1
|
Li JW, Zhou P, Hu ZH, Xiong AS, Li XH, Chen X, Zhuang J. The transcription factor CsPAT1 from tea plant (Camellia sinensis) is involved in drought tolerance by modulating phenylpropanoid biosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2025; 308:154474. [PMID: 40154189 DOI: 10.1016/j.jplph.2025.154474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/12/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025]
Abstract
Tea plants, in particular, leafy cash crops, prefer warm and humid climates. Our previous work identified CsPAT1 as a facilitator of lignin biosynthesis in tea plants. The specific role of CsPAT1 in tea plants' abiotic stress response remains unclear. In this study, we found that the expression of CsPAT1 in tea plants was induced under drought, cold, heat, and ABA treatments. CsPAT1 transgenic Arabidopsis lines displayed enhanced drought tolerance compared with wild-type (WT) controls. The SOD and POD activities, proline content, and expression levels of drought-responsive genes were significantly increased in transgenic Arabidopsis under drought stress treatment. Transcriptome analysis revealed a significant enrichment of differentially expressed genes (DEGs) in the flavonoid biosynthesis pathway. Correspondingly, total flavonoid contents were significantly higher in the CsPAT1 transgenic lines. Through UPLC-MS/MS-based flavonoid metabolome analysis, we identified and quantified 24 flavonoid metabolites. Notably, CsPAT1 transgenic lines exhibited significantly lower levels of phenylpropanoids and hydroxycinnamic acids, key precursors in phenylpropanoid biosynthesis. Conversely, nine flavonoid compounds were significantly elevated in the transgenic lines, including apigenin, luteolin 7-O-glucoside, kaempferide, naringenin, butin, catechin, biochanin A, daidzin, and genistein. These findings suggest that CsPAT1 may enhance drought resistance by regulating the phenylpropanoid metabolic pathway. Our results provide insights for future breeding strategies to enhance drought tolerance in tea plants.
Collapse
Affiliation(s)
- Jing-Wen Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ping Zhou
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Hang Hu
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, China
| | - Xing-Hui Li
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xuan Chen
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Zhuang
- Tea Science Research Institute, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
2
|
Pu Z, Qin T, Wang Y, Wang X, Shi N, Yao P, Liu Y, Bai J, Bi Z, Sun C. Genome-Wide Analysis of the JAZ Gene Family in Potato and Functional Verification of StJAZ23 Under Drought Stress. Int J Mol Sci 2025; 26:2360. [PMID: 40076978 PMCID: PMC11899781 DOI: 10.3390/ijms26052360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/28/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
The JASMONATE-ZIM DOMAIN (JAZ) repressors are crucial proteins in the jasmonic acid signaling pathway that play a significant role in plant growth, development and response to abiotic stress (such as drought, heat, salinity, and low temperature). In this study, we identified 26 potato JAZ genes and classified the corresponding predicted proteins into five subfamilies. All potato JAZ proteins exhibited the expected conserved TIFY (TIF[F/Y] XG) and JAZ domains. Additionally, we identified several stress-responsive cis-regulatory elements, notably ABRE and ARE in the promoters of the JAZ gene family. Whole transcriptome and gene family expression analysis identified StJAZ23 as a key gene responding to drought stress in the root tissues of the Atlantic (Atl) and Qingshu 9 (QS9) potato cultivars. The StJAZ23 gene was cloned, and subcellular localization analysis suggested that the StJAZ23 protein was mainly localized in the nucleus and cell membrane. This study confirmed that StJAZ23 plays a role in drought stress by analyzing several StJAZ23 overexpression (OE-3, OE-5, and OE-6) and RNA interference (RNAi-3, RNAi-6, and RNAi-13) transgenic potato lines. The OE lines displayed significantly increased StJAZ23 expression compared to wild-type (WT) plants, while RNAi lines exhibited significantly reduced expression. The total root length, root tip count, and root surface area were significantly enhanced in OE lines under drought stress, compared to WT plants, whereas RNAi lines showed significant reductions. StJAZ23 overexpression also increased the activities of SOD, POD, CAT, and root vigor under drought stress and JA and ABA hormone levels were also significantly increased in roots under drought stress. These results highlight the positive role of the StJAZ23 gene in enhancing potato resilience to drought stress.
