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Lijuan Qiu,
| | - Yidong Ran
- Tianjin Genovo Biotechnology Co., Ltd., Tianjin, China
- Yidong Ran,
| |
Collapse
|
11
|
Kakoulidou I, Avramidou EV, Baránek M, Brunel-Muguet S, Farrona S, Johannes F, Kaiserli E, Lieberman-Lazarovich M, Martinelli F, Mladenov V, Testillano PS, Vassileva V, Maury S. Epigenetics for Crop Improvement in Times of Global Change. BIOLOGY 2021; 10:766. [PMID: 34439998 PMCID: PMC8389687 DOI: 10.3390/biology10080766] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/04/2021] [Accepted: 08/06/2021] [Indexed: 12/15/2022]
Abstract
Epigenetics has emerged as an important research field for crop improvement under the on-going climatic changes. Heritable epigenetic changes can arise independently of DNA sequence alterations and have been associated with altered gene expression and transmitted phenotypic variation. By modulating plant development and physiological responses to environmental conditions, epigenetic diversity-naturally, genetically, chemically, or environmentally induced-can help optimise crop traits in an era challenged by global climate change. Beyond DNA sequence variation, the epigenetic modifications may contribute to breeding by providing useful markers and allowing the use of epigenome diversity to predict plant performance and increase final crop production. Given the difficulties in transferring the knowledge of the epigenetic mechanisms from model plants to crops, various strategies have emerged. Among those strategies are modelling frameworks dedicated to predicting epigenetically controlled-adaptive traits, the use of epigenetics for in vitro regeneration to accelerate crop breeding, and changes of specific epigenetic marks that modulate gene expression of traits of interest. The key challenge that agriculture faces in the 21st century is to increase crop production by speeding up the breeding of resilient crop species. Therefore, epigenetics provides fundamental molecular information with potential direct applications in crop enhancement, tolerance, and adaptation within the context of climate change.
Collapse
Affiliation(s)
- Ioanna Kakoulidou
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
| | - Evangelia V. Avramidou
- Laboratory of Forest Genetics and Biotechnology, Institute of Mediterranean Forest Ecosystems, Hellenic Agricultural Organization-Dimitra (ELGO-DIMITRA), 11528 Athens, Greece;
| | - Miroslav Baránek
- Faculty of Horticulture, Mendeleum—Institute of Genetics, Mendel University in Brno, Valtická 334, 69144 Lednice, Czech Republic;
| | - Sophie Brunel-Muguet
- UMR 950 Ecophysiologie Végétale, Agronomie et Nutritions N, C, S, UNICAEN, INRAE, Normandie Université, CEDEX, F-14032 Caen, France;
| | - Sara Farrona
- Plant and AgriBiosciences Centre, Ryan Institute, National University of Ireland (NUI) Galway, H91 TK33 Galway, Ireland;
| | - Frank Johannes
- Department of Molecular Life Sciences, Technical University of Munich, Liesel-Beckmann-Str. 2, 85354 Freising, Germany; (I.K.); (F.J.)
- Institute for Advanced Study, Technical University of Munich, Lichtenberg Str. 2a, 85748 Garching, Germany
| | - Eirini Kaiserli
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Bower Building, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Michal Lieberman-Lazarovich
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel;
| | - Federico Martinelli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy;
| | - Velimir Mladenov
- Faculty of Agriculture, University of Novi Sad, Sq. Dositeja Obradovića 8, 21000 Novi Sad, Serbia;
| | - Pilar S. Testillano
- Pollen Biotechnology of Crop Plants Group, Centro de Investigaciones Biológicas Margarita Salas-(CIB-CSIC), Ramiro Maeztu 9, 28040 Madrid, Spain;
| | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Bldg. 21, 1113 Sofia, Bulgaria;
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE, EA1207 USC1328, Université d’Orléans, F-45067 Orléans, France
| |
Collapse
|
12
|
Ahmar S, Mahmood T, Fiaz S, Mora-Poblete F, Shafique MS, Chattha MS, Jung KH. Advantage of Nanotechnology-Based Genome Editing System and Its Application in Crop Improvement. FRONTIERS IN PLANT SCIENCE 2021; 12:663849. [PMID: 34122485 PMCID: PMC8194497 DOI: 10.3389/fpls.2021.663849] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/26/2021] [Indexed: 05/05/2023]
Abstract
Agriculture is an important source of human food. However, current agricultural practices need modernizing and strengthening to fulfill the increasing food requirements of the growing worldwide population. Genome editing (GE) technology has been used to produce plants with improved yields and nutritional value as well as with higher resilience to herbicides, insects, and diseases. Several GE tools have been developed recently, including clustered regularly interspaced short palindromic repeats (CRISPR) with nucleases, a customizable and successful method. The main steps of the GE process involve introducing transgenes or CRISPR into plants via specific gene delivery systems. However, GE tools have certain limitations, including time-consuming and complicated protocols, potential tissue damage, DNA incorporation in the host genome, and low transformation efficiency. To overcome these issues, nanotechnology has emerged as a groundbreaking and modern technique. Nanoparticle-mediated gene delivery is superior to conventional biomolecular approaches because it enhances the transformation efficiency for both temporal (transient) and permanent (stable) genetic modifications in various plant species. However, with the discoveries of various advanced technologies, certain challenges in developing a short-term breeding strategy in plants remain. Thus, in this review, nanobased delivery systems and plant genetic engineering challenges are discussed in detail. Moreover, we have suggested an effective method to hasten crop improvement programs by combining current technologies, such as speed breeding and CRISPR/Cas, with nanotechnology. The overall aim of this review is to provide a detailed overview of nanotechnology-based CRISPR techniques for plant transformation and suggest applications for possible crop enhancement.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biological Sciences, Universidad de Talca, Talca, Chile
