1
|
Shi X, Yue H, Wei Y, Preisser EL, Wang P, Du J, Xia J, Li K, Yang X, Chen J, Zhang S, Zhang Z, Zhou X, Zhang D, Liu Y. Neophytadiene, a Plant Specialized Metabolite, Mediates the Virus-Vector-Plant Tripartite Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416891. [PMID: 40178133 PMCID: PMC12165043 DOI: 10.1002/advs.202416891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/17/2025] [Indexed: 04/05/2025]
Abstract
While interactions between viruses and their vectors, as well as between viruses and host plants, have been extensively studied, the genetic mechanisms underlying tripartite interactions remain largely unknown. In this study, phenotypic assays are integrated with molecular biology and functional genomic approaches to elucidate the tripartite interactions involving tomato chlorosis virus (ToCV), a major threat to tomato production worldwide, the whitefly, Bemisia tabaci, an insect vector, and host plants. ToCV infection induces the production of a chlorophyll degradation product that acts as a volatile attractant for whiteflies. Furthermore, the suppression of Lhca4, a gene encoding subunit of light-harvesting complex I in host plants, by the P9 protein of ToCV leads to chlorophyll degradation and neophytadiene biosynthesis. Overexpression of Lhca4 reduced chlorophyll production and ToCV infection. Furthermore, OBP2, an odorant-binding protein from B. tabaci, capable of binding to neophytadiene is identified. Suppression of BtOBP2 impaired vector's subsequent preference for ToCV-infected plants. The results not only reveal the genetic underpinnings, including ToCV P9, host plant Lhca4, and whitefly BtOBP2, governing the virus-vector-plant interactions, but also highlight neophytadiene, a specialized metabolite in host plants, as a mediator of intricate multitrophic interactions, suggesting new avenues for managing plant virus vectored by insects.
Collapse
Affiliation(s)
- Xiao‐bin Shi
- Institute of Plant ProtectionHunan Academy of Agricultural SciencesYuelushan LaboratoryChangsha410125China
| | - Hao Yue
- Institute of Plant ProtectionHunan Academy of Agricultural SciencesYuelushan LaboratoryChangsha410125China
| | - Yan Wei
- Laboratory of Agricultural and Forestry BiosecurityMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Evan L. Preisser
- Department of Biological SciencesUniversity of Rhode IslandKingstonRI02881USA
| | - Pei Wang
- Institute of Plant ProtectionHunan Academy of Agricultural SciencesYuelushan LaboratoryChangsha410125China
| | - Jiao Du
- Institute of Plant ProtectionHunan Academy of Agricultural SciencesYuelushan LaboratoryChangsha410125China
| | - Ji‐xing Xia
- Laboratory of Agricultural and Forestry BiosecurityMOA Key Lab of Pest Monitoring and Green ManagementCollege of Plant ProtectionChina Agricultural UniversityBeijing100193China
| | - Kai‐long Li
- Institute of Plant ProtectionHunan Academy of Agricultural SciencesYuelushan LaboratoryChangsha410125China
| | - Xin Yang
- State Key Laboratory of Vegetable BiobreedingDepartment of Plant ProtectionInstitute of Vegetables and FlowersChinese Academy of Agricultural SciencesBeijing100081China
| | - Jian‐bin Chen
- Institute of Plant ProtectionHunan Academy of Agricultural SciencesYuelushan LaboratoryChangsha410125China
| | - Song‐bai Zhang
- Institute of Plant ProtectionHunan Academy of Agricultural SciencesYuelushan LaboratoryChangsha410125China
| | - Zhan‐hong Zhang
- Institute of VegetableHunan Academy of Agricultural SciencesYuelushan LaboratoryChangsha410125China
| | - Xu‐guo Zhou
- Department of EntomologySchool of Integrative BiologyCollege of Liberal Arts & SciencesUniversity of Illinois Urbana‐ChampaignUrbanaIL61801USA
| | - De‐yong Zhang
- Institute of Plant ProtectionHunan Academy of Agricultural SciencesYuelushan LaboratoryChangsha410125China
| | - Yong Liu
- Institute of Plant ProtectionHunan Academy of Agricultural SciencesYuelushan LaboratoryChangsha410125China
| |
Collapse
|
2
|
Zhang L, Zhu G, Ma L, Lin T, Suprun AR, Qu G, Fu D, Zhu B, Luo Y, Zhu H. lncRNA1471 mediates tomato-ripening initiation by binding to the ASR transcription factor. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70050. [PMID: 40051263 DOI: 10.1111/tpj.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 05/13/2025]
Abstract
The regulatory mechanisms underlying fruit ripening, including hormone regulation, transcription factor activity, and epigenetic modifications, have been discussed extensively. Nonetheless, the role of long non-coding RNAs (lncRNAs) in fruit ripening remains unclear. Here, we identified lncRNA1471 as a negative regulator of tomato fruit-ripening initiation. Knocking out lncRNA1471 via large fragment deletion resulted in accelerated initiation of fruit ripening, a shorter color-breaking stage (BR), deeper coloration, increased levels of ethylene, lycopene, and β-carotene, accelerated chlorophyll degradation, and reduced fruit firmness. These phenotypic changes were accompanied by alterations in the carotenoid pathway flux, ethylene biosynthesis, and cell wall metabolism, primarily mediated by the direct regulation of key genes involved in these processes. For example, in the CR-lncRNA1471 mutant, lycopene-related SlPSY1 and SlZISO were upregulated. Additionally, the expression levels of ethylene biosynthetic genes (SlACS2 and SlACS4), ripening-related genes (RIN, NOR, CNR, and SlDML2), and cell wall metabolism genes (SlPL, SlPG2a, SlEXP1, SlPMEI-like, and SlBG4) were significantly upregulated, which further strengthening the findings mentioned above. Furthermore, lncRNA1471 was identified to interact with the abscisic stress-ripening protein (ASR) transcription factor by chromatin isolation by RNA purification coupled with mass spectrometry (ChIRP-MS) and protein pull-down assay in vitro, which might regulate key genes involved in tomato ripening. The discovery of the significant non-coding regulator lncRNA1471 enhances our understanding of the complex regulatory landscape governing fruit ripening. These findings provide valuable insights into the mechanisms underlying ripening, particularly regarding the involvement of lncRNAs in ripening.