Collapse
Affiliation(s)
- Zhuanfang Pu
- College of Agronomy/State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.P.)
| | - Tianyuan Qin
- Food Crops Research Institute, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China;
| | - Yihao Wang
- College of Agronomy/State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.P.)
| | - Xiangdong Wang
- College of Agronomy/State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.P.)
| | - Ningfan Shi
- College of Agronomy/State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.P.)
| | - Panfeng Yao
- College of Agronomy/State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.P.)
| | - Yuhui Liu
- College of Agronomy/State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.P.)
| | - Jiangping Bai
- College of Agronomy/State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.P.)
| | - Zhenzhen Bi
- College of Agronomy/State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.P.)
| | - Chao Sun
- College of Agronomy/State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (Z.P.)
| |
Collapse
|
3
|
Hong MJ, Ko CS, Kim DY. Wheat E3 ligase TaPRP19 is involved in drought stress tolerance in transgenic Arabidopsis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:233-246. [PMID: 40070538 PMCID: PMC11890807 DOI: 10.1007/s12298-025-01557-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/09/2024] [Accepted: 01/24/2025] [Indexed: 03/14/2025]
Abstract
TaPRP19, a wheat U-box E3 ligase gene, was isolated and characterized for its role in drought stress tolerance. The gene encodes a 531 amino acid protein with a U-box domain at the N-terminal and a WD40 domain at the C-terminal. Subcellular localization studies using TaPRP19-GFP fusion in Nicotiana benthamiana confirmed predominant nucleus localization. In vitro ubiquitination assays demonstrated that TaPRP19 possesses E3 ligase activity. RT-qPCR analysis revealed higher expression of TaPRP19 in wheat leaves, which increased under PEG, mannitol, and ABA treatments. Transgenic Arabidopsis lines overexpressing TaPRP19 exhibited improved seed germination rates and root elongation under mannitol and ABA stress, as well as enhanced survival rates under drought conditions compared to wild-type (WT) plants. Additionally, these transgenic lines showed upregulated expression of antioxidant-related and drought-marker genes, reduced ROS accumulation, and increased activities of antioxidant enzymes, suggesting enhanced oxidative stress mitigation. These findings highlight TaPRP19 as a potential target for developing drought-tolerant crops, providing insights into its functional mechanisms and paving the way for future genetic engineering applications in wheat and other crops. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-025-01557-7.
Collapse
Affiliation(s)
- Min Jeong Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup, 56212 Republic of Korea
| | - Chan Seop Ko
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 29 Geumgu, Jeongeup, 56212 Republic of Korea
| | - Dae Yeon Kim
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, 54 Daehak-Ro, Yesan-Eup, 32439 Republic of Korea
| |
Collapse
|
4
|
Jia G, Thinn KSZ, Kim SH, Min J, Oh SK. Capsicum annuum NAC4 (CaNAC4) Is a Transcription Factor with Roles in Biotic and Abiotic Stresses. THE PLANT PATHOLOGY JOURNAL 2024; 40:512-524. [PMID: 39397305 PMCID: PMC11471929 DOI: 10.5423/ppj.oa.07.2024.0104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024]
Abstract
Transcription factors (TFs) regulate gene expression by binding to DNA. The NAC gene family in plants consists of crucial TFs that influence plant development and stress responses. The whole genome of Capsicum annuum shows over 100 NAC genes (CaNAC). Functional characteristics of the most CaNAC TFs are unknown. In this study, we identified CaNAC4, a novel NAC TF in C. annuum. CaNAC4 expression increased after inoculation with the pathogens, Xanthomonas axonopodis pv. vesicatoria race 3 and X. axonopodis pv. glycines 8ra, and following treatment with the plant hormones, salicylic acid and abscisic acid. We investigated the functional characteristics of the CaNAC4 gene and its roles in salt tolerance and anti-pathogen defense in transgenic Nicotiana benthamiana. For salt stress analysis, the leaf discs of wild-type and CaNAC4-transgenic N. benthamiana plants were exposed to different concentrations of sodium chloride. Chlorophyll loss was more severe in salt stress-treated wild-type plants than in CaNAC4-transgenic plants. To analyze the role of CaNAC4 in anti-pathogen defense, a spore suspension of Botrytis cinerea was used to infect the leaves. The disease caused by B. cinerea gradually increased in severity, and the symptoms were clearer in the CaNAC4-transgenic lines. We also investigated hypersensitive response (HR) in CaNAC4-transgenic plants. The results showed a stronger HR in wild-type plants after infiltration with the apoptosis regulator, BAX. In conclusion, our results suggest that CaNAC4 may enhance salt tolerance and act as a negative regulator of biotic stress in plants.
