1
|
Huang H, Tang C, Liu F, Ren Y, Cheng S, Peng Y, Chen R, Liu Q. Comparative nutrient profiling of three Murraya species through combined metabolomic and transcriptomic analyses. Genomics 2025; 117:111051. [PMID: 40328358 DOI: 10.1016/j.ygeno.2025.111051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/16/2025] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
Murraya, a valuable plant resource, plays a critical role in medicine, industry, and landscaping. Despite its significance, research on Murraya, as well as its development and utilization, remains limited. Therefore, investigating the metabolites and metabolic pathways within its germplasm is of considerable importance. In this study, we utilized LC-MS to comprehensively profile amino acids, nucleotides, saccharides, and vitamins in the leaves of three Murraya materials. In parallel, transcriptome analysis was conducted to unravel the metabolic pathways associated with key metabolites and to identify candidate genes. Our metabolomic profiling identified a total of 215 metabolites, including 95 saccharides, 85 amino acids, 25 nucleotides, and 10 vitamins. Among these, D-(+)-Maltose Monohydrate, L(+)-Arabinose, and DL-Xylose were identified as pivotal candidate metabolites contributing to the distinct characteristics of Murraya materials through differential metabolite analysis. Furthermore, transcriptome and qPCR analysis revealed 11 differentially expressed genes, which are proposed as potential regulators influencing the differential accumulation of these key metabolites. Our study reveals that among the three materials examined, Murraya tetramera exhibits heightened potential for medicinal and industrial applications. This research significantly advances our comprehension of the metabolic regulatory mechanisms at play within Murraya species. Furthermore, it lays a vital scientific groundwork that is instrumental for the advancement of medicinal resources, the enhancement of plant varieties, the expansion of industrial utilization, and the promotion of sustainable agricultural practices for Murraya.
Collapse
Affiliation(s)
- Huaxi Huang
- Key Laboratory for Resource Plants Protection and Utilization of Yili Valley in Xinjiang, Yili Normal University, Yining 835000, China
| | - Chunfeng Tang
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530000, China
| | - Fanglin Liu
- Key Laboratory for Resource Plants Protection and Utilization of Yili Valley in Xinjiang, Yili Normal University, Yining 835000, China
| | - Yong Ren
- Key Laboratory for Resource Plants Protection and Utilization of Yili Valley in Xinjiang, Yili Normal University, Yining 835000, China
| | - Siren Cheng
- Key Laboratory for Resource Plants Protection and Utilization of Yili Valley in Xinjiang, Yili Normal University, Yining 835000, China
| | - Yude Peng
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530000, China
| | - Rong Chen
- Key Laboratory for Resource Plants Protection and Utilization of Yili Valley in Xinjiang, Yili Normal University, Yining 835000, China.
| | - Qin Liu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin 537000, China.
| |
Collapse
|
2
|
Wu Y, Zhao H, Xiao M, Liu H, He H, Peng L, Tao Q, Tang X, Zhang Y, Huang R, Li B, Wang C. A plant growth-promoting bacterium supports cadmium detoxification of rice by inducing phenylpropanoid and flavonoid biosynthesis. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136795. [PMID: 39647335 DOI: 10.1016/j.jhazmat.2024.136795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Cadmium (Cd) is easily absorbed by rice and enters the food chain, posing a health risk to humans. Plant growth promoting bacteria (PGPB) can help the plant respond to Cd stress, but the mechanism of PGPB for Cd reduction is unclear. Therefore, this study was conducted and found inoculation with a newly isolated Pseudomonas koreensis promoted the growth of rice and reduced its Cd content. Fluorescent staining using PI and H2O2 probe indicated that PGPB attenuated oxidative damage in rice. Metabolomics revealed that 59 metabolites were upregulated after inoculation, with phenylpropanoids and flavonoids being significantly activated. Spectrophotometry analysis comfirmed the content of flavonoid, lignin, phenol, glutathione, proline and the activities of antioxidant enzymes were higher in the inoculated rice than in the control. Quantitative PCR showed the expression of genes related to phenylpropanoids (OsPAL, OsC4H, Os4CL) and flavonoids (OsCHS, OsCHI) was significantly increased by PGPB, while the genes of heavy metal transporters (OsNRAMP5, OsHMA2, OsIRT1) were significantly decreased. Overall, this study provides an insight into the PGPB-mediated detoxification mechanism in rice under Cd stress and emphasizes the role of phenylpropanoids and flavonoids in the production of low-Cd rice to ensure human health.