Collapse
Affiliation(s)
- Lingling Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
- School of Public Health, Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, Hui Autonomous Region, 750004, China
| | - Guoning Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Liqun Ma
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Andrey R Suprun
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Guiqin Qu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Daqi Fu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Hongliang Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| |
Collapse
|
3
|
Tanaka A, Ito H. Chlorophyll Degradation and Its Physiological Function. PLANT & CELL PHYSIOLOGY 2025; 66:139-152. [PMID: 39172641 DOI: 10.1093/pcp/pcae093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/31/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Research on chlorophyll degradation has progressed significantly in recent decades. In the 1990s, the structure of linear tetrapyrrole, which is unambiguously a chlorophyll degradation product, was determined. From the 2000s until the 2010s, the major enzymes involved in chlorophyll degradation were identified, and the pheophorbide a oxygenase/phyllobilin pathway was established. This degradation pathway encompasses several steps: (i) initial conversion of chlorophyll b to 7-hydroxymethyl chlorophyll a, (ii) conversion of 7-hydroxymethyl chlorophyll a to chlorophyll a, (iii) dechelation of chlorophyll a to pheophytin a, (iv) dephytylation of pheophytin a to pheophorbide a, (v) opening of the macrocycle to yield a red chlorophyll catabolite (RCC) and (vi) conversion of RCC to phyllobilins. This pathway converts potentially harmful chlorophyll into safe molecules of phyllobilins, which are stored in the central vacuole of terrestrial plants. The expression of chlorophyll-degrading enzymes is mediated by various transcription factors and influenced by light conditions, stress and plant hormones. Chlorophyll degradation is differently regulated in different organs and developmental stages of plants. The initiation of chlorophyll degradation induces the further expression of chlorophyll-degrading enzymes, resulting in the acceleration of chlorophyll degradation. Chlorophyll degradation was initially considered the last reaction in senescence; however, chlorophyll degradation plays crucial roles in enhancing senescence, degrading chlorophyll-protein complexes, forming photosystem II and maintaining seed quality. Therefore, controlling chlorophyll degradation has important agricultural applications.
Collapse
Affiliation(s)
- Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, Hokkaido, 060-0819 Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, N19 W8, Sapporo, Hokkaido, 060-0819 Japan
| |
Collapse
|
4
|
Zuo Z, Ma H, Li L, Qian J, Zhang M, Li X, Sheng Y, Wang Y. Systematic Analysis of Stay-Green Genes in Six Ipomoea Species Reveals the Evolutionary Dynamics, Carotenoid and Anthocyanin Accumulation, and Stress Responses of Sweet Potato. Genes (Basel) 2025; 16:266. [PMID: 40149418 PMCID: PMC11941861 DOI: 10.3390/genes16030266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Stay-green proteins (SGRs) play a vital role in regulating plant chlorophyll degradation and senescence. However, this gene family has not been explored in Ipomoea species and sweet potato. METHODS A total of 19 SGR family genes (SGRs) were identified using Basic Local Alignment Search Tool (BLAST) methods. The proteins' physiological properties, evolutionary and phylogenetic relationships, conserved domain and motifs, gene structures, collinearity, and promoter cis-elements were systematically analyzed. Moreover, expression patterns and protein interaction network analyses were performed for sweet potato. RESULTS In this study, we identified 19 SGRs in six Ipomoea species. These SGRs were divided into four subgroups according to their phylogenetic relationships. Domian analysis revealed that SGRs had the conserved "stay-green" domain. Gene structure analysis showed that SGRs had similar structures. The collinearity analysis revealed that the SGRs originated from two genes, with one gene undergoing duplication during evolution history; moreover, the SGRs experienced rearrangement throughout the evolutionary process in the Ipomoea species. Cis-elements related to pigment biosynthesis and hormone and stress responses were found. In addition, expression pattern analysis showed that IbSGRs, especially IbSGR1, IbSGR2, and IbSGR3, might play an important role in pigment accumulation. The SGRs could also respond to stress responses (i.e., cold, drought, and salt) and take part in hormone crosstalk (i.e., abscisic acid (ABA), methyl jasmonate (MeJA), salicylic acid (SA)). CONCLUSIONS Taken together, the findings of this study provide new insights for further understanding the functions of SGRs and candidate genes for pigment accumulation and stress tolerance in sweet potatoes.
Collapse
Affiliation(s)
- Zhidan Zuo
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China; (Z.Z.); (H.M.); (L.L.); (J.Q.); (M.Z.); (X.L.); (Y.S.)
- Key Laboratory of Sweet Potato Biology and Biotechnology of Ministry of Agriculture and Rural Affairs, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huihui Ma
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China; (Z.Z.); (H.M.); (L.L.); (J.Q.); (M.Z.); (X.L.); (Y.S.)
| | - Longteng Li
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China; (Z.Z.); (H.M.); (L.L.); (J.Q.); (M.Z.); (X.L.); (Y.S.)
| | - Jialin Qian
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China; (Z.Z.); (H.M.); (L.L.); (J.Q.); (M.Z.); (X.L.); (Y.S.)
| | - Minghui Zhang
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China; (Z.Z.); (H.M.); (L.L.); (J.Q.); (M.Z.); (X.L.); (Y.S.)
| | - Xiang Li
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China; (Z.Z.); (H.M.); (L.L.); (J.Q.); (M.Z.); (X.L.); (Y.S.)
| | - Yeshun Sheng
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China; (Z.Z.); (H.M.); (L.L.); (J.Q.); (M.Z.); (X.L.); (Y.S.)
| | - Yuxin Wang
- College of Life Sciences, Zaozhuang University, Zaozhuang 277160, China; (Z.Z.); (H.M.); (L.L.); (J.Q.); (M.Z.); (X.L.); (Y.S.)
| |
Collapse
|
5
|
Li Q, Zhou S. Effect of Paenibacillus favisporus CHP14 inoculation on selenium accumulation and tolerance of Pakchoi ( Brassica chinensis L.) under exogenous selenite treatments. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024:1-16. [PMID: 39394951 DOI: 10.1080/15226514.2024.2414212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2024]
Abstract
The effects of Paenibacillus favisporus CHP14 inoculation on selenium (Se) accumulation and Se tolerance of Pakchoi were studied by a pot experiment conducted in greenhouse. The results revealed that the growth traits such as plant height, root length, and biomass were significantly elevated during CHP14 treatment at 0 ∼ 8.0 mg·kg-1 Se(IV) levels. CHP14-inoculated plants accumulated more Se in root and shoot, which were 24.1%∼57.3% and 7.5%∼50.9% higher than those of non-inoculated plants. The contents of leaf nitrogen (N), phosphorus (P), magnesium (Mg), and iron (Fe), as well as the ratio of indoleacetic acid and abscisic acid contents (IAA/ABA) were increased by CHP14 inoculation, and positively associated with photosynthetic pigment contents (p < 0.05). At ≥ 4.0 mg·kg-1 Se(IV) levels, superoxide dismutase, peroxidase, and glutathione peroxidase activities of Pakchoi roots were increased with CHP14 inoculation, by 9.9%∼17.1%, 28.4%∼40.7%, and 7.4%∼15.3%, respectively. Moreover, CHP14 inoculation enhanced ascorbate-glutathione (AsA-GSH) metabolism in roots by upregulating the related enzymes activities and antioxidant contents under excess Se(IV) stress. These findings suggest that CHP14 is beneficial to improve plant growth and enhance Se(IV) resistance of Pakchoi, and can be exploited as potential inoculants for phytoremediation process in Se contaminated soil.
