1
|
Mišina I, Lazdiņa D, Górnaś P. Tocochromanols in the Leaves of Plants in the Hypericum and Clusia Genera. Molecules 2025; 30:709. [PMID: 39942812 PMCID: PMC11820847 DOI: 10.3390/molecules30030709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/19/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Now under Clusiaceae and Hypericaceae, Clusia and Hypericum were previously categorized under one family until they were divided in 2003 by the APG III system. The Clusia genus is characterized by the presence of tocotrienol derivatives with antiangiogenic properties, and only Hypericum perforatum tocochromanol content has been studied in the Hypericum genus. Twelve species were analyzed: H. aegypticum, H. calycinum, H. empetrifolium, H. lancasteri, H. olympicum f. minus 'Sulphureum', H. perforatum, H. xylosteifolium, C. fluminensis, C. minor, C. odorata, C. palmicida, and C. tocuchensis. Plant leaves were analyzed for their tocochromanol (α-, β-, γ-, and δ-tocotrienol and tocopherol) contents using a reverse-phase high-performance liquid chromatography with fluorescent light detector (RP-HPLC-FLD) method. While α-tocopherol (α-T) was present in the highest proportion, the leaves had significant tocotrienol (T3) contents. Following α-T, δ-T3 was present in most Clusia samples, and γ-T3 in most Hypericum samples, except H. olympicum, in which α-T3 followed. C. minor had the highest α-T (112.72 mg 100 g-1) and total tocochromanol (141.43 mg 100 g-1) content, followed by C. palmicida (65.97 and 82.96 mg 100 g-1, respectively) and H. olympicum (α-T 32.08, α-T3 30.68, and total tocochromanols 89.06 mg 100 g-1). The Hypericum genus is a valuable source of tocotrienols, with potential use after purification.
Collapse
Affiliation(s)
| | | | - Paweł Górnaś
- Institute of Horticulture, Graudu 1, LV-3701 Dobele, Latvia; (I.M.); (D.L.)
| |
Collapse
|
2
|
Górnaś P, Symoniuk E, Soliven A. Reversed phase HPLC with UHPLC benefits for the determination of tocochromanols in the seeds of edible fruits in the Rosaceae family. Food Chem 2024; 460:140789. [PMID: 39126942 DOI: 10.1016/j.foodchem.2024.140789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/21/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Rosaceae family includes several edible fruit species processed in vast quantities and generates large amounts of seeds valuable in tocopherols. In the present study, the composition of tocochromanols in the seeds of 141 samples was determined by reversed phase high-performance liquid chromatography (RPLC) with diode array detector (DAD), fluorescence detector (FLD) and confirmed by mass detector (MS). The thirteen species belonging to the Rosaceae family were classified by multivariate statistical analysis, hierarchical cluster analysis (HCA) and principal component analysis (PCA) into two groups based on tocochromanols content. Group 'A' includes pears (Pyrus communis), sweet cherry (Prunus avium), sour cherry (Prunus cerasus), apricots (Prunus armeniaca), hexaploid plums (Prunus domestica), diploid plums (Prunus cerasifera), raspberry (Rubus idaeus), and rose hip (Rosa rugosa); while group 'B' quince (Cydonia oblonga), Japanese quince (Chaenomeles japonica), strawberry (Fragaria × ananassa), dessert apples (Malus domestica), and crab apples (Malus spp.). Two rapid (6-7 min) and low pressure (7.2-8.1 MPa) separation methods were developed and validated using two core-shell columns (i) C18 and (ii) F5. The F5 achieved a separation of β and γ isomers while the C18 column did not.
Collapse
Affiliation(s)
- Paweł Górnaś
- Institute of Horticulture, Graudu 1, Dobele, LV-3701, Latvia.