Collapse
Affiliation(s)
| | | | - Sun Ha Kim
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| | - Jiyoung Min
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| | - Sang-Keun Oh
- Department of Applied Biology, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
5
|
Li YM, Tang XS, Sun MH, Zhang HX, Xie ZS. Expression and function identification of senescence-associated genes under continuous drought treatment in grapevine ( Vitis vinifera L.) leaves. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:877-891. [PMID: 38974354 PMCID: PMC11222358 DOI: 10.1007/s12298-024-01465-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 07/09/2024]
Abstract
Natural leaf senescence is critical for plant fitness. Drought-induced premature leaf senescence affects grape yield and quality. However, reports on the regulatory mechanisms underlying premature leaf senescence under drought stress are limited. In this study, two-year-old potted 'Muscat Hamburg' grape plants were subjected to continuous natural drought treatment until mature leaves exhibited senescence symptoms. Physiological and biochemical indices related to drought stress and senescence were monitored. Transcriptome and transgenic Arabidopsis were used to perform expression analyses and functional identification of drought-induced senescence-associated genes. Twelve days of continuous drought stress was sufficient to cause various physiological disruptions and visible senescence symptoms in mature 'Muscat Hamburg' leaves. These disruptions included malondialdehyde and H2O2 accumulation, and decreased catalase activity and chlorophyll (Chl) levels. Transcriptome analysis revealed that most genes involved in photosynthesis and Chl synthesis were downregulated after 12 d of drought treatment. Three key Chl catabolic genes (SGR, NYC1, and PAO) were significantly upregulated. Overexpression of VvSGR in wild Arabidopsis further confirmed that SGR directly promoted early yellowing of cotyledons and leaves. In addition, drought treatment decreased expression of gibberellic acid signaling repressors (GAI and GAI1) and cytokinin signal components (AHK4, AHK2, RR22, RR9-1, RR9-2, RR6, and RR4) but significantly increased the expression of abscisic acid, jasmonic acid, and salicylic acid signaling components and responsive transcription factors (bZIP40/ABF2, WRKY54/75/70, ANAC019, and MYC2). Moreover, some NAC members (NAC0002, NAC019, and NAC048) may also be drought-induced senescence-associated genes. These results provide extensive information on candidate genes involved in drought-induced senescence in grape leaves. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01465-2.
Collapse
Affiliation(s)
- You-Mei Li
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Xuan-Si Tang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Meng-Hao Sun
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Hong-Xing Zhang
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| | - Zhao-Sen Xie
- College of Horticulture and Landscape, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Zhu J, Li Y, Zhang Y, Xia L, Hu W, Huang X, Li K, He X, Luo C. Overexpression of MiSPL3a and MiSPL3b confers early flowering and stress tolerance in Arabidopsis thaliana. Int J Biol Macromol 2024; 262:129913. [PMID: 38336312 DOI: 10.1016/j.ijbiomac.2024.129913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024]
Abstract
SQUAMOSA promoter-binding protein-like (SPL) family genes play an important role in regulating plant flowering and resistance to stress. However, understanding the function of the SPL family in mango is still limited. In a previous study, two MiSPL3 genes, MiSPL3a and MiSPL3b (MiSPL3a/b), were identified in 'SiJiMi' mango and exhibited the highest expression in flowers at the initial flowering stage [24]. Therefore, in this study, we further investigated the expression pattern and gene function of MiSPL3a/b. The results showed that the expression of MiSPL3a was greatest at the end of floral bud differentiation, and MiSPL3b was expressed mainly during the flowering induction and vegetative growth stages. Subcellular localization showed that MiSPL3a/b localized to the nucleus. In addition, ectopic expression of MiSPL3a/b promoted earlier flowering in Arabidopsis thaliana by 3 d-6 d than in wild-type (WT) plants, which increased the expression of SUPPRESSOR OF CONSTANS1 (AtSOC1), FRUITFULL (AtFUL), and APETALA1 (AtAP1). MiSPL3a/b transgenic lines exhibited increased tolerance to drought, GA3, and abscisic acid (ABA) treatments but were sensitive to Pro-Ca treatment. Furthermore, protein interaction analysis revealed that MiSPL3a/b could interact with several stress-related proteins, flowering-related proteins, and the bridge protein 14-3-3. Taken together, MiSPL3a and MiSPL3b acted as positive regulators of flowering time and stress tolerance in transgenic Arabidopsis.
Collapse
Affiliation(s)
- Jiawei Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China; College of Horticulture, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yuze Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Yili Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - LiMing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Wanli Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Xing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Kaijiang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China
| | - Xinhua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China.
| | - Cong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, Guangxi, China.
| |
Collapse
|
7
|
Saimi G, Wang Z, Liusui Y, Guo Y, Huang G, Zhao H, Zhang J. The Functions of an NAC Transcription Factor, GhNAC2-A06, in Cotton Response to Drought Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:3755. [PMID: 37960109 PMCID: PMC10649604 DOI: 10.3390/plants12213755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023]
Abstract
Drought stress imposes severe constraints on crop growth and yield. The NAC transcription factors (TF) play a pivotal role in regulating plant stress responses. However, the biological functions and regulatory mechanisms of many cotton NACs have not been explored. In this study, we report the cloning and characterization of GhNAC2-A06, a gene encoding a typical cotton NAC TF. The expression of GhNAC2-A06 was induced by PEG treatment, drought stress, and ABA treatment. Furthermore, we investigated its function using the virus-induced gene silencing (VIGS) method. GhNAC2-A06 silenced plants exhibited a poorer growth status under drought stress conditions compared to the controls. The GhNAC2-A06 silenced cotton plants had a lower leaf relative water and chlorophyll content and a higher MDA content compared to the controls under the drought treatment. The levels of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) enzyme activity in the GhNAC2-A06 silenced plants were found to be lower compared to the controls when exposed to drought stress. Additionally, the downregulation of the drought stress-related genes, GhSAP12-D07, GhNCED1-A01, GhLEA14-A11, GhZAT10-D02, GhPROT2-A05, GhABF3-A03, GhABF2-D05, GhSAP3-D07, and GhCPK1-D04, was observed in the GhNAC2-A06 silenced cotton. Together, our research reveals that GhNAC2-A06 plays a role in the reaction of cotton to drought stress by affecting the expression of genes related to drought stress. The data obtained from this study lay the theoretical foundation for further in-depth research on the biological function and regulatory mechanisms of GhNAC2-A06.