Collapse
Affiliation(s)
- Qi Li
- College of Ecology and Environment, Anhui Normal University, Wuhu, China
- School of Environment and Surveying Engineering, Suzhou University, Suzhou, China
| | - Shoubiao Zhou
- College of Ecology and Environment, Anhui Normal University, Wuhu, China
| |
Collapse
|
6
|
Dai J, Xu Z, Fang Z, Zheng X, Cao L, Kang T, Xu Y, Zhang X, Zhan Q, Wang H, Hu Y, Zhao C. NAC Transcription Factor PpNAP4 Promotes Chlorophyll Degradation and Anthocyanin Synthesis in the Skin of Peach Fruit. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19826-19837. [PMID: 39213503 DOI: 10.1021/acs.jafc.4c03924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chlorophyll (Chl) catabolism and anthocyanin synthesis play pivotal roles in determining the final skin color of fruits during maturation. However, in peach (Prunus persica) fruit, the regulatory mechanism governing skin color, especially the Chl catabolism, remains largely elusive. In this study, we identified ten Chl catabolic genes (CCGs), with PpSGR emerging as a key regulator in Chl degradation in peaches. Furthermore, a NAC-like, activated by AP3/P1 (NAP) transcription factor (TF), PpNAP4, was identified as a positive modulator of Chl breakdown. PpNAP4 induced the expression of PpSGR and other CCGs, including PpPPH, PpPAO, and PpTIC55-2, by directly binding to their promoters. Overexpression of PpNAP4 resulted in a heightened expression of these genes and accelerated Chl degradation. Notably, PpNAP4 also positively regulated the expression of PpANS and PpMYB10.1, one key structural gene and a core transcriptional regulator of anthocyanin synthesis, thereby contributing to fruit coloration. In summary, our findings elucidate that PpNAP4 serves as a pivotal regulator in determining the final skin color of peach by orchestrating Chl degradation and anthocyanin accumulation through direct activation of multiple CCGs and anthocyanin related genes.
Collapse
Affiliation(s)
- Jieyu Dai
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Ze Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, P.R. China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, P.R. China
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, P.R. China
| | - Zhouheng Fang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Xuyang Zheng
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Lijun Cao
- Howard Hughes Medical Institute, Duke University, Durham, North Carolina 27708, United States
- Department of Biology, Box 90338, Duke University, Durham, North Carolina 27708, United States
| | - Tongyang Kang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Yuting Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Xingzhen Zhang
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Qianjin Zhan
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Hong Wang
- Institute of Fruit and Floriculture Research, Gansu Academy of Agricultural Sciences, Anning, Lanzhou 730070, P.R. China
| | - Yanan Hu
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling 712100, P.R. China
| |
Collapse
|
7
|
Xin X, Wang S, Pan Y, Ye L, Zhai T, Gu M, Wang Y, Zhang J, Li X, Yang W, Zhang S. MYB Transcription Factor CDC5 Activates CBF3 Expression to Positively Regulates Freezing Tolerance via Cooperating With ICE1 and Histone Modification in Arabidopsis. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39248548 DOI: 10.1111/pce.15144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 09/10/2024]
Abstract
The freezing temperature greatly limits the growth, development and productivity of plants. The C-repeat/DRE binding factor (CBF) plays a major role in cold acclimation, enabling plants to increase their freezing tolerance. Notably, the INDUCER OF CBF EXPRESSION1 (ICE1) protein has garnered attention for its pivotal role in bolstering plants' resilience against freezing through transcriptional upregulation of DREB1A/CBF3. However, the research on the interaction between ICE1 and other transcription factors and its function in regulating cold stress tolerance is largely inadequate. In this study, we found that a R2R3 MYB transcription factor CDC5 interacts with ICE1 and regulates the expression of CBF3 by recruiting RNA polymerase II, overexpression of ICE1 can complements the freezing deficient phenotype of cdc5 mutant. CDC5 increases the expression of CBF3 in response to freezing. Furthermore, CDC5 influences the expression of CBF3 by altering the chromatin status through H3K4me3 and H3K27me3 modifications. Our work identified a novel component that regulates CBF3 transcription in both ICE1-dependent and ICE1-independent manner, improving the understanding of the freezing signal transduction in plants.
Collapse
Affiliation(s)
- Xin Xin
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Shu Wang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yunjiao Pan
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Linhan Ye
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Tingting Zhai
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Mengjie Gu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Yanjiao Wang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Jiedao Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Xiang Li
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Wei Yang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Shuxin Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
8
|
Yu Y, Bao Z, Zhou Q, Wu W, Chen W, Yang Z, Wang L, Li X, Cao S, Shi L. EjWRKY6 Is Involved in the ABA-Induced Carotenoid Biosynthesis in Loquat Fruit during Ripening. Foods 2024; 13:2829. [PMID: 39272594 PMCID: PMC11395680 DOI: 10.3390/foods13172829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The yellow-fleshed loquat is abundant in carotenoids, which determine the fruit's color, provide vitamin A, and offer anti-inflammatory and anti-cancer health benefits. In this research, the impact of abscisic acid (ABA), a plant hormone, on carotenoid metabolism and flesh pigmentation in ripening loquat fruits was determined. Results revealed that ABA treatment enhanced the overall content of carotenoids in loquat fruit, including major components like β-cryptoxanthin, lutein, and β-carotene, linked to the upregulation of most genes in the carotenoid biosynthesis pathway. Furthermore, a transcription factor, EjWRKY6, whose expression was induced by ABA, was identified and was thought to play a role in ABA-induced carotenoid acceleration. Transient overexpression of EjWRKY6 in Nicotiana benthamiana and stable genetic transformation in Nicotiana tabacum with EjWRKY6 indicated that both carotenoid production and genes related to carotenoid biosynthesis could be upregulated in transgenic plants. A dual-luciferase assay proposed a probable transcriptional control between EjWRKY6 and promoters of genes associated with carotenoid production. To sum up, pre-harvest ABA application could lead to carotenoid biosynthesis in loquat fruit through the EjWRKY6-induced carotenoid biosynthesis pathway.
