1
|
Ukolova IV, Borovskii GB. OXPHOS Organization and Activity in Mitochondria of Plants with Different Life Strategies. Int J Mol Sci 2023; 24:15229. [PMID: 37894910 PMCID: PMC10607765 DOI: 10.3390/ijms242015229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The study of the supramolecular organization of the mitochondrial oxidative phosphorylation system (OXPHOS) in various eukaryotes has led to the accumulation of a considerable amount of data on the composition, stoichiometry, and architecture of its constituent superstructures. However, the link between the features of system arrangement and the biological characteristics of the studied organisms has been poorly explored. Here, we report a comparative investigation into supramolecular and functional OXPHOS organization in the mitochondria of etiolated shoots of winter wheat (Triticum aestivum L.), maize (Zea mays L.), and pea (Pisum sativum L.). Investigations based on BN-PAGE, in-gel activity assays, and densitometric analysis revealed both similarities and specific OXPHOS features apparently related to the life strategies of each species. Frost-resistant winter wheat was distinguished by highly stable basic I1III2IVa/b respirasomes and V2 dimers, highly active complex I, and labile complex IV, which were probably essential for effective OXPHOS adaptation during hypothermia. Maize, a C4 plant, had the highly stable dimers IV2 and V2, less active complex I, and active alternative NAD(P)H dehydrogenases. The latter fact could contribute to successful chloroplast-mitochondrial cooperation, which is essential for highly efficient photosynthesis in this species. The pea OXPHOS contained detergent-resistant high-molecular respirasomes I1-2III2IVn, highly active complexes IV and V, and stable succinate dehydrogenase, suggesting an active energy metabolism in organelles of this plant. The results and conclusions are in good agreement with the literature data on the respiratory activity of mitochondria from these species and are summarized in a proposed scheme of organization of OXPHOS fragments.
Collapse
Affiliation(s)
- Irina V. Ukolova
- Laboratory of Physiological Genetics, Siberian Institute of Plant Physiology and Biochemistry, Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia;
| | | |
Collapse
|
2
|
Xu YC, Su J, Zhou JJ, Yuan Q, Han JS. Roles of MT-ND1 in Cancer. Curr Med Sci 2023; 43:869-878. [PMID: 37642864 DOI: 10.1007/s11596-023-2771-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 06/12/2023] [Indexed: 08/31/2023]
Abstract
The energy shift toward glycolysis is one of the hallmarks of cancer. Complex I is a vital enzyme complex necessary for oxidative phosphorylation. The mitochondrially encoded NADH: ubiquinone oxidoreductase core subunit 1 (MT-ND1) is the largest subunit coded by mitochondria of complex I. The present study summarizes the structure and biological function of MT-ND1. From databases and literature, the expressions and mutations of MT-ND1 in a variety of cancers have been reviewed. MT-ND1 may be a biomarker for cancer diagnosis and prognosis. It is also a potential target for cancer therapy.
Collapse
Affiliation(s)
- Yi-Chun Xu
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, 200065, China.
- National Engineering Research Center for Biochip, Shanghai Biochip Limited Corporation, Shanghai, 201203, China.
| | - Jun Su
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, 200065, China
- National Engineering Research Center for Biochip, Shanghai Biochip Limited Corporation, Shanghai, 201203, China
| | - Jia-Jing Zhou
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, 200065, China
| | - Qing Yuan
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, 200065, China
| | - Jun-Song Han
- Department of Pathology, Shanghai Tongji Hospital, Tongji Hospital Affiliated to Tongji University, Shanghai, 200065, China.
- National Engineering Research Center for Biochip, Shanghai Biochip Limited Corporation, Shanghai, 201203, China.