Collapse
Affiliation(s)
| | | | | | | | | | - Huixin Zhao
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (G.S.); (Z.W.); (Y.L.); (Y.G.); (G.H.)
| | - Jingbo Zhang
- Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi 830054, China; (G.S.); (Z.W.); (Y.L.); (Y.G.); (G.H.)
| |
Collapse
|
8
|
Liu S, Guan Y, Weng Y, Liao B, Tong L, Hao Z, Chen J, Shi J, Cheng T. Genome-wide identification of the NAC gene family and its functional analysis in Liriodendron. BMC PLANT BIOLOGY 2023; 23:415. [PMID: 37684590 PMCID: PMC10486064 DOI: 10.1186/s12870-023-04415-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023]
Abstract
As one of the largest plant specific transcription factor families, NAC family members play an important role in plant growth, development and stress resistance. To investigate the function of NAC transcription factors during abiotic stress, as well as during somatic embryogenesis, we identified and characterized the NAC gene family in Liriodendron chinense. We found that most LcNAC members contain more than three exons, with a relatively conserved gene and motif structure, especially at the N-terminus. Interspecies collinearity analysis revealed a closer relationship between the L. chinense NACs and the P. trichocarpa NACs. We analyzed the expression of LcNAC in different tissues and under three abiotic stresses. We found that 12 genes were highly expressed during the ES3 and ES4 stages of somatic embryos, suggesting that they are involved in the development of somatic embryos. 6 LcNAC genes are highly expressed in flower organs. The expression pattern analysis of LcNACs based on transcriptome data and RT-qPCR obtained from L. chinense leaves indicated differential expression responses to drought, cold, and heat stress. Genes in the NAM subfamily expressed differently during abiotic stress, and LcNAC6/18/41/65 might be the key genes in response to abiotic stress. LcNAC6/18/41/65 were cloned and transiently transformed into Liriodendron protoplasts, where LcNAC18/65 was localized in cytoplasm and nucleus, and LcNAC6/41 was localized only in nucleus. Overall, our findings suggest a role of the NAC gene family during environmental stresses in L. chinense. This research provides a basis for further study of NAC genes in Liriodendron chinense.
Collapse
Affiliation(s)
- Siqin Liu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuanlin Guan
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Yuhao Weng
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Bojun Liao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Lu Tong
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhaodong Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinhui Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China
| | - Jisen Shi
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China.
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, 210037, China.
| | - Tielong Cheng
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China.
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
9
|
Zhu J, Du D, Li Y, Zhang Y, Hu WL, Chen L, He X, Xia L, Mo X, Xie F, Luo C. Isolation of three MiDi19-4 genes from mango, the ectopic expression of which confers early flowering and enhances stress tolerance in transgenic Arabidopsis. PLANTA 2023; 258:14. [PMID: 37310483 DOI: 10.1007/s00425-023-04172-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 06/01/2023] [Indexed: 06/14/2023]
Abstract
MAIN CONCLUSION Three Di19-4 genes were identified in mango. Overexpression of MiDi19-4B in A. thaliana promoted earlier flowering and enhanced drought, salt, and ABA resistance. Drought-induced protein 19 (Di19) is a drought-induced protein that is mainly involved in multiple stress responses. Here, three Di19-4 genes (MiDi19-4A/B/C) in mango (Mangifera indica L.) were identified, and the coding sequences (CDS) had lengths of 684, 666, and 672 bp and encoded proteins with 228, 222, and 224 amino acids, respectively. The promoters of the MiDi19-4 genes contained phytohormone-, light-, and abiotic stress-responsive elements. The MiDi19-4 genes were expressed in every tissue and highly expressed in leaves. Moreover, MiDi19-4 genes were highly correlated with the vegetative growth period and induced by polyethylene glycol (PEG) or salt stress. MiDi19-4B displayed the highest expression during the vegetative growth period and then showed decreased expression, and MiDi19-4B was highly expressed at both the late stage of the vegetative growth period and the initial stage of the flowering induction period. The 35S::GFP-MiDi19-4B fusion protein was located in the cell nucleus. The transgenic plants ectopically expressing MiDi19-4B exhibited earlier flowering and increased expression patterns of FRUITFULL (AtFUL), APETALA1 (AtAP1), and FLOWERING LOCUS T (AtFT). The drought and salt tolerance of MiDi19-4B transgenic plants was significantly increased, and these plants showed decreased sensitivity to abscisic acid (ABA) and considerably increased expression levels of drought- and salt-related genes and ABA signalling pathway genes. Additionally, bimolecular fluorescence complementation (BiFC) experiments revealed that the MiDi19-4B protein interacted with CAULIFLOWER (MiCAL1), MiCAL2, MiAP1-1, and MiAP1-2. Taken together, these results highlighted the important regulatory roles of MiDi19-4B in tolerance to multiple abiotic stresses and in flowering.