Collapse
Affiliation(s)
- Yan Yu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zeyang Bao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Qihang Zhou
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Wu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zhenfeng Yang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Li Wang
- College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xuewen Li
- School of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shifeng Cao
- School of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Liyu Shi
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
9
|
Barbinta-Patrascu ME, Bita B, Negut I. From Nature to Technology: Exploring the Potential of Plant-Based Materials and Modified Plants in Biomimetics, Bionics, and Green Innovations. Biomimetics (Basel) 2024; 9:390. [PMID: 39056831 PMCID: PMC11274542 DOI: 10.3390/biomimetics9070390] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
This review explores the extensive applications of plants in areas of biomimetics and bioinspiration, highlighting their role in developing sustainable solutions across various fields such as medicine, materials science, and environmental technology. Plants not only serve essential ecological functions but also provide a rich source of inspiration for innovations in green nanotechnology, biomedicine, and architecture. In the past decade, the focus has shifted towards utilizing plant-based and vegetal waste materials in creating eco-friendly and cost-effective materials with remarkable properties. These materials are employed in making advancements in drug delivery, environmental remediation, and the production of renewable energy. Specifically, the review discusses the use of (nano)bionic plants capable of detecting explosives and environmental contaminants, underscoring their potential in improving quality of life and even in lifesaving applications. The work also refers to the architectural inspirations drawn from the plant world to develop novel design concepts that are both functional and aesthetic. It elaborates on how engineered plants and vegetal waste have been transformed into value-added materials through innovative applications, especially highlighting their roles in wastewater treatment and as electronic components. Moreover, the integration of plants in the synthesis of biocompatible materials for medical applications such as tissue engineering scaffolds and artificial muscles demonstrates their versatility and capacity to replace more traditional synthetic materials, aligning with global sustainability goals. This paper provides a comprehensive overview of the current and potential uses of living plants in technological advancements, advocating for a deeper exploration of vegetal materials to address pressing environmental and technological challenges.
Collapse
Affiliation(s)
| | - Bogdan Bita
- Department of Electricity, Solid-State Physics and Biophysics, Faculty of Physics, University of Bucharest, 077125 Magurele, Romania;
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| | - Irina Negut
- National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania
| |
Collapse
|
10
|
Sun C, Yao G, Zhao J, Chen R, Hu K, He G, Zhang H. SlERF109-like and SlNAC1 Coordinately Regulated Tomato Ripening by Inhibiting ACO1 Transcription. Int J Mol Sci 2024; 25:1873. [PMID: 38339150 PMCID: PMC10855853 DOI: 10.3390/ijms25031873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/16/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
As a typical climacteric fruit, tomato (Solanum lycopersicum) is widely used for studying the ripening process. The negative regulation of tomato fruits by transcription factor SlNAC1 has been reported, but its regulatory network was unclear. In the present study, we screened a transcription factor, SlERF109-like, and found it had a stronger relationship with SlNAC1 at the early stage of tomato fruit development through the use of transcriptome data, RT-qPCR, and correlation analysis. We inferred that SlERF109-like could interact with SlNAC1 to become a regulatory complex that co-regulates the tomato fruit ripening process. Results of transient silencing (VIGS) and transient overexpression showed that SlERF109-like and SlNAC1 could regulate chlorophyll degradation-related genes (NYC1, PAO, PPH, SGR1), carotenoids accumulation-related genes (PSY1, PDS, ZDS), ETH-related genes (ACO1, E4, E8), and cell wall metabolism-related genes expression levels (CEL2, EXP, PG, TBG4, XTH5) to inhibit tomato fruit ripening. A dual-luciferase reporter and yeast one-hybrid (Y1H) showed that SlNAC1 could bind to the SlACO1 promoter, but SlERF109-like could not. Furthermore, SlERF109-like could interact with SlNAC1 to increase the transcription for ACO1 by a yeast two-hybrid (Y2H) assay, a luciferase complementation assay, and a dual-luciferase reporter. A correlation analysis showed that SlERF109-like and SlNAC1 were positively correlated with chlorophyll contents, and negatively correlated with carotenoid content and ripening-related genes. Thus, we provide a model in which SlERF109-like could interact with SlNAC1 to become a regulatory complex that negatively regulates the tomato ripening process by inhibiting SlACO1 expression. Our study provided a new regulatory network of tomato fruit ripening and effectively reduced the waste of resources.
Collapse
Affiliation(s)
- Chen Sun
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China; (C.S.); (R.C.)
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Jinghan Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Ruying Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China; (C.S.); (R.C.)
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| | - Guanghua He
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, China; (C.S.); (R.C.)
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (G.Y.); (J.Z.); (K.H.)
| |
Collapse
|
11
|
Jung H, Park HJ, Jo SH, Lee A, Lee HJ, Kim HS, Jung C, Cho HS. Nuclear OsFKBP20-1b maintains SR34 stability and promotes the splicing of retained introns upon ABA exposure in rice. THE NEW PHYTOLOGIST 2023; 238:2476-2494. [PMID: 36942934 DOI: 10.1111/nph.18892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/16/2023] [Indexed: 05/19/2023]
Abstract
Alternative splicing (AS) is a critical means by which plants respond to changes in the environment, but few splicing factors contributing to AS have been reported and functionally characterized in rice (Oryza sativa L.). Here, we explored the function and molecular mechanism of the spliceosome-associated protein OsFKBP20-1b during AS. We determined the AS landscape of wild-type and osfkbp20-1b knockout plants upon abscisic acid (ABA) treatment by transcriptome deep sequencing. To capture the dynamics of translating intron-containing mRNAs, we blocked transcription with cordycepin and performed polysome profiling. We also analyzed whether OsFKBP20-1b and the splicing factors OsSR34 and OsSR45 function together in AS using protoplast transfection assays. We show that OsFKBP20-1b interacts with OsSR34 and regulates its stability, suggesting a role as a chaperone-like protein in the spliceosome. OsFKBP20-1b facilitates the splicing of mRNAs with retained introns after ABA treatment; some of these mRNAs are translatable and encode functional transcriptional regulators of stress-responsive genes. In addition, interacting proteins, OsSR34 and OsSR45, regulate the splicing of the same retained introns as OsFKBP20-1b after ABA treatment. Our findings reveal that spliceosome-associated immunophilin functions in alternative RNA splicing in rice by positively regulating the splicing of retained introns to limit ABA response.