| | - Edyta Symoniuk
- Department of Food Technology and Assessment, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska 166, 02-787 Warsaw, Poland
| | - Arianne Soliven
- School of Science, Western Sydney University, Parramatta, NSW 2150, Australia
| |
Collapse
|
3
|
Martínez-Ferri E, Forbes-Hernandez TY, Cervantes L, Soria C, Battino M, Ariza MT. Relation between Strawberry Fruit Redness and Bioactivity: Deciphering the Role of Anthocyanins as Health Promoting Compounds. Foods 2023; 13:110. [PMID: 38201141 PMCID: PMC10778386 DOI: 10.3390/foods13010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
The red colour of most berries is often associated to fruit healthiness, since it has been linked to enrichment in anthocyanins (polyphenol with antioxidative properties). However, recent studies suggest that anthocyanins could not be the major contributors to bioactivity leading to uncertainty about their role as important molecules in the generation of health-promoting properties. To shed light on this issue, spectrophotometric and HPLC techniques were used for characterizing the content of phenolic compounds, including anthocyanins, in fruits of red (Fragaria x ananassa, cv. Fortuna) and white strawberry (Fragaria vesca spp. XXVIII) species (distinguishing receptacle from achene). In addition, the effect of these extracts on the reduction of intracellular ROS was tested, as well as on the activity of antioxidant enzymes and the quantification of cell oxidation markers. The results showed that white receptacle extracts (deprived of anthocyanins) were able to protect cells from oxidative damage to a greater extent than red fruits. This could be due per se to their high antioxidant capacity, greater than that shown in red fruits, or to the ability of antioxidants to modulate the activity of antioxidant enzymes, thus questioning the positive effect of anthocyanins on the wholesomeness of strawberry fruits. The results shed light on the relevance of anthocyanins in the prevention of health-associated oxidative damage.
Collapse
Affiliation(s)
- Elsa Martínez-Ferri
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Pesca y Desarrollo Rural, Junta de Andalucía, IFAPA de Churriana, Cortijo de la Cruz s/n, Churriana, 29140 Málaga, Spain; (E.M.-F.); (L.C.); (C.S.)
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, 29140 Málaga, Spain
| | - Tamara Yuliet Forbes-Hernandez
- Department of Physiology, Institute of Nutrition and Food Technology José Mataix Verdú, Biomedical Research Center, University of Granada, Avda. Del Conocimiento s.n. Armilla, 18100 Granada, Spain
| | - Lucía Cervantes
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Pesca y Desarrollo Rural, Junta de Andalucía, IFAPA de Churriana, Cortijo de la Cruz s/n, Churriana, 29140 Málaga, Spain; (E.M.-F.); (L.C.); (C.S.)
| | - Carmen Soria
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Pesca y Desarrollo Rural, Junta de Andalucía, IFAPA de Churriana, Cortijo de la Cruz s/n, Churriana, 29140 Málaga, Spain; (E.M.-F.); (L.C.); (C.S.)
- Unidad Asociada de I+D+i IFAPA-CSIC Biotecnología y Mejora en Fresa, 29140 Málaga, Spain
| | - Maurizio Battino
- Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche (DISCO)-Sez. Biochimica, Facoltà di Medicina, Università Politecnica delle Marche, 60131 Ancona, Italy;
| | - María Teresa Ariza
- Instituto Andaluz de Investigación y Formación Agraria y Pesquera (IFAPA), Consejería de Agricultura, Pesca y Desarrollo Rural, Junta de Andalucía, IFAPA de Churriana, Cortijo de la Cruz s/n, Churriana, 29140 Málaga, Spain; (E.M.-F.); (L.C.); (C.S.)
| |
Collapse
|
4
|
Ribalta-Pizarro C, Muñoz P, Munné-Bosch S. Differential tissue-specific accumulation and function of tocochromanols in grape berries. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107705. [PMID: 37094494 DOI: 10.1016/j.plaphy.2023.107705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Grape berries have been extensively studied in terms of antioxidant characterization, specifically in anthocyanin, total phenol, and tannin accumulation. However, very little is known about vitamin E composition and contents in this fruit. Aiming to examine the function of vitamin E during grape berries ripening, tocochromanol contents and composition were evaluated in berries and leaves of grapevines (Vitis vinifera L. cv. Merlot), from just before veraison to commercial harvest. We also determined the time-course evolution of tocochromanol accumulation in various fruit tissues, including the skin, pulp, and seeds, and measured the extent of primary and secondary lipid peroxidation, as well as fruit technological maturity parameters. Vitamin E accumulated at higher levels in leaves than in fruits, although the tissue-specific evaluation of tocochromanol contents revealed that berry skin is also rich in α-tocopherol whereas tocotrienols were present in seeds only. α-Tocopherol content decreased during ripening, more specifically in the skin, and it was accompanied by an increase in the extent of lipid peroxidation. Contents and variations in the levels of α-tocopherol, but not those of the other tocochromanols, were inversely related to changes in lipid peroxidation during fruit ripening, as indicated by tissue-specific variations in malondialdehyde contents. In conclusion, α-tocopherol is more abundant in leaves than fruit, yet it apears to exert a role in the modulation of the extent of lipid peroxidation in grape berries, more specifically in the skin, where α-tocopherol depletion and malondialdehyde accumulation may be related to an adequate progression of fruit ripening.