Collapse
Affiliation(s)
- Jiawei Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Daiyan Du
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yuze Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Yili Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Wan Li Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Linghe Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xinhua He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| | - Liming Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Xiao Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Fangfang Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Cong Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-BioresourcesGuangxi Key Laboratory for Agro-Environment and Agro-Product Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China.
| |
Collapse
|
10
|
Liu J, Yuan X, Quan S, Zhang M, Kang C, Guo C, Zhang Z, Niu J. Genome-Wide Identification and Expression Analysis of NCED Gene Family in Pear and Its Response to Exogenous Gibberellin and Paclobutrazol. Int J Mol Sci 2023; 24:ijms24087566. [PMID: 37108747 PMCID: PMC10144387 DOI: 10.3390/ijms24087566] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
The 9-cis-epoxycarotenoid dioxygenase (NCED) is a key enzyme for the process of ABA synthesis that plays key roles in a variety of biological processes. In the current investigation, genome-wide identification and comprehensive analysis of the NCED gene family in 'Kuerle Xiangli' (Pyrus sinkiangensis Yu) were conducted using the pear genomic sequence. In total, nineteen members of PbNCED genes were identified from the whole genome of pear, which are not evenly distributed over the scaffolds, and most of which were focussed in the chloroplasts. Sequence analysis of promoters showed many cis-regulatory elements, which presumably responded to phytohormones such as abscisic acid, auxin, etc. Synteny block indicated that the PbNCED genes have experienced strong purifying selection. Multiple sequence alignment demonstrated that these members are highly similar and conserved. In addition, we found that PbNCED genes were differentially expressed in various tissues, and three PbNCED genes (PbNCED1, PbNCED2, and PbNCED13) were differentially expressed in response to exogenous Gibberellin (GA3) and Paclobutrazol (PP333). PbNCED1 and PbNCED13 positively promote ABA synthesis in sepals after GA3 and PP333 treatment, whereas PbNCED2 positively regulated ABA synthesis in ovaries after GA3 treatment, and PbNCED13 positively regulated ABA synthesis in the ovaries after PP333 treatment. This study was the first genome-wide report of the pear NCED gene family, which could improve our understanding of pear NCED proteins and provide a solid foundation for future cloning and functional analyses of this gene family. Meanwhile, our results also give a better understanding of the important genes and regulation pathways related to calyx abscission in 'Kuerle Xiangli'.
Collapse
Affiliation(s)
- Jinming Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Xing Yuan
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Shaowen Quan
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Meng Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Chao Kang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Caihua Guo
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Zhongrong Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| | - Jianxin Niu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, China
| |
Collapse
|
11
|
Gao Y, Chen H, Chen D, Hao G. Genetic and evolutionary dissection of melatonin response signaling facilitates the regulation of plant growth and stress responses. J Pineal Res 2023; 74:e12850. [PMID: 36585354 DOI: 10.1111/jpi.12850] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/19/2022] [Accepted: 12/24/2022] [Indexed: 01/01/2023]
Abstract
The expansion of gene families during evolution could generate functional diversity among their members to regulate plant growth and development. Melatonin, a phylogenetically ancient molecule, is vital for many aspects of a plant's life. Understanding the functional diversity of the molecular players involved in melatonin biosynthesis, signaling, and metabolism will facilitate the regulation of plant phenotypes. However, the molecular mechanism of melatonin response signaling elements in regulating this network still has many challenges. Here, we provide an in-depth analysis of the functional diversity and evolution of molecular components in melatonin signaling pathway. Genetic analysis of multiple mutants in plant species will shed light on the role of gene families in melatonin regulatory pathways. Phylogenetic analysis of these genes was performed, which will facilitate the identification of melatonin-related genes for future study. Based on the abovementioned signal networks, the mechanism of these genes was summarized to provide reference for studying the regulatory mechanism of melatonin in plant phenotypes. We hope that this work will facilitate melatonin research in higher plants and finely tuned spatio-temporal regulation of melatonin signaling.