Collapse
Affiliation(s)
- Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Haiyang Zhao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Meijuan Xiao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Huimin Liu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Hua He
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Peng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yanyan Zhang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
3
|
Tang Y, Yan C, Li H, Ma X, Li J, Chi X, Liu Z. Proline inhibits postharvest physiological deterioration of cassava by improving antioxidant capacity. PHYTOCHEMISTRY 2024; 224:114143. [PMID: 38762153 DOI: 10.1016/j.phytochem.2024.114143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
Cassava (Manihot esculenta Crantz), a crucial global tuber crop, encounters significant economic losses attributed to postharvest physiological deterioration (PPD). The PPD phenomenon in cassava is closely related to the accumulation of reactive oxygen species (ROS), and amino acids play a pivotal role in regulating signaling pathways and eliminating ROS. In this study, the storage performance of eight cassava varieties were conducted. Cassava cultivar SC5 showed the best storage performance among the eight cassava varieties, but the edible cassava cultivar SC9 performed much worse. Comparative analysis of free amino acids was conducted in eight cassava varieties, revealing changes in proline, aspartic acid, histidine, glutamic acid, threonine, and serine. Exogenous supplementation of these six amino acids was performed to inhibit PPD of SC9. Proline was confirmed as the key amino acid for inhibiting PPD. Treatment with optimal exogenous proline of 5 g/L resulted in a 17.9% decrease in the deterioration rate compared to untreated cassava. Accompanied by a decrease in H2O2 content and an increase in catalase, superoxide dismutase and ascorbate peroxidase activity. Proline treatment proved to be an effective approach to alleviate cell oxidative damage, inhibit PPD in cassava, and prolong shelf life.
Collapse
Affiliation(s)
- Yanqiong Tang
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Chengliang Yan
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Hong Li
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Xiang Ma
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Juanjuan Li
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China
| | - Xue Chi
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China.
| | - Zhu Liu
- School of Life and Health Sciences, Hainan University, Haikou, 570228, China.
| |
Collapse
|
4
|
Chen X, Han H, Cong Y, Li X, Zhang W, Cui J, Xu W, Pang S, Liu H. Ascorbic Acid Improves Tomato Salt Tolerance by Regulating Ion Homeostasis and Proline Synthesis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1672. [PMID: 38931104 PMCID: PMC11207900 DOI: 10.3390/plants13121672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024]
Abstract
In this study, processing tomato (Solanum lycopersicum L.) 'Ligeer 87-5' was hydroponically cultivated under 100 mM NaCl to simulate salt stress. To investigate the impacts on ion homeostasis, osmotic regulation, and redox status in tomato seedlings, different endogenous levels of ascorbic acid (AsA) were established through the foliar application of 0.5 mM AsA (NA treatment), 0.25 mM lycorine (LYC, an inhibitor of AsA synthesis; NL treatment), and a combination of LYC and AsA (NLA treatment). The results demonstrated that exogenous AsA significantly increased the activities and gene expressions of key enzymes (L-galactono-1,4-lactone dehydrogenase (GalLDH) and L-galactose dehydrogenase (GalDH)) involved in AsA synthesis in tomato seedling leaves under NaCl stress and NL treatment, thereby increasing cellular AsA content to maintain its redox status in a reduced state. Additionally, exogenous AsA regulated multiple ion transporters via the SOS pathway and increased the selective absorption of K+, Ca2+, and Mg2+ in the aerial parts, reconstructing ion homeostasis in cells, thereby alleviating ion imbalance caused by salt stress. Exogenous AsA also increased proline dehydrogenase (ProDH) activity and gene expression, while inhibiting the activity and transcription levels of Δ1-pyrroline-5-carboxylate synthetase (P5CS) and ornithine-δ-aminotransferase (OAT), thereby reducing excessive proline content in the leaves and alleviating osmotic stress. LYC exacerbated ion imbalance and osmotic stress caused by salt stress, which could be significantly reversed by AsA application. Therefore, exogenous AsA application increased endogenous AsA levels, reestablished ion homeostasis, maintained osmotic balance, effectively alleviated the inhibitory effect of salt stress on tomato seedling growth, and enhanced their salt tolerance.
