1
|
Doll NM, Nowack MK. Endosperm cell death: roles and regulation in angiosperms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4346-4359. [PMID: 38364847 PMCID: PMC7616292 DOI: 10.1093/jxb/erae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Double fertilization in angiosperms results in the formation of a second zygote, the fertilized endosperm. Unlike its embryo sibling, the endosperm is a transient structure that eventually undergoes developmentally controlled programmed cell death (PCD) at specific time points of seed development or germination. The nature of endosperm PCD exhibits a considerable diversity, both across different angiosperm taxa and within distinct endosperm tissues. In endosperm-less species, PCD might cause central cell degeneration as a mechanism preventing the formation of a fertilized endosperm. In most other angiosperms, embryo growth necessitates the elimination of surrounding endosperm cells. Nevertheless, complete elimination of the endosperm is rare and, in most cases, specific endosperm tissues persist. In mature seeds, these persisting cells may be dead, such as the starchy endosperm in cereals, or remain alive to die only during germination, like the cereal aleurone or the endosperm of castor beans. In this review, we explore current knowledge surrounding the cellular, molecular, and genetic aspects of endosperm PCD, and the influence environmental stresses have on PCD processes. Overall, this review provides an exhaustive overview of endosperm PCD processes in angiosperms, shedding light on its diverse mechanisms and its significance in seed development and seedling establishment.
Collapse
Affiliation(s)
- Nicolas M. Doll
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center of Plant Systems Biology, Ghent 9052, Belgium
| | - Moritz K. Nowack
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center of Plant Systems Biology, Ghent 9052, Belgium
| |
Collapse
|
2
|
Wang X, An Z, Liao J, Ran N, Zhu Y, Ren S, Meng X, Cui N, Yu Y, Fan H. The Role and Mechanism of Hydrogen-Rich Water in the Cucumis sativus Response to Chilling Stress. Int J Mol Sci 2023; 24:ijms24076702. [PMID: 37047675 PMCID: PMC10095547 DOI: 10.3390/ijms24076702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Cucumber is a warm climate vegetable that is sensitive to chilling reactions. Chilling can occur at any period of cucumber growth and development and seriously affects the yield and quality of cucumber. Hydrogen (H2) is a type of antioxidant that plays a critical role in plant development and the response to stress. Hydrogen-rich water (HRW) is the main way to use exogenous hydrogen. This study explored the role and mechanism of HRW in the cucumber defense response to chilling stress. The research results showed that applying 50% saturated HRW to the roots of cucumber seedlings relieved the damage caused by chilling stress. The growth and development indicators, such as plant height, stem diameter, leaf area, dry weight, fresh weight, and root length, increased under the HRW treatment. Photosynthetic efficiency, chlorophyll content, and Fv/Fm also improved and reduced energy dissipation. In addition, after HRW treatment, the REC and MDA content were decreased, and membrane lipid damage was reduced. NBT and DAB staining results showed that the color was lighter, and the area was smaller under HRW treatment. Additionally, the contents of O2- and H2O2 also decreased. Under chilling stress, the application of HRW increased the activity of the antioxidases SOD, CAT, POD, GR, and APX and improved the expression of the SOD, CAT, POD, GR, and APX antioxidase genes. The GSSG content was reduced, and the GSH content was increased. In addition, the ASA content also increased. Therefore, exogenous HRW is an effective measure for cucumber to respond to chilling stress.
Collapse
Affiliation(s)
- Xue Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Zhonghui An
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Jiameng Liao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Nana Ran
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yimeng Zhu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Shufeng Ren
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Na Cui
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Yang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
3
|
Liu S, Zha Z, Chen S, Tang R, Zhao Y, Lin Q, Duan Y, Wang K. Hydrogen-rich water alleviates chilling injury-induced lignification of kiwifruit by inhibiting peroxidase activity and improving antioxidant system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:2675-2680. [PMID: 36229969 DOI: 10.1002/jsfa.12272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/19/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Kiwifruit is prone to chilling stress and displays chilling injury (CI) such as lignification; however, the underlying physicochemical mechanism remains largely unknown. Here, the changes in levels of quality attributes, lignin biosynthesis, antioxidant system and sugars were compared in kiwifruit between control and hydrogen-rich water (HRW) treatments during cold storage for 90 days at 0 °C. RESULTS The results reveal that HRW is an effective measure for CI alleviation, as indicated by the decrease in lignification level with repressed peroxidase activity but enhanced polyphenol oxidase activity. The amelioration of membrane peroxidation was suggested by the repressed levels of H2 O2 and malondialdehyde. They were accompanied by the improvement of antioxidant system, which is supported by the enhancement of sugars including fructose and glucose. CONCLUSION In conclusion, HRW can enhance chilling tolerance, as suggested by the alleviation of lignification through inhibiting peroxidase activity and elevating the antioxidant system to attenuate membrane peroxidation. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuang Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Zhuping Zha