Collapse
Affiliation(s)
- Yangyang Gao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Huimin Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Dongyu Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
| | - Gefei Hao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, P. R. China
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| |
Collapse
|
12
|
Zhao JL, Wu Q, Wu HL, Wang AH, Wang XL, Li CL, Zhao HX, Wu Q. FtNAC31, a Tartary buckwheat NAC transcription factor, enhances salt and drought tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 191:20-33. [PMID: 36174283 DOI: 10.1016/j.plaphy.2022.09.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Tartary buckwheat [Fagopyrum tataricum (L.) Gaertn.] is a pseudocereal with strongly abiotic resistance. NACs, one of the largest plant-specific transcription factors (TFs), are involved in various stress responses. However, the characteristics and regulatory mechanisms of NAC TFs remain unclarified clearly in Tartary buckwheat (TB). In this study, it validated that salt, drought, and abscisic acid (ABA) stress significantly up-regulated the expression of NAC TF gene FtNAC31. Its coding protein has a C-terminal transactivated domain and localized in the nucleus, suggesting that FtNAC31 might play a transcriptional activation role in TB. Notably, overexpression of FtNAC31 lowered the seed germination rate upon ABA treatment and enhanced the tolerance to salt and drought stress in transgenetic Arabidopsis. Furthermore, under various stresses, the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) in FtNAC31 overexpressed lines exhibited a sharp increase trend. Meanwhile, the expression levels of several stress-associated genes including RD29A, RD29B, RD22, DREB2B, NCED3, and POD1, were dramatically upregulated in lines overexpressing FtNAC31. Altogether, overproduction of FtNAC31 could enhance the resistance to salt and drought stresses in transgenic Arabidopsis, which most likely functioned in an ABA-dependent way.
Collapse
Affiliation(s)
- Jia-Li Zhao
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Qiong Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Hua-la Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - An-Hu Wang
- Xichang University, Xichang, Sichuan, 615000, China.
| | - Xiao-Li Wang
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Cheng-Lei Li
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Hai-Xia Zhao
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| | - Qi Wu
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, 625014, China.
| |
Collapse
|
13
|
Sun H, Xie Y, Yang W, Lv Q, Chen L, Li J, Meng Y, Li L, Li X. Membrane-bound transcription factor TaNTL1 positively regulates drought stress tolerance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:182-193. [PMID: 35512580 DOI: 10.1016/j.plaphy.2022.04.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Drought negatively affects plant growth and development to cause major yield losses in crops. Transcription factors (TFs) play important roles in abiotic stress response signaling in plant. However, the biological functions of membrane-bound transcription factors (MTFs) in abiotic stress have rarely been studied in wheat. In this study, we identified a homologue of the maize ZmNTL1 gene in wheat, which was designated as TaNTL1. TaNTL1 is a NAC family MTF (NTM1-like, NTL proteins) encoding 481 amino acid residues with a transmembrane motif at the C-terminal. Quantitative results and expression profile analysis showed that TaNTL1 could respond to drought. We demonstrated the transcriptional activity of TaNTL1 and that it could specifically bind to NAC recognition cis-acting elements (NACBS). The full-length TaNTL1 protein localized in the plasma membrane and TaNTL1 lacking the transmembrane motif (TaNTL1-ΔTM) localized in the nucleus. TaNTL1 was proteolytically activated by PEG6000 and abscisic acid (ABA). Phenotypic and physiological analyses showed that overexpression transgenic Arabidopsis exhibited enhanced drought resistance, which was greater with TaNTL1-ΔTM than TaNTL1. Transient silencing of TaNTL1 significantly reduced the resistance to drought stress in wheat. Germination by the TaNTL1 and TaNTL1-ΔTM transgenic Arabidopsis seeds was also hypersensitive to ABA. Most of the stress-related genes in transgenic plants were upregulated under drought conditions. These results suggest that MTF TaNTL1 is a positive regulator of drought and it may function by entering the nucleus through cleavage.
Collapse
Affiliation(s)
- Huimin Sun
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yanzhou Xie
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Weibing Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qian Lv
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Liuping Chen
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jiatao Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ying Meng
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Liqun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xuejun Li
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
14
|
Overexpression of SgDREB2C from Stylosanthes guianensis Leads to Increased Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:ijms23073520. [PMID: 35408881 PMCID: PMC8998575 DOI: 10.3390/ijms23073520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/04/2022] Open
Abstract
Stylosanthes guianensis is an excellent forage legume in subtropical and tropical regions with drought tolerance, but little is known about its drought tolerance mechanism. Dehydration responsive element binding proteins (DREBs) are responsive to abiotic stresses. A SgDREB2C was cloned from S. guianensis, while SgDREB2C protein was localized at nucleus. SgDREB2C transcript was induced by dehydration treatment. Transgenic Arabidopsis overexpressing SgDREB2C showed enhanced osmotic and drought tolerance with higher levels of relative germination rate, seedlings survival rate and Fv/Fm and lower levels of ion leakage compared with WT after osmotic and drought stress treatments. In addition, higher levels of superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities and stress responsive gene (COR15A, COR47) transcripts were observed in transgenic Arabidopsis than in WT under drought stress. These results suggest that SgDREB2C regulated drought tolerance, which was associated with increased SOD and APX activities and stress-responsive gene expression under drought stress.