Collapse
Affiliation(s)
- Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Areum Lee
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, UST, Daejeon, 34113, South Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- Department of Agriculture, Forestry, and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| |
Collapse
|
12
|
Theerawitaya C, Supaibulwatana K, Tisarum R, Samphumphuang T, Chungloo D, Singh HP, Cha-Um S. Expression levels of nitrogen assimilation-related genes, physiological responses, and morphological adaptations of three indica rice (Oryza sativa L. ssp. indica) genotypes subjected to nitrogen starvation conditions. PROTOPLASMA 2023; 260:691-705. [PMID: 36056227 DOI: 10.1007/s00709-022-01806-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) is an essential nutrient available to the plants in form of nitrate and ammonium. It is a macronutrient important for the plant growth and development, especially in cereal crops, which consume it for the production of amino acids, proteins/enzymes, nucleic acids, cell wall complexes, plant hormones, and vitamins. In rice production, 17 kg N uptake is required to produce 1 ton of rice. Considering this, many techniques have been developed to evaluate leaf greenness or SPAD value for assessing the amount of N application in the rice cultivar to maximize the grain yield. The aim of the present study was to investigate the morpho-physiological characteristics and relative expression level of N assimilation in three different rice genotypes (MT2, RD31, KDML105) under 1.00 × (full N), 0.50 × , 0.25 × (N depletion), and 0.00 × (N deficiency) at seedling stage and the morpho-physiological traits and the grain yield attributes under 1.00 × (full N) and 0.25 × (N depletion) were compared. Leaf chlorosis and growth inhibition in rice seedlings under N deficiency were evidently observed. Shoot height, number of leaves, shoot fresh weight, shoot dry weight, and root fresh weight in KDML105 under N deficiency were decreased by 27.65%, 42.11%, 65.44%, 47.90%, and 54.09% over the control (full N). Likewise, leaf greenness was lowest in KDML105 under N deficiency (78.57% reduction over the full N), leading to low photosynthetic abilities. In addition, expression of nitrogen assimilation-related genes, OsNR1, OsGln1;1, and OsGln2, in KDML105 under N depletion were increased within 3 h and then declined after the long incubation period, whereas those were unchanged in cvs. MT2 and RD31. Similarly, relative expression level of OsNADH-GOGAT, OsFd-GOGAT, and OsAspAt1 in KDML105 was peaked when subjected to 0.50 × N for 6 h and then declined after the long incubation period. Moreover, overall growth characters and physiological changes in cv. RD31 at vegetative stage under 0.25 × N were retained better than those in cvs. KDML105 and MT2, resulting in high yield at the harvesting process. In summary, N assimilated-related genes in rice seedlings under N depletion were rapidly regulated within 3-6 h, especially cv. KDML105 and MT2, then downregulated, resulting in physiological changes, growth inhibition, and yield reduction.
Collapse
Affiliation(s)
- Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Kanyaratt Supaibulwatana
- Department of Biotechnology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Daonapa Chungloo
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand.
| |
Collapse
|
13
|
Luo J, Abid M, Zhang Y, Cai X, Tu J, Gao P, Wang Z, Huang H. Genome-Wide Identification of Kiwifruit SGR Family Members and Functional Characterization of SGR2 Protein for Chlorophyll Degradation. Int J Mol Sci 2023; 24:ijms24031993. [PMID: 36768313 PMCID: PMC9917040 DOI: 10.3390/ijms24031993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023] Open
Abstract
The STAY-GREEN (SGR) proteins play an important role in chlorophyll (Chl) degradation and are closely related to plant photosynthesis. However, the availability of inadequate studies on SGR motivated us to conduct a comprehensive study on the identification and functional dissection of SGR superfamily members in kiwifruit. Here, we identified five SGR genes for each of the kiwifruit species [Actinidia chinensis (Ac) and Actinidia eriantha (Ae)]. The phylogenetic analysis showed that the kiwifruit SGR superfamily members were divided into two subfamilies the SGR subfamily and the SGRL subfamily. The results of transcriptome data and RT-qPCR showed that the expression of the kiwifruit SGRs was closely related to light and plant developmental stages (regulated by plant growth regulators), which were further supported by the presence of light and the plant hormone-responsive cis-regulatory element in the promoter region. The subcellular localization analysis of the AcSGR2 protein confirmed its localization in the chloroplast. The Fv/Fm, SPAD value, and Chl contents were decreased in overexpressed AcSGR2, but varied in different cultivars of A. chinensis. The sequence analysis showed significant differences within AcSGR2 proteins. Our findings provide valuable insights into the characteristics and evolutionary patterns of SGR genes in kiwifruit, and shall assist kiwifruit breeders to enhance cultivar development.
Collapse
Affiliation(s)
- Juan Luo
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Muhammad Abid
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Yi Zhang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Xinxia Cai
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Jing Tu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
| | - Puxin Gao
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Zupeng Wang
- Engineering Laboratory for Kiwifruit Industrial Technology, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (Z.W.); (H.H.)
| | - Hongwen Huang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
- College of Life Science, Nanchang University, Nanchang 330031, China
- Correspondence: (Z.W.); (H.H.)