| | - Tahir Mahmood
- Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sajid Fiaz
- Department of Plant Breeding and Genetics, The University of Haripur, Haripur, Pakistan
| | | | | | | | - Ki-Hung Jung
- Graduate School of Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin, South Korea
| |
Collapse
|
13
|
In Arabidopsis thaliana Cd differentially impacts on hormone genetic pathways in the methylation defective ddc mutant compared to wild type. Sci Rep 2021; 11:10965. [PMID: 34040101 PMCID: PMC8154917 DOI: 10.1038/s41598-021-90528-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 05/12/2021] [Indexed: 12/14/2022] Open
Abstract
DNA methylation plays an important role in modulating plant growth plasticity in response to stress, but mechanisms involved in such control need further investigation. We used drm1 drm2 cmt3 mutant of Arabidopsis thaliana, defective in DNA methylation, to explore metabolic pathways downstream epigenetic modulation under cadmium (Cd) stress. To this aim, a transcriptomic analysis was performed on ddc and WT plants exposed to a long-lasting (21 d) Cd treatment (25/50 µM), focusing on hormone genetic pathways. Growth parameters and hormones amount were also estimated. Transcriptomic data and hormone quantification showed that, under prolonged Cd treatment, level and signalling of growth-sustaining hormones (auxins, CKs, GAs) were enhanced and/or maintained, while a decrease was detected for stress-related hormones (JA, ABA, SA), likely as a strategy to avoid the side effects of their long-lasting activation. Such picture was more effective in ddc than WT, already at 25 µM Cd, in line with its better growth performance. A tight relationship between methylation status and the modulation of hormone genetic pathways under Cd stress was assessed. We propose that the higher genome plasticity conferred to ddc by DNA hypomethylated status underlies its prompt response to modulate hormones genetic pathways and activity and assure a flexible growth.
Collapse
|
14
|
Sedaghati B, Haddad R, Bandehpour M. Transient expression of human serum albumin (HSA) in tobacco leaves. Mol Biol Rep 2020; 47:7169-7177. [PMID: 32642917 DOI: 10.1007/s11033-020-05640-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/01/2020] [Indexed: 10/23/2022]
Abstract
Today, recombinant human proteins make up a considerable part of FDA-approved biotechnological drugs. The selection of proper expression platform for manufacturing recombinant protein is a vital factor in achieving the optimal yield and quality of a biopharmaceutical in a timely fashion. This experiment was aimed to compare the transient expression level of human serum albumin gene in different tobacco genotype. For this, the Agrobacterium tumefaciens strains LB4404 and GV3101 harboring pBI121-HSA binary vector were infiltered in leaves of three tobacco genotypes, including Nicotiana benthamiana and N. tabacum cv Xanthi and Samsun. The qRT-PCR, SDS-PAGE, western blotting and ELISA analysis were performed to evaluate the expression of HSA gene in transgenic plantlets. Our results illustrated that the expression level of rHSA in tobacco leaves was highly dependent on Agrobacterium strains, plant genotypes and harvesting time. The highest production of recombinant HSA protein was obtained in Samsun leaves infected with A. tumefaciens strain GV3101 after 3 days of infiltration.
Collapse
Affiliation(s)
- Behnam Sedaghati
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raheem Haddad
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, Iran.
| | - Mojgan Bandehpour
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Thompson MG, Moore WM, Hummel NFC, Pearson AN, Barnum CR, Scheller HV, Shih PM. Agrobacterium tumefaciens: A Bacterium Primed for Synthetic Biology. BIODESIGN RESEARCH 2020; 2020:8189219. [PMID: 37849895 PMCID: PMC10530663 DOI: 10.34133/2020/8189219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 04/26/2020] [Indexed: 10/19/2023] Open
Abstract
Agrobacterium tumefaciens is an important tool in plant biotechnology due to its natural ability to transfer DNA into the genomes of host plants. Genetic manipulations of A. tumefaciens have yielded considerable advances in increasing transformational efficiency in a number of plant species and cultivars. Moreover, there is overwhelming evidence that modulating the expression of various mediators of A. tumefaciens virulence can lead to more successful plant transformation; thus, the application of synthetic biology to enable targeted engineering of the bacterium may enable new opportunities for advancing plant biotechnology. In this review, we highlight engineering targets in both A. tumefaciens and plant hosts that could be exploited more effectively through precision genetic control to generate high-quality transformation events in a wider range of host plants. We then further discuss the current state of A. tumefaciens and plant engineering with regard to plant transformation and describe how future work may incorporate a rigorous synthetic biology approach to tailor strains of A. tumefaciens used in plant transformation.