Collapse
Affiliation(s)
- Xianjun Chen
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
- Key Laboratory of Molecular Breeding and Variety Creation of Horticultural Plants for Mountain Features in Guizhou Province, School of Life and Health Science, Kaili University, Kaili 556011, China
| | - Hongwei Han
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
- Key Laboratory of Horticulture Crop Genomics and Genetic Improvement in Xinjiang, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Yundan Cong
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Xuezhen Li
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Wenbo Zhang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Jinxia Cui
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Wei Xu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Shengqun Pang
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| | - Huiying Liu
- Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization of Xinjiang Production and Contruction Crops, Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China; (X.C.); (H.H.); (Y.C.); (X.L.); (W.Z.); (J.C.); (W.X.)
| |
Collapse
|
5
|
Gao Y, Zhang J, Wang C, Han K, Hu L, Niu T, Yang Y, Chang Y, Xie J. Exogenous Proline Enhances Systemic Defense against Salt Stress in Celery by Regulating Photosystem, Phenolic Compounds, and Antioxidant System. PLANTS (BASEL, SWITZERLAND) 2023; 12:928. [PMID: 36840277 PMCID: PMC9963348 DOI: 10.3390/plants12040928] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to explore how exogenous proline induces salinity tolerance in celery. We analyzed the effects of foliar spraying with 0.3 mM proline on celery growth, photosystem, phenolic compounds, and antioxidant system under salt stress (100 mM NaCl), using no salt stress and no proline spraying as control. The results showed that proline-treated plants exhibited a significant increase in plant biomass due to improved growth physiology, supported by gas exchange parameters, chlorophyll fluorescence, and Calvin cycle enzyme activity (Ketosasaccharide-1,5-diphosphate carboxylase and Fructose-1,6-diphosphate aldolase) results. Also, proline spraying significantly suppressed the increase in relative conductivity and malondialdehyde content caused by salt stress, suggesting a reduction in biological membrane damage. Moreover, salt stress resulted in hydrogen peroxide, superoxide anions and 4-coumaric acid accumulation in celery, and their contents were reduced after foliar spraying of proline. Furthermore, proline increased the activity of antioxidant enzymes (superoxide dismutase, peroxidase, and catalase) and the content of non-enzymatic antioxidants (reduced ascorbic acid, glutathione, caffeic acid, chlorogenic acid, total phenolic acids, and total flavonoids). Additionally, proline increased the activity of key enzymes (ascorbate oxidase, ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase) in the ascorbic acid-glutathione cycle, activating it to counteract salt stress. In summary, exogenous proline promoted celery growth under salt stress, enhanced photosynthesis, increased total phenolic acid and flavonoid contents, and improved antioxidant capacity, thereby improving salt tolerance in celery.
Collapse
|
6
|
Tarchevsky IA, Egorova AM. Participation of Proline in Plant Adaptation to Stress Factors and Its Application in Agrobiotechnology (Review). APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822040160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Exogenous Application of Proline and L-Cysteine Alleviates Internal Browning and Maintains Eating Quality of Cold Stored Flat ‘Maleki’ Peach Fruits. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The postharvest life of flat peach fruit is limited by the appearance of chilling injury symptoms, especially internal browning. In this study, impacts of the exogenous application of proline (0, 5, 10, and 15 mM) and L-cysteine (0, 0.2, 0.4 and 0.6%) on attenuating chilling injury of flat peach fruit were evaluated all over the cold storage. The results demonstrated that the fruits treated with 15 mM proline and 0.4 % L-cysteine showed lower levels of internal browning and these treatments prevented the excess enhancement of total soluble solids (TSS), the decline of titratable acidity (TA) content and the loss of fruit firmness during storage time. A lower accumulation of hydrogen peroxide (H2O2), malondialdehyde (MDA), electrolyte leakage, and higher activity of antioxidant enzymes, along with higher ascorbic acid content and antioxidant capacity, were observed in treated fruits. Treated fruits also showed higher activity of phenylalanine ammonia lyase (PAL) and conversely lower activity of polyphenol oxidase (PPO), which led to a higher accumulation of total phenols and flavonoids. Moreover, a higher accumulation of endogenous proline was observed in 15 mM proline treated fruits. Eventually, according to our results, the exogenous administration of proline and L-cysteine as safe, natural and environmentally friendly treatments, preserved the nutritional quality of flat peach fruits during long-term cold storage.