Collapse
Affiliation(s)
- Camila Ribalta-Pizarro
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028, Barcelona, Spain; Research Institute of Nutrition and Food Safety (INSA), University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028, Barcelona, Spain
| | - Paula Muñoz
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028, Barcelona, Spain; Research Institute of Nutrition and Food Safety (INSA), University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028, Barcelona, Spain
| | - Sergi Munné-Bosch
- Department of Evolutionary Biology, Ecology, and Environmental Sciences, University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028, Barcelona, Spain; Research Institute of Nutrition and Food Safety (INSA), University of Barcelona, Faculty of Biology, Av. Diagonal 643, E-08028, Barcelona, Spain.
| |
Collapse
|
5
|
Influence of Drought Stress on Physiological Responses and Bioactive Compounds in Chicory ( Cichorium intybus L.): Opportunity for a Sustainable Agriculture. Foods 2022; 11:foods11223725. [PMID: 36429317 PMCID: PMC9689432 DOI: 10.3390/foods11223725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Food production from agriculture depends on irrigation, mainly in poor rainfall zones, such as the Mediterranean region. Chicory is an important food crop component of the Mediterranean diet. Considering the increasing incidence of drought due to climate change, this study was carried out in order to investigate the effect of moderate drought stress on photosynthesis, leaf gaseous exchange, growth, and tocol and carotenoid composition of chicory under field conditions. Chicory was subjected to rainfed condition stress in a randomized block design. At 50 days of treatment, drought stress caused about 48% reduction in dry matter, 30% in leaf relative water content, and about 25% in photosynthetic rate and stomatal conductance, whereas mesophyll conductance was not affected. A strong relationship between photosynthetic rates and stomatal conductance was observed. In the rainfed chicory, at the end of treatment, an increase (about 20%) in carotenoid and tocopherol content was found, thus, giving further insight into the positive effect of moderate drought stress on these compounds. This finding suggests that under proper rainfed conditions, it is possible to increase and save the quality of dry chicory, although yield loss occurs.
Collapse
|
6
|
Mendonça JDS, Guimarães RDCA, Zorgetto-Pinheiro VA, Fernandes CDP, Marcelino G, Bogo D, Freitas KDC, Hiane PA, de Pádua Melo ES, Vilela MLB, do Nascimento VA. Natural Antioxidant Evaluation: A Review of Detection Methods. Molecules 2022; 27:3563. [PMID: 35684500 PMCID: PMC9182375 DOI: 10.3390/molecules27113563] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 02/04/2023] Open
Abstract
Antioxidants have drawn the attention of the scientific community due to being related to the prevention of various degenerative diseases. The antioxidant capacity has been extensively studied in vitro, and different methods have been used to assess its activity. However, the main issues related to studying natural antioxidants are evaluating whether these antioxidants demonstrate a key role in the biological system and assessing their bioavailability in the organism. The majority of outcomes in the literature are controversial due to a lack of method standardization and their proper application. Therefore, this study aims to compile the main issues concerning the natural antioxidant field of study, comparing the most common in vitro methods to evaluate the antioxidant activity of natural compounds, demonstrating the antioxidant activity in biological systems and the role of the main antioxidant enzymes of redox cellular signaling and explaining how the bioavailability of bioactive compounds is evaluated in animal models and human clinical trials.