| |
Collapse
|
14
|
Geng ZK, Ma L, Rong YL, Li WJ, Yao GF, Zhang H, Hu KD. A Hydrogen-Sulfide-Repressed Methionine Synthase SlMS1 Acts as a Positive Regulator for Fruit Ripening in Tomato. Int J Mol Sci 2022; 23:12239. [PMID: 36293095 PMCID: PMC9603753 DOI: 10.3390/ijms232012239] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/17/2022] Open
Abstract
Ethylene is a key phytohormone that regulates the ripening of climacteric fruits, and methionine is an indirect precursor of ethylene. However, whether methionine synthase plays a role in fruit ripening in Solanum lycopersicum (tomato) is still unknown. In this study, we find that a tomato methionine synthase (named SlMS1), which could be repressed at the transcriptional level by hydrogen sulfide (H2S), acts as a positive regulator for tomato fruit ripening. By a bioinformatics analysis, it is found that SlMS1 and SlMS2 in tomato are highly homologous to methionine synthases in Arabidopsis thaliana. The expression pattern of SlMS1 and SlMS2 is analyzed in tomato, and SlMS1 expression is up-regulated during fruit ripening, suggesting its potential role in regulating fruit ripening. A potential bipartite nuclear localization signal is found in the amino acid sequence of SlMS1; thus, SlMS1 is tagged with GFP and observed in the leaves of Nicotiana benthamiana. Consistently, SlMS1-GFP shows strong nuclear localization and also cytoplasmic localization. The role of SlMS1 in regulating fruit ripening is investigated in tomato fruit by transient silencing (virus-induced gene silencing, VIGS) and transient overexpression. The results show that SlMS1 silencing causes delayed fruit ripening, evidenced by more chlorophyll and less carotenoid accumulation, while SlMS1 overexpression accelerates fruit ripening significantly compared with control. Further investigation shows that SlMS1 overexpression could up-regulate the expression of carotenoid-synthesis-related genes (PSY1, PDS, ZDS), chlorophyll-degradation-related genes (NYC1, PAO, PPH, SGR1), cell-wall-metabolism-related genes (CEL2, EXP, PG, TBG4, XTH5) and ethylene-synthesis-pathway-related genes (ACO1, ACO3, ACS2), while SlMS1 silencing causes the opposite results. The correlation analysis indicates that SlMS1 expression is negatively correlated with chlorophyll content and positively correlated with carotenoid and ripening-related gene expressions. Taken together, our data suggest that SlMS1 is a positive regulator of tomato fruit ripening and a possible target gene for the ripening-delaying effect of H2S.
Collapse
Affiliation(s)
- Zhi-Kun Geng
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Lin Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yu-Lei Rong
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Wan-Jie Li
- Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Gai-Fang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Kang-Di Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
15
|
Shao Y, Shi Y, Qin Y, Xuan G, Li J, Li Q, Yang F, Hu Z. A new quantitative index for the assessment of tomato quality using Vis-NIR hyperspectral imaging. Food Chem 2022; 386:132864. [PMID: 35509167 DOI: 10.1016/j.foodchem.2022.132864] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/29/2022] [Accepted: 03/29/2022] [Indexed: 11/04/2022]
Abstract
The quality of tomatoes is usually predicted by measuring a single index, rather than a comprehensive index. To find a comprehensive index, visible and near infrared (Vis-NIR) hyperspectral imaging was used for capturing the images of three varieties of tomatoes, and twelve quality indexes were measured as the reference standards. The changing trends and correlations of different indexes were analyzed, and comprehensive quality index (CQI) was proposed through factor analysis. The characteristic wavelengths were selected by successive projection algorithm (SPA) based on the hyperspectral data, which was used to establish three regression models for CQI prediction. The result indicated that MLR achieved good performance withRV2 = 0.87, RMSEV = 1.33 and RPD = 2.58. After that, spatial distribution map was generated to visualize the CQI in tomato fruit. This study indicated that the comprehensive quality of tomatoes can be predicted non-destructively based on hyperspectral imaging and chemometrics, determining the optimal harvesting period.
Collapse
Affiliation(s)
- Yuanyuan Shao
- College of Mechanical and Electrical Engineering, Shandong Intelligent Engineering Laboratory of Agricultural Equipment, Shandong Agricultural University, Tai'an 271018, China; Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Yukang Shi
- College of Mechanical and Electrical Engineering, Shandong Intelligent Engineering Laboratory of Agricultural Equipment, Shandong Agricultural University, Tai'an 271018, China
| | - Yongdong Qin
- College of Horticulture Science and Engineering/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China
| | - Guantao Xuan
- College of Mechanical and Electrical Engineering, Shandong Intelligent Engineering Laboratory of Agricultural Equipment, Shandong Agricultural University, Tai'an 271018, China.
| | - Jing Li
- College of Horticulture Science and Engineering/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, Shandong 271018, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture and Rural Affairs, Shandong 271018, China
| | - Quankai Li
- College of Mechanical and Electrical Engineering, Shandong Intelligent Engineering Laboratory of Agricultural Equipment, Shandong Agricultural University, Tai'an 271018, China
| | - Fengjuan Yang
- College of Horticulture Science and Engineering/State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an 271018, China; Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, Tai'an, Shandong 271018, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Huanghuai Region), Ministry of Agriculture and Rural Affairs, Shandong 271018, China.
| | - Zhichao Hu
- Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China.
| |
Collapse
|
16
|
Zhou F, Liu Y, Feng X, Zhang Y, Zhu P. Transcriptome Analysis of Green and White Leaf Ornamental Kale Reveals Coloration-Related Genes and Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:769121. [PMID: 35574148 PMCID: PMC9094084 DOI: 10.3389/fpls.2022.769121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/17/2022] [Indexed: 06/15/2023]
Abstract
Leaf color is a crucial agronomic trait in ornamental kale. However, the molecular mechanism regulating leaf pigmentation patterns in green and white ornamental kale is not completely understood. To address this, we performed transcriptome and pigment content analyses of green and white kale leaf tissues. A total of 5,404 and 3,605 different expressed genes (DEGs) were identified in the green vs. white leaf and the green margin vs. white center samples. Kyoto Encyclopedia of Genes and Genome (KEGG) pathway enrichment analysis showed that 24 and 15 common DEGs in two pairwise comparisons were involved in chlorophyll metabolism and carotenoid biosynthesis, respectively. Seventeen genes related to chlorophyll biosynthesis were significantly upregulated in green leaf tissue, especially chlH and por. Of the 15 carotenoid biosynthesis genes, all except CYP707A and BG1 were lower expressed in white leaf tissue. Green leaf tissue exhibited higher levels of chlorophyll and carotenoids than white leaf tissue. In addition, the DEGs involved in photosystem and chlorophyll-binding proteins had higher expression in green leaf tissue. The PSBQ, LHCB1.3, LHCB2.4, and HSP70 may be key genes of photosynthesis and chloroplast formation. These results demonstrated that green and white coloration in ornamental kale leaves was caused by the combined effects of chlorophyll and carotenoid biosynthesis, chloroplast development, as well as photosynthesis. These findings enhance our understanding of the molecular mechanisms underlying leaf color development in ornamental kale.
