1
|
dos Santos TS, Correia MRS, Sena LS, Santana LPDS, da Silva GBG, Lima KS, Dutra EVDS, Adas ME, Ribeiro MCBDO, Ribeiro JEDS, Ribas RF, da Silva EF, Rubio-Casal AE, Barros Júnior AP, Tang X, da Silva TGF, Jardim AMDRF, da Silva TI. The Combination of Salicylic Acid, Nicotinamide, and Proline Mitigates the Damage Caused by Salt Stress in Nasturtium ( Tropaeolum majus). PLANTS (BASEL, SWITZERLAND) 2025; 14:1156. [PMID: 40284044 PMCID: PMC12030097 DOI: 10.3390/plants14081156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/29/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025]
Abstract
Salinity represents a significant challenge for agriculture, especially in semi-arid regions, affecting the growth and productivity of plants such as nasturtium (Tropaeolum majus), which is valued for its ornamental, medicinal, and food uses. Salt stress disrupts biochemical, physiological, and anatomical processes, limiting plant development. This study investigated the application of attenuators, including salicylic acid, nicotinamide, and proline, to mitigate the effects of salt stress on nasturtium cultivated in a hydroponic system. The treatments involved different combinations of these compounds under saline conditions (40 mM NaCl). The attenuators reduced the negative impacts of salt stress, promoting improvements in gas exchange, such as increased net photosynthesis, water-use efficiency, and stomatal conductance. Additionally, the treatments enhanced vegetative and reproductive growth, increasing the dry biomass of leaves, stems, and flowers, as well as the number of flowers and flower buds. The combination of salicylic acid, nicotinamide, and proline stood out by providing greater efficiency in carbon assimilation, stability of photosynthetic pigments, and higher tolerance to salt stress. These findings reinforce the potential of using attenuators to optimize the cultivation of nasturtium in saline environments, promoting higher productivity