| |
Collapse
|
3
|
Minibayeva F, Mazina A, Gazizova N, Dmitrieva S, Ponomareva A, Rakhmatullina D. Nitric Oxide Induces Autophagy in Triticum aestivum Roots. Antioxidants (Basel) 2023; 12:1655. [PMID: 37759958 PMCID: PMC10525912 DOI: 10.3390/antiox12091655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
Autophagy is a highly conserved process that degrades damaged macromolecules and organelles. Unlike animals, only scant information is available regarding nitric oxide (NO)-induced autophagy in plants. Such lack of information prompted us to study the roles of the NO donors' nitrate, nitrite, and sodium nitroprusside in this catabolic process in wheat roots. Furthermore, spermine, a polyamine that is found in all eukaryotic cells, was also tested as a physiological NO donor. Here, we show that in wheat roots, NO donors and spermine can trigger autophagy, with NO and reactive oxygen species (ROS) playing signaling roles based on the visualization of autophagosomes, analyses of the levels of NO, ROS, mitochondrial activity, and the expression of autophagic (ATG) genes. Treatment with nitrite and nitroprusside causes an energy deficit, a typical prerequisite of autophagy, which is indicated by a fall in mitochondrial potential, and the activity of mitochondrial complexes. On the contrary, spermine sustains energy metabolism by upregulating the activity of appropriate genes, including those that encode glyceraldehyde 3-phosphate dehydrogenase GAPDH and SNF1-related protein kinase 1 SnRK1. Taken together, our data suggest that one of the key roles for NO in plants may be to trigger autophagy via diverse mechanisms, thus facilitating the removal of oxidized and damaged cellular constituencies.
Collapse
Affiliation(s)
- Farida Minibayeva
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia; (A.M.); (S.D.); (A.P.); (D.R.)
| | | | | | | | | | | |
Collapse
|
4
|
Matos IF, Morales LMM, Santana DB, Silva GMC, Gomes MMDA, Ayub RA, Costa JH, de Oliveira JG. Ascorbate synthesis as an alternative electron source for mitochondrial respiration: Possible implications for the plant performance. FRONTIERS IN PLANT SCIENCE 2022; 13:987077. [PMID: 36507441 PMCID: PMC9727407 DOI: 10.3389/fpls.2022.987077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/31/2022] [Indexed: 06/01/2023]
Abstract
The molecule vitamin C, in the chemical form of ascorbic acid (AsA), is known to be essential for the metabolism of humans and animals. Humans do not produce AsA, so they depend on plants as a source of vitamin C for their food. The AsA synthesis pathway occurs partially in the cytosol, but the last oxidation step is physically linked to the respiratory chain of plant mitochondria. This oxidation step is catalyzed by l-galactono-1,4-lactone dehydrogenase (l-GalLDH). This enzyme is not considered a limiting step for AsA production; however, it presents a distinguishing characteristic: the l-GalLDH can introduce electrons directly into the respiratory chain through cytochrome c (Cytc) and therefore can be considered an extramitochondrial electron source that bypasses the phosphorylating Complex III. The use of Cytc as electron acceptor has been debated in terms of its need for AsA synthesis, but little has been said in relation to its impact on the functioning of the respiratory chain. This work seeks to offer a new view about the possible changes that result of the link between AsA synthesis and the mitochondrial respiration. We hypothesized that some physiological alterations related to low AsA may be not only explained by the deficiency of this molecule but also by the changes in the respiratory function. We discussed some findings showing that respiratory mutants contained changes in AsA synthesis. Besides, recent works that also indicate that the excessive electron transport via l-GalLDH enzyme may affect other respiratory pathways. We proposed that Cytc reduction by l-GalLDH may be part of an alternative respiratory pathway that is active during AsA synthesis. Also, it is proposed that possible links of this pathway with other pathways of alternative electron transport in plant mitochondria may exist. The review suggests potential implications of this relationship, particularly for situations of stress. We hypothesized that this pathway of alternative electron input would serve as a strategy for adaptation of plant respiration to changing conditions.