Collapse
Affiliation(s)
- Fuhui Zhou
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Yang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Xin Feng
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Yuting Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| | - Pengfang Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory of Forest Tree Genetics, Breeding and Cultivation of Liaoning Province, Shenyang, China
| |
Collapse
|
17
|
Zhu F, Wen W, Cheng Y, Fernie AR. The metabolic changes that effect fruit quality during tomato fruit ripening. MOLECULAR HORTICULTURE 2022; 2:2. [PMID: 37789428 PMCID: PMC10515270 DOI: 10.1186/s43897-022-00024-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/12/2022] [Indexed: 10/05/2023]
Abstract
As the most valuable organ of tomato plants, fruit has attracted considerable attention which most focus on its quality formation during the ripening process. A considerable amount of research has reported that fruit quality is affected by metabolic shifts which are under the coordinated regulation of both structural genes and transcriptional regulators. In recent years, with the development of the next generation sequencing, molecular and genetic analysis methods, lots of genes which are involved in the chlorophyll, carotenoid, cell wall, central and secondary metabolism have been identified and confirmed to regulate pigment contents, fruit softening and other aspects of fruit flavor quality. Here, both research concerning the dissection of fruit quality related metabolic changes, the transcriptional and post-translational regulation of these metabolic pathways are reviewed. Furthermore, a weighted gene correlation network analysis of representative genes of fruit quality has been carried out and the potential of the combined application of the gene correlation network analysis, fine-mapping strategies and next generation sequencing to identify novel candidate genes determinants of fruit quality is discussed.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany.
| |
Collapse
|
18
|
Gianoglio S, Comino C, Moglia A, Acquadro A, García-Carpintero V, Diretto G, Sevi F, Rambla JL, Dono G, Valentino D, Moreno-Giménez E, Fullana-Pericàs M, Conesa MA, Galmés J, Lanteri S, Mazzucato A, Orzáez D, Granell A. In-Depth Characterization of greenflesh Tomato Mutants Obtained by CRISPR/Cas9 Editing: A Case Study With Implications for Breeding and Regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:936089. [PMID: 35898224 PMCID: PMC9309892 DOI: 10.3389/fpls.2022.936089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/15/2022] [Indexed: 05/11/2023]
Abstract
Gene editing has already proved itself as an invaluable tool for the generation of mutants for crop breeding, yet its ultimate impact on agriculture will depend on how crops generated by gene editing technologies are regulated, and on our ability to characterize the impact of mutations on plant phenotype. A starting operational strategy for evaluating gene editing-based approaches to plant breeding might consist of assessing the effect of the induced mutations in a crop- and locus-specific manner: this involves the analysis of editing efficiency in different cultivars of a crop, the assessment of potential off-target mutations, and a phenotypic evaluation of edited lines carrying different mutated alleles. Here, we targeted the GREENFLESH (GF) locus in two tomato cultivars ('MoneyMaker' and 'San Marzano') and evaluated the efficiency, specificity and mutation patterns associated with CRISPR/Cas9 activity for this gene. The GF locus encodes a Mg-dechelatase responsible for initiating chlorophyll degradation; in gf mutants, ripe fruits accumulate both carotenoids and chlorophylls. Phenotypic evaluations were conducted on two transgene-free T2 'MoneyMaker' gf lines with different mutant alleles (a small insertion of 1 nucleotide and a larger deletion of 123 bp). Both lines, in addition to reduced chlorophyll degradation, showed a notable increase in carotenoid and tocopherol levels during fruit ripening. Infection of gf leaves and fruits with Botrytis cinerea resulted in a significant reduction of infected area and pathogen proliferation compared to the wild type (WT). Our data indicates that the CRISPR/Cas9-mediated mutation of the GF locus in tomato is efficient, specific and reproducible and that the resulting phenotype is robust and consistent with previously characterized greenflesh mutants obtained with different breeding techniques, while also shedding light on novel traits such as vitamin E overaccumulation and pathogen resistance. This makes GF an appealing target for breeding tomato cultivars with improved features for cultivation, as well as consumer appreciation and health.
Collapse
Affiliation(s)
- Silvia Gianoglio
- Departamento de Biotecnología de Cultivos, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) – Universitat Politécnica de Valéncia (UPV), Valencia, Spain
| | - Cinzia Comino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Turin, Turin, Italy
| | - Andrea Moglia
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Turin, Turin, Italy
| | - Alberto Acquadro
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Turin, Turin, Italy
| | - Víctor García-Carpintero
- Departamento de Biotecnología de Cultivos, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) – Universitat Politécnica de Valéncia (UPV), Valencia, Spain
| | - Gianfranco Diretto
- Italian Agency for New Technologies, Energy and Sustainable Development (ENEA), Rome, Italy
| | - Filippo Sevi
- Italian Agency for New Technologies, Energy and Sustainable Development (ENEA), Rome, Italy
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - José Luis Rambla
- Departamento de Biotecnología de Cultivos, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) – Universitat Politécnica de Valéncia (UPV), Valencia, Spain
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Gabriella Dono
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Danila Valentino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Turin, Turin, Italy
| | - Elena Moreno-Giménez
- Departamento de Biotecnología de Cultivos, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) – Universitat Politécnica de Valéncia (UPV), Valencia, Spain
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA-CSIC), Paterna, Spain
| | - Mateu Fullana-Pericàs
- Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears, Palma, Spain
| | - Miguel A. Conesa
- Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears, Palma, Spain
| | - Jeroni Galmés
- Instituto de Investigaciones Agroambientales y de Economía del Agua (INAGEA), Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears, Palma, Spain
| | - Sergio Lanteri
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding, University of Turin, Turin, Italy
| | - Andrea Mazzucato
- Department of Agriculture and Forest Sciences (DAFNE), Università degli Studi della Tuscia, Viterbo, Italy
| | - Diego Orzáez
- Departamento de Biotecnología de Cultivos, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) – Universitat Politécnica de Valéncia (UPV), Valencia, Spain
| | - Antonio Granell
- Departamento de Biotecnología de Cultivos, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC) – Universitat Politécnica de Valéncia (UPV), Valencia, Spain
- *Correspondence: Antonio Granell,
| |
Collapse
|
19
|
Ma L, Zeng N, Cheng K, Li J, Wang K, Zhang C, Zhu H. Changes in fruit pigment accumulation, chloroplast development, and transcriptome analysis in the CRISPR/Cas9-mediated knockout of Stay-green 1 (slsgr1) mutant. FOOD QUALITY AND SAFETY 2021. [DOI: 10.1093/fqsafe/fyab029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The green-flesh (gf) mutant of the tomato fruit ripen to a muddy brown color and has been demonstrated previously to be a loss-of-function mutant. Here, we provide more evidence to support this view that SlSGR1 is involved in color change in ripening tomato fruits. Knocking out SlSGR1 expression using a clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 genome editing strategy showed obviously a muddy brown color with significantly higher chlorophyll and carotenoid content compared with wild-type (WT) fruits. To further verify the role of SlSGR1 in fruit color change, we performed transcriptome deep sequencing (RNA-seq) analysis, where a total of 354 differentially expressed genes (124/230 downregulated/upregulated) were identified between WT and slsgr1. Additionally, the expression of numerous genes associated with photosynthesis and chloroplast function changed significantly when SlSGR1 was knocked out. Taken together, these results indicate that SlSGR1 is involved in color change in ripening fruit via chlorophyll degradation and carotenoid biosynthesis.