Collapse
|
15
|
Sun H, Li J, Li X, Lv Q, Chen L, Wang B, Li L. RING E3 ubiquitin ligase TaSADR1 negatively regulates drought resistance in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 170:255-265. [PMID: 34922142 DOI: 10.1016/j.plaphy.2021.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/23/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Drought stress is an important factor that affects crop yields and quality. E3 ubiquitin ligase has crucial roles in the responses to abiotic stresses. However, few studies have investigated the role of E3 ubiquitin ligase during drought stress in wheat. In this study, we cloned and identified the orthologous gene of Oryza sativa Salt-, ABA- and Drought-Induced RING Finger Protein 1 (OsSADR1) in wheat (Triticum aestivum L.) called TaSADR1. TaSADR1 encodes a protein containing 486 amino acids with a C3HC4 type RING finger conserved domain at the N-terminal. We confirmed that TaSADR1 has an E3 ubiquitin ligase activity and it is located in the nucleus. High expression of TaSADR1 was induced by treatment with PEG6000 and abscisic acid (ABA). TaSADR1-overexpressing transgenic Arabidopsis plants exhibited decreased drought tolerance. Under drought stress, compared with the wild-type (WT) lines, TaSADR1-overexpressing transgenic Arabidopsis lines had lower proline and chlorophyll contents, and antioxidant enzyme activities (superoxide dismutase, peroxidase, and catalase), whereas the water loss rate, malondialdehyde content, and relative electrolyte leakage were higher. In addition, the overexpressing transgenic Arabidopsis lines were more sensitive to mannitol and ABA treatment at seed germination and during seedling growth. The expression levels of genes related to stress were downregulated under drought conditions in the transgenic plants. Our results demonstrate that TaSADR1 may negatively regulate drought stress responses by regulating the expression of stress-related genes.
Collapse
Affiliation(s)
- Huimin Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Jiatao Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Xu Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Qian Lv
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Liuping Chen
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Bingxin Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Liqun Li
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
16
|
Cyclophilins and Their Functions in Abiotic Stress and Plant-Microbe Interactions. Biomolecules 2021; 11:biom11091390. [PMID: 34572603 PMCID: PMC8464771 DOI: 10.3390/biom11091390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/15/2021] [Accepted: 09/17/2021] [Indexed: 01/12/2023] Open
Abstract
Plants have developed a variety of mechanisms and regulatory pathways to change their gene expression profiles in response to abiotic stress conditions and plant–microbe interactions. The plant–microbe interaction can be pathogenic or beneficial. Stress conditions, both abiotic and pathogenic, negatively affect the growth, development, yield and quality of plants, which is very important for crops. In contrast, the plant–microbe interaction could be growth-promoting. One of the proteins involved in plant response to stress conditions and plant–microbe interactions is cyclophilin. Cyclophilins (CyPs), together with FK506-binding proteins (FKBPs) and parvulins, belong to a big family of proteins with peptidyl-prolyl cis-trans isomerase activity (Enzyme Commission (EC) number 5.2.1.8). Genes coding for proteins with the CyP domain are widely expressed in all organisms examined, including bacteria, fungi, animals, and plants. Their different forms can be found in the cytoplasm, endoplasmic reticulum, nucleus, chloroplast, mitochondrion and in the phloem space. They are involved in numerous processes, such as protein folding, cellular signaling, mRNA processing, protein degradation and apoptosis. In the past few years, many new functions, and molecular mechanisms for cyclophilins have been discovered. In this review, we aim to summarize recent advances in cyclophilin research to improve our understanding of their biological functions in plant defense and symbiotic plant–microbe interactions.
Collapse
|
17
|
A WRKY Transcription Factor, EjWRKY17, from Eriobotrya japonica Enhances Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2021; 22:ijms22115593. [PMID: 34070474 PMCID: PMC8197471 DOI: 10.3390/ijms22115593] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 12/19/2022] Open
Abstract
The WRKY gene family, which is one of the largest transcription factor (TF) families, plays an important role in numerous aspects of plant growth and development, especially in various stress responses. However, the functional roles of the WRKY gene family in loquat are relatively unknown. In this study, a novel WRKY gene, EjWRKY17, was characterized from Eriobotrya japonica, which was significantly upregulated in leaves by melatonin treatment during drought stress. The EjWRKY17 protein, belonging to group II of the WRKY family, was localized in the nucleus. The results indicated that overexpression of EjWRKY17 increased cotyledon greening and root elongation in transgenic Arabidopsis lines under abscisic acid (ABA) treatment. Meanwhile, overexpression of EjWRKY17 led to enhanced drought tolerance in transgenic lines, which was supported by the lower water loss, limited electrolyte leakage, and lower levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Further investigations showed that overexpression of EjWRKY17 promoted ABA-mediated stomatal closure and remarkably up-regulated ABA biosynthesis and stress-related gene expression in transgenic lines under drought stress. Overall, our findings reveal that EjWRKY17 possibly acts as a positive regulator in ABA-regulated drought tolerance.