Collapse
|
8
|
Jiang J, Yuan X, Huang G, Shi W, Yang X, Jiang Q, Jia Y, Yang X, Jiang H. Hepatopancreatic metabolomics shedding light on the mechanism underlying unsynchronized growth in giant freshwater prawn, Macrobrachium rosenbergii. PLoS One 2020; 15:e0243778. [PMID: 33362263 PMCID: PMC7757812 DOI: 10.1371/journal.pone.0243778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/25/2020] [Indexed: 01/03/2023] Open
Abstract
The giant freshwater prawn, Macrobrachium rosenbergii (M. rosenbergii) as an important freshwater aquaculture species with high commercial value, exhibited unsynchronized growth. However, the potentially metabolic mechanism remains unclear. In this study, we used liquid chromatography tandem mass spectrometry (LC-MS/MS) to investigate the hepatopancreatic metabolic profiles of twenty giant freshwater prawns between the fast-growing group and slow-growing group. In the metabolomics assay, we isolated 8,293 peaks in positive and negative iron mode. Subsequently, 44 significantly differential metabolites were identified. Functional pathway analysis revealed that these metabolites were significantly enriched in three key metabolic pathways. Further integrated analysis indicated that glycerophospholipid metabolism and aminoacyl-tRNA biosynthesis have significant impact on growth performance in M.rosenbergii. Our findings presented here demonstrated the critical metabolites and metabolic pathways involved in growth performance, moreover provided strong evidence for elucidating the potentially metabolic mechanism of the unsynchronized growth in M. rosenbergii.
Collapse
Affiliation(s)
- Jianping Jiang
- Guangxi Engineering Technology Research Center of Chinese Medicinal Materials Stock Breeding, Guangxi Botanical Garden of Medicinal Plants, Nanning, Guangxi, China
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- * E-mail:
| | - Xiang Yuan
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Guanghua Huang
- Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, China
| | - Wen Shi
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, Guangxi, China
| | - Xueming Yang
- Guangxi Academy of Fisheries Sciences, Nanning, Guangxi, China
| | - Qinyang Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yinhai Jia
- Animal Husbandry Research Institute of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Xiurong Yang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Hesheng Jiang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
9
|
Secure and Sustainable Sourcing of Plant Tissues for the Exhaustive Exploration of Their Chemodiversity. Molecules 2020; 25:molecules25245992. [PMID: 33352821 PMCID: PMC7766005 DOI: 10.3390/molecules25245992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 12/20/2022] Open
Abstract
The main challenge of plant chemical diversity exploration is how to develop tools to study exhaustively plant tissues. Their sustainable sourcing is a limitation as bioguided strategies and dereplication need quite large amounts of plant material. We examine if alternative solutions could overcome these difficulties by obtaining a secure, sustainable, and scalable source of tissues able to biosynthesize an array of metabolites. As this approach would be as independent of the botanical origin as possible, we chose eight plant species from different families. We applied a four steps culture establishment procedure, monitoring targeted compounds through mass spectrometry-based analytical methods. We also characterized the capacities of leaf explants in culture to produce diverse secondary metabolites. In vitro cultures were successfully established for six species with leaf explants still producing a diversity of compounds after the culture establishment procedure. Furthermore, explants from leaves of axenic plantlets were also analyzed. The detection of marker compounds was confirmed after six days in culture for all tested species. Our results show that the first stage of this approach aiming at easing exploration of plant chemodiversity was completed, and leaf tissues could offer an interesting alternative providing a constant source of natural compounds.
Collapse
|