Collapse
Affiliation(s)
- Jenifer da Silva Mendonça
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Rita de Cássia Avellaneda Guimarães
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Verônica Assalin Zorgetto-Pinheiro
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Carolina Di Pietro Fernandes
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | - Gabriela Marcelino
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Danielle Bogo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Karine de Cássia Freitas
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Priscila Aiko Hiane
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
| | - Elaine Silva de Pádua Melo
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| | | | - Valter Aragão do Nascimento
- Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil; (J.d.S.M.); (R.d.C.A.G.); (V.A.Z.-P.); (G.M.); (D.B.); (K.d.C.F.); (P.A.H.); (E.S.d.P.M.)
- Group of Spectroscopy and Bioinformatics Applied Biodiversity and Health (GEBABS), Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
- School of Medicine, Federal University of Mato Grosso do Sul, Campo Grande 79070-900, Brazil;
| |
Collapse
|
7
|
Characteristics of Fragaria vesca Yield Parameters and Anthocyanin Accumulation under Water Deficit Stress. PLANTS 2021; 10:plants10030557. [PMID: 33809648 PMCID: PMC8001689 DOI: 10.3390/plants10030557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/22/2022]
Abstract
Plants exposed to drought stress conditions often increase the synthesis of anthocyanins—natural plant pigments and antioxidants. However, water deficit (WD) often causes significant yield loss. The aim of our study was to evaluate the productivity as well as the anthocyanin content and composition of berries from cultivated Fragaria vesca “Rojan” and hybrid No. 17 plants (seedlings) grown under WD. The plants were grown in an unheated greenhouse and fully irrigated (control) or irrigated at 50% and 25%. The number of berries per plant and the berry weight were evaluated every 4 days. The anthocyanin content and composition of berries were evaluated with the same periodicity using HPLC. The effect of WD on the yield parameters of two evaluated F. vesca genotypes differed depending on the harvest time. The cumulative yield of plants under WD was not less than that of the control plants for 20–24 days after the start of the experiment. Additionally, berries accumulated 36–56% (1.5–2.3 times, depending on the harvest time) more anthocyanins compared with fully irrigated plants. Our data show that slight or moderate WD at a stable air temperature of about 20 °C positively affected the biosynthesis of anthocyanins and the yield of F. vesca berries.
Collapse
|
8
|
Nowicka B, Trela-Makowej A, Latowski D, Strzalka K, Szymańska R. Antioxidant and Signaling Role of Plastid-Derived Isoprenoid Quinones and Chromanols. Int J Mol Sci 2021; 22:2950. [PMID: 33799456 PMCID: PMC7999835 DOI: 10.3390/ijms22062950] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 12/15/2022] Open
Abstract
Plant prenyllipids, especially isoprenoid chromanols and quinols, are very efficient low-molecular-weight lipophilic antioxidants, protecting membranes and storage lipids from reactive oxygen species (ROS). ROS are byproducts of aerobic metabolism that can damage cell components, they are also known to play a role in signaling. Plants are particularly prone to oxidative damage because oxygenic photosynthesis results in O2 formation in their green tissues. In addition, the photosynthetic electron transfer chain is an important source of ROS. Therefore, chloroplasts are the main site of ROS generation in plant cells during the light reactions of photosynthesis, and plastidic antioxidants are crucial to prevent oxidative stress, which occurs when plants are exposed to various types of stress factors, both biotic and abiotic. The increase in antioxidant content during stress acclimation is a common phenomenon. In the present review, we describe the mechanisms of ROS (singlet oxygen, superoxide, hydrogen peroxide and hydroxyl radical) production in chloroplasts in general and during exposure to abiotic stress factors, such as high light, low temperature, drought and salinity. We highlight the dual role of their presence: negative (i.e., lipid peroxidation, pigment and protein oxidation) and positive (i.e., contribution in redox-based physiological processes). Then we provide a summary of current knowledge concerning plastidic prenyllipid antioxidants belonging to isoprenoid chromanols and quinols, as well as their structure, occurrence, biosynthesis and function both in ROS detoxification and signaling.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (B.N.); (D.L.); (K.S.)
| | - Agnieszka Trela-Makowej
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Krakow, Poland;
| | - Dariusz Latowski
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (B.N.); (D.L.); (K.S.)
| | - Kazimierz Strzalka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; (B.N.); (D.L.); (K.S.)
- Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland
| | - Renata Szymańska
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, Reymonta 19, 30-059 Krakow, Poland;
| |
Collapse
|