Collapse
|
18
|
Liu H, Shen J, Yuan C, Lu D, Acharya BR, Wang M, Chen D, Zhang W. The Cyclophilin ROC3 Regulates ABA-Induced Stomatal Closure and the Drought Stress Response of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2021; 12:668792. [PMID: 34113366 PMCID: PMC8186832 DOI: 10.3389/fpls.2021.668792] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/28/2021] [Indexed: 05/28/2023]
Abstract
Drought causes a major constraint on plant growth, development, and crop productivity. Drought stress enhances the synthesis and mobilization of the phytohormone abscisic acid (ABA). Enhanced cellular levels of ABA promote the production of reactive oxygen species (ROS), which in turn induce anion channel activity in guard cells that consequently leads to stomatal closure. Although Cyclophilins (CYPs) are known to participate in the biotic stress response, their involvement in guard cell ABA signaling and the drought response remains to be established. The Arabidopsis thaliana gene ROC3 encodes a CYP. Arabidopsis roc3 T-DNA mutants showed a reduced level of ABA-activated S-type anion currents, and stomatal closure than wild type (WT). Also, roc3 mutants exhibited rapid loss of water in leaf than wild type. Two complementation lines of roc3 mutants showed similar stomatal response to ABA as observed for WT. Both complementation lines also showed similar water loss as WT by leaf detached assay. Biochemical assay suggested that ROC3 positively regulates ROS accumulation by inhibiting catalase activity. In response to ABA treatment or drought stress, roc3 mutant show down regulation of a number of stress responsive genes. All findings indicate that ROC3 positively regulates ABA-induced stomatal closure and the drought response by regulating ROS homeostasis and the expression of various stress-activated genes.
Collapse
Affiliation(s)
- Huiping Liu
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Jianlin Shen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Chao Yuan
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Dongxue Lu
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Biswa R. Acharya
- College of Natural and Agricultural Sciences, University of California, Riverside, Riverside, CA, United States
| | - Mei Wang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Donghua Chen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| | - Wei Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, China
| |
Collapse
|
19
|
AtWAKL10, a Cell Wall Associated Receptor-Like Kinase, Negatively Regulates Leaf Senescence in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms22094885. [PMID: 34063046 PMCID: PMC8124439 DOI: 10.3390/ijms22094885] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 01/22/2023] Open
Abstract
Receptor-like kinases (RLKs) constitute a large group of cell surface receptors that play crucial roles in multiple biological processes. However, the function of most RLKs in plants has not been extensively explored, and much less for the class of cell wall associated kinases (WAKs) and WAK-like kinases (WAKLs). In this study, analyses of developmental expression patterns uncovered a putative role of AtWAKL10 in modulating leaf senescence, which was further investigated at physiological and molecular levels. The expression level of AtWAKL10 increased with the developmental progression and was rapidly upregulated in senescing leaf tissues. The promoter of AtWAKL10 contains various defense and hormone responsive elements, and its expression could be significantly induced by exogenous ABA, JA and SA. Moreover, the loss-of-function atwakl10 mutant showed earlier senescence along the course of natural development and accelerated leaf senescence under darkness and hormonal stresses, while plants overexpressing AtWAKL10 showed an opposite trend. Additionally, some defense and senescence related WRKY transcription factors could bind to the promoter of AtWAKL10. In addition, deletion and overexpression of AtWAKL10 caused several specific transcriptional alterations, including genes involved in cell extension, cell wall modification, defense response and senescence related WRKYs, which may be implicated in regulatory mechanisms adopted by AtWAKL10 in controlling leaf senescence. Taken together, these results revealed that AtWAKL10 negatively regulated leaf senescence.
Collapse
|
20
|
Yao T, Zhang J, Xie M, Yuan G, Tschaplinski TJ, Muchero W, Chen JG. Transcriptional Regulation of Drought Response in Arabidopsis and Woody Plants. FRONTIERS IN PLANT SCIENCE 2021; 11:572137. [PMID: 33488639 PMCID: PMC7820124 DOI: 10.3389/fpls.2020.572137] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/25/2020] [Indexed: 05/24/2023]
Abstract
Within the context of global warming, long-living plants such as perennial woody species endure adverse conditions. Among all of the abiotic stresses, drought stress is one of the most detrimental stresses that inhibit plant growth and productivity. Plants have evolved multiple mechanisms to respond to drought stress, among which transcriptional regulation is one of the key mechanisms. In this review, we summarize recent progress on the regulation of drought response by transcription factor (TF) families, which include abscisic acid (ABA)-dependent ABA-responsive element/ABRE-binding factors (ABRE/ABF), WRKY, and Nuclear Factor Y families, as well as ABA-independent AP2/ERF and NAC families, in the model plant Arabidopsis. We also review what is known in woody species, particularly Populus, due to its importance and relevance in economic and ecological processes. We discuss opportunities for a deeper understanding of drought response in woody plants with the development of high-throughput omics analyses and advanced genome editing techniques.
Collapse
Affiliation(s)
- Tao Yao
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin Zhang
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Meng Xie
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Biology Department, Brookhaven National Laboratory, Upton, NY, United States
| | - Guoliang Yuan
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Timothy J. Tschaplinski
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Jin-Gui Chen
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| |
Collapse
|