Collapse
Affiliation(s)
- Mitchell G. Thompson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - William M. Moore
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Niklas F. C. Hummel
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Allison N. Pearson
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Collin R. Barnum
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
| | - Henrik V. Scheller
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Patrick M. Shih
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant Biology, University of California-Davis, Davis, CA, USA
- Genome Center, University of California-Davis, Davis, CA, USA
| |
Collapse
|
16
|
Effects of Hormones and Epigenetic Regulation on the Callus and Adventitious Bud Induction of Fraxinus mandshurica Rupr. FORESTS 2020. [DOI: 10.3390/f11050590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Fraxinus mandshurica Rupr. (hereafter “F. mandshurica”) is known as one of northeast China′s important, valuable hardwood timber species. However, tissue culture and micropropagation of the species are difficult and have low efficiency, limiting asexual propagation. In this manuscript, stem explants were utilized to establish an effective regeneration system through adventitious bud organogenesis. The factors influencing callus regeneration in vitro were determined, and callus regeneration technology was established. The mechanism of adventitious bud formation was analyzed. Thidiazuron (TDZ) played a crucial role in the formation of adventitious buds. Elevated concentrations of TDZ were beneficial to callus induction and low concentrations of 6-benzyladenine (BA) led to loose state callus formation. The order of callus induction rates for different explants was stem cotyledon (100%) > segment (98.54%) > hypocotyl (92.56%) > root (50.71%). The effects of exogenous addition of 6-BA and TDZ on the endogenous hormone content of plants during the regeneration of adventitious buds were also assessed, as well as the expression characteristics of genes related to the regeneration pathway. The comprehensive analysis results showed that the suitable medium for callus induction and adventitious bud differentiation was c12 medium (MSB5 + 30 g/L sucrose + 7 g/L Agar + 5 mg/L 6-BA + 8 mg/L TDZ + 2 mg/L glycine + 0.1 mg/L IBA + 5% coconut water). The induction rates of callus and adventitious buds were 99.15% and 33.33%. The addition of 2.4 mg/L of the DNA demethylation reagent 5-azacytidine (5-aza) and 0.15 mg/L of the histone deacetylase inhibitor trichostatin A (TSA) increased the rates of adventitious bud induction by 17.78% over the control. This further laid the foundation for large-scale cultivation of excellent varieties and genetic transformation techniques.
Collapse
|
17
|
Amal TC, Karthika P, Dhandapani G, Selvakumar S, Vasanth K. A simple and efficient Agrobacterium-mediated in planta transformation protocol for horse gram (Macrotyloma uniflorum Lam. Verdc.). J Genet Eng Biotechnol 2020; 18:9. [PMID: 32206908 PMCID: PMC7090105 DOI: 10.1186/s43141-020-00023-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 03/02/2020] [Indexed: 11/24/2022]
Abstract
BACKGROUND Recalcitrant nature is a major constraint for the in vitro regeneration and genetic transformation of leguminous species members. Therefore, an improved genetic transformation in horse gram has been developed via in planta method, in which Agrobacterium strain harboring binary vector pCAMBIA2301 was used for the transformation. Several factors affecting in planta transformations were put forth viz. Agrobacterium cell density, co-cultivation, and sonication combined with vacuum infiltration duration which were optimized. RESULTS Germinated seeds were sonicated and vacuum infiltrated with different densities of Agrobacterium culture and co-cultivated in half-strength MS medium with 100 μM of acetosyringone for 48 h. Seedlings were washed with cefotaxime and sowed in vermiculite soil for maturation. T1 plants were subjected to histochemical and molecular analysis to ensure transformation efficiency. Among various combinations analyzed, maximum transformation efficiency (20.8%) was attained with seeds of 5 min sonication combined with vacuum infiltration with 0.6 optical density of Agrobacterium culture. CONCLUSIONS It concludes that a different Agrobacterium cell density with sonication combined with vacuum infiltration has improved transgenic efficiency in horse gram plants. This simple and efficient method is feasible for the stable expression of foreign genes that could be beneficial for future food security.
Collapse
Affiliation(s)
- Thomas Cheeran Amal
- Molecular Biology Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Palanisamy Karthika
- Molecular Biology Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Gurusamy Dhandapani
- PG Research Department of Botany, Kongunadu Arts and Science College, Bharathiar University, Coimbatore, Tamil Nadu 641029 India
| | - Subramaniam Selvakumar
- Department of Biochemistry, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| | - Krishnan Vasanth
- Molecular Biology Laboratory, Department of Botany, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu 641046 India
| |
Collapse
|