Collapse
|
20
|
Research Progress in the Interconversion, Turnover and Degradation of Chlorophyll. Cells 2021; 10:cells10113134. [PMID: 34831365 PMCID: PMC8621299 DOI: 10.3390/cells10113134] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Chlorophylls (Chls, Chl a and Chl b) are tetrapyrrole molecules essential for photosynthetic light harvesting and energy transduction in plants. Once formed, Chls are noncovalently bound to photosynthetic proteins on the thylakoid membrane. In contrast, they are dismantled from photosystems in response to environmental changes or developmental processes; thus, they undergo interconversion, turnover, and degradation. In the last twenty years, fruitful research progress has been achieved on these Chl metabolic processes. The discovery of new metabolic pathways has been accompanied by the identification of enzymes associated with biochemical steps. This article reviews recent progress in the analysis of the Chl cycle, turnover and degradation pathways and the involved enzymes. In addition, open questions regarding these pathways that require further investigation are also suggested.
Collapse
|
21
|
He M, Wang Y, Jahan MS, Liu W, Raziq A, Sun J, Shu S, Guo S. Characterization of SlBAG Genes from Solanum lycopersicum and Its Function in Response to Dark-Induced Leaf Senescence. PLANTS 2021; 10:plants10050947. [PMID: 34068645 PMCID: PMC8151600 DOI: 10.3390/plants10050947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 12/03/2022]
Abstract
The Bcl-2-associated athanogene (BAG) family is a group of evolutionarily conserved cochaperones involved in diverse cellular functions. Here, ten putative SlBAG genes were identified in tomato. SlBAG2 and SlBAG5b have the same gene structure and conserved domains, along with highly similar identity to their homologs in Arabidopsis thaliana, Oryza sativa, and Triticum aestivum. The qPCR data showed that BAG2 and BAG5b were highly expressed in stems and flowers. Moreover, both genes were differentially expressed under diverse abiotic stimuli, including cold stress, heat stress, salt treatment, and UV irradiation, and treatments with phytohormones, namely, ABA, SA, MeJA, and ETH. Subcellular localization showed that SlBAG2 and SlBAG5b were located in the cell membrane and nucleus. To elucidate the functions in leaf senescence of BAG2 and BAG5b, the full-length CDSs of BAG2 and BAG5b were cloned, and transgenic tomatoes were developed. Compared with WT plants, those overexpressing BAG2 and BAG5b had significantly increased chlorophyll contents, chlorophyll fluorescence parameters and photosynthetic rates but obviously decreased ROS levels, chlorophyll degradation and leaf senescence related gene expression under dark stress. Conclusively, overexpression SlBAG2 and SlBAG5b could improve the tolerance of tomato leaves to dark stress and delay leaf senescence.
Collapse
Affiliation(s)
- Mingming He
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (M.H.); (Y.W.); (M.S.J.); (W.L.); (A.R.); (J.S.); (S.S.)
| | - Yu Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (M.H.); (Y.W.); (M.S.J.); (W.L.); (A.R.); (J.S.); (S.S.)
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian 223800, China
| | - Mohammad Shah Jahan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (M.H.); (Y.W.); (M.S.J.); (W.L.); (A.R.); (J.S.); (S.S.)
- Department of Horticulture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Weikang Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (M.H.); (Y.W.); (M.S.J.); (W.L.); (A.R.); (J.S.); (S.S.)
| | - Abdul Raziq
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (M.H.); (Y.W.); (M.S.J.); (W.L.); (A.R.); (J.S.); (S.S.)
| | - Jin Sun
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (M.H.); (Y.W.); (M.S.J.); (W.L.); (A.R.); (J.S.); (S.S.)
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian 223800, China
| | - Sheng Shu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (M.H.); (Y.W.); (M.S.J.); (W.L.); (A.R.); (J.S.); (S.S.)
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian 223800, China
| | - Shirong Guo
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (M.H.); (Y.W.); (M.S.J.); (W.L.); (A.R.); (J.S.); (S.S.)
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian 223800, China
- Correspondence:
| |
Collapse
|
22
|
CmNAC73 Mediates the Formation of Green Color in Chrysanthemum Flowers by Directly Activating the Expression of Chlorophyll Biosynthesis Genes HEMA1 and CRD1. Genes (Basel) 2021; 12:genes12050704. [PMID: 34066887 PMCID: PMC8151904 DOI: 10.3390/genes12050704] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Chrysanthemum is one of the most beautiful and popular flowers in the world, and the flower color is an important ornamental trait of chrysanthemum. Compared with other flower colors, green flowers are relatively rare. The formation of green flower color is attributed to the accumulation of chlorophyll; however, the regulatory mechanism of chlorophyll metabolism in chrysanthemum with green flowers remains largely unknown. In this study, we performed Illumina RNA sequencing on three chrysanthemum materials, Chrysanthemum vestitum and Chrysanthemum morifolium cultivars ‘Chunxiao’ and ‘Green anna’, which produce white, light green and dark green flowers, respectively. Based on the results of comparative transcriptome analysis, a gene encoding a novel NAC family transcription factor, CmNAC73, was found to be highly correlated to chlorophyll accumulation in the outer whorl of ray florets in chrysanthemum. The results of transient overexpression in chrysanthemum leaves showed that CmNAC73 acts as a positive regulator of chlorophyll biosynthesis. Furthermore, transactivation and yeast one-hybrid assays indicated that CmNAC73 directly binds to the promoters of chlorophyll synthesis-related genes HEMA1 and CRD1. Thus, this study uncovers the transcriptional regulation of chlorophyll synthesis-related genes HEMA1 and CRD1 by CmNAC73 and provides new insights into the development of green flower color in chrysanthemum and chlorophyll metabolism in plants.
Collapse
|