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Shuqi Chen
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Rui Tang
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| | - Yaoyao Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Qiong Lin
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yuquan Duan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Ke Wang
- Anhui Engineering Laboratory for Agro-products Processing, Anhui Agricultural University, Hefei, China
| |
Collapse
|
4
|
Gong W, Jiang L, Zhu Y, Jiang M, Chen D, Jin Z, Qin S, Yu Z, He Q. An Activity‐Based Ratiometric Fluorescent Probe for In Vivo Real‐Time Imaging of Hydrogen Molecules. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wanjun Gong
- Center of Hydrogen Science Shanghai Jiao Tong University Shanghai 200240 China
- School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 Guangdong China
| | - Lingdong Jiang
- Marshall Laboratory of Biomedical Engineering School of Biomedical Engineering Health Science Center Shenzhen University No. 1066 Xueyuan Avenue Shenzhen 518060 Guangdong China
| | - Yanxia Zhu
- Marshall Laboratory of Biomedical Engineering School of Biomedical Engineering Health Science Center Shenzhen University No. 1066 Xueyuan Avenue Shenzhen 518060 Guangdong China
| | - Mengna Jiang
- Marshall Laboratory of Biomedical Engineering School of Biomedical Engineering Health Science Center Shenzhen University No. 1066 Xueyuan Avenue Shenzhen 518060 Guangdong China
| | - Danyang Chen
- Center of Hydrogen Science Shanghai Jiao Tong University Shanghai 200240 China
- Marshall Laboratory of Biomedical Engineering School of Biomedical Engineering Health Science Center Shenzhen University No. 1066 Xueyuan Avenue Shenzhen 518060 Guangdong China
| | - Zhaokui Jin
- Marshall Laboratory of Biomedical Engineering School of Biomedical Engineering Health Science Center Shenzhen University No. 1066 Xueyuan Avenue Shenzhen 518060 Guangdong China
| | - Shucun Qin
- Institute of Atherosclerosis Taishan Institute for Hydrogen Biological Medicine Shandong First Medical University & Shandong Academy of Medical Sciences Tai'an 271000 Shandong China
| | - Zhiqiang Yu
- School of Pharmaceutical Sciences Southern Medical University Guangzhou 510515 Guangdong China
| | - Qianjun He
- Center of Hydrogen Science Shanghai Jiao Tong University Shanghai 200240 China
- Marshall Laboratory of Biomedical Engineering School of Biomedical Engineering Health Science Center Shenzhen University No. 1066 Xueyuan Avenue Shenzhen 518060 Guangdong China
- Institute of Atherosclerosis Taishan Institute for Hydrogen Biological Medicine Shandong First Medical University & Shandong Academy of Medical Sciences Tai'an 271000 Shandong China
| |
Collapse
|
5
|
Gong W, Jiang L, Zhu Y, Jiang M, Chen D, Jin Z, Qin S, Yu Z, He Q. An Activity-Based Ratiometric Fluorescent Probe for In Vivo Real-Time Imaging of Hydrogen Molecules. Angew Chem Int Ed Engl 2021; 61:e202114594. [PMID: 34921480 DOI: 10.1002/anie.202114594] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 11/09/2022]
Abstract
To reveal the biomedical effects and mechanisms of hydrogen molecules urgently needs hydrogen molecular imaging probes as an imperative tool, but the development of these probes is extremely challenging. In this work, a catalytic hydrogenation strategy is proposed to design and synthesize a ratiometric fluorescent probe by encapsulating Pd nanoparticles and conjugating azido-/coumarin-modified fluorophore into mesoporous silica nanoparticles, realizing in vitro and in vivo fluorescence imaging of hydrogen molecules. The developed hydrogen probe exhibits high sensitivity, rapid responsivity, high selectivity and low detection limit, enabling rapid and real-time detection of hydrogen molecules both in cells and in the body of animal and plant. By application of the developed fluorescent probe, we have directly observed superhigh transmembrane and ultrafast transport abilities of hydrogen molecules in cell, animal and plant, and discovered in vivo high diffusion of hydrogen molecules.
Collapse
Affiliation(s)
- Wanjun Gong
- Shanghai Jiao Tong University, School of Materials Science and Engineering, CHINA
| | | | - Yanxia Zhu
- Shenzhen University, School of Medicine, CHINA
| | | | - Danyang Chen
- Shanghai Jiao Tong University, School of Materials Science and Engineering, CHINA
| | - Zhaokui Jin
- Shenzhen University, School of Medicine, CHINA
| | - Shucun Qin
- Shandong First Medical University, Taishan Institute for Hydrogen Biological Medicine, CHINA
| | - Zhiqiang Yu
- Southern Medical University, School of Pharmaceutical Sciences, CHINA
| | - Qianjun He
- Shenzhen University, Health Science Center, No. 1066 Xueyuan Road, 508050, Shenzhen, CHINA
| |
Collapse
|