Collapse
Affiliation(s)
- Isabelle Faria Matos
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | | | - Diederson Bortolini Santana
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Gláucia Michelle Cosme Silva
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Mara Menezes de Assis Gomes
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Ricardo Antônio Ayub
- Laboratory of Biotechnology Applied to Fruit Growing, Department of Phytotechny and Phytosanitary, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - José Hélio Costa
- Functional Genomics and Bioinformatics, Department of Biochemistry and Molecular Biology, Universidade Federal do Ceará, Fortaleza, CE, Brazil
- Non-Institutional Competence Focus (NICFocus) ‘Functional Cell Reprogramming and Organism Plasticity’ (FunCROP), coordinated from Foros de Vale de Figueira, Alentejo, Portugal
| | - Jurandi Gonçalves de Oliveira
- Plant Genetic Breeding Laboratory, Center for Agricultural Sciences and Technologies, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
5
|
Adingo S, Yu JR, Xuelu L, Li X, Jing S, Xiaong Z. Variation of soil microbial carbon use efficiency (CUE) and its Influence mechanism in the context of global environmental change: a review. PeerJ 2021; 9:e12131. [PMID: 34721956 PMCID: PMC8522642 DOI: 10.7717/peerj.12131] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 08/17/2021] [Indexed: 12/05/2022] Open
Abstract
Soil microbial carbon utilization efficiency (CUE) is the efficiency with which microorganisms convert absorbed carbon (C) into their own biomass C, also referred to as microorganism growth efficiency. Soil microbial CUE is a critical physiological and ecological parameter in the ecosystem’s C cycle, influencing the processes of C retention, turnover, soil mineralization, and greenhouse gas emission. Understanding the variation of soil microbial CUE and its influence mechanism in the context of global environmental change is critical for a better understanding of the ecosystem’s C cycle process and its response to global changes. In this review, the definition of CUE and its measurement methods are reviewed, and the research progress of soil microbial CUE variation and influencing factors is primarily reviewed and analyzed. Soil microbial CUE is usually expressed as the ratio of microbial growth and absorption, which is divided into methods based on the microbial growth rate, microbial biomass, substrate absorption rate, and substrate concentration change, and varies from 0.2 to 0.8. Thermodynamics, ecological environmental factors, substrate nutrient quality and availability, stoichiometric balance, and microbial community composition all influence this variation. In the future, soil microbial CUE research should focus on quantitative analysis of trace metabolic components, analysis of the regulation mechanism of biological-environmental interactions, and optimization of the carbon cycle model of microorganisms’ dynamic physiological response process.
Collapse
Affiliation(s)
- Samuel Adingo
- College of Forestry, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Jie-Ru Yu
- College of Resources and Environment, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Liu Xuelu
- College of Resources and Environment, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Xiaodan Li
- School of Management, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Sun Jing
- College of Resources and Environment, Gansu Agricultural University, Lanzhou, Gansu, China
| | - Zhang Xiaong
- College of Forestry, Gansu Agricultural University, Lanzhou, Gansu, China
| |
Collapse
|
6
|
Keep Calm and Survive: Adaptation Strategies to Energy Crisis in Fruit Trees under Root Hypoxia. PLANTS 2020; 9:plants9091108. [PMID: 32867316 PMCID: PMC7570223 DOI: 10.3390/plants9091108] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/19/2020] [Accepted: 08/22/2020] [Indexed: 01/05/2023]
Abstract
Plants are permanently facing challenges imposed by the environment which, in the context of the current scenario of global climate change, implies a constant process of adaptation to survive and even, in the case of crops, at least maintain yield. O2 deficiency at the rhizosphere level, i.e., root hypoxia, is one of the factors with the greatest impact at whole-plant level. At cellular level, this O2 deficiency provokes a disturbance in the energy metabolism which has notable consequences on the yield of plant crops. In this sense, although several physiological studies describe processes involved in plant adaptation to root hypoxia in woody fruit trees, with emphasis on the negative impacts on photosynthetic rate, there are very few studies that include -omics strategies for specifically understanding these processes in the roots of such species. Through a de novo assembly approach, a comparative transcriptome study of waterlogged Prunus spp. genotypes contrasting in their tolerance to root hypoxia was revisited in order to gain a deeper insight into the reconfiguration of pivotal pathways involved in energy metabolism. This re-analysis describes the classically altered pathways seen in the roots of woody fruit trees under hypoxia, but also routes that link them to pathways involved with nitrogen assimilation and the maintenance of cytoplasmic pH and glycolytic flow. In addition, the effects of root hypoxia on the transcription of genes related to the mitochondrial oxidative phosphorylation system, responsible for providing adenosine triphosphate (ATP) to the cell, are discussed in terms of their roles in the energy balance, reactive oxygen species (ROS) metabolism and aerenchyma formation. This review compiles key findings that help to explain the trait of tolerance to root hypoxia in woody fruit species, giving special attention to their strategies for managing the energy crisis. Finally, research challenges addressing less-explored topics in recovery and stress memory in woody fruit trees are pointed out.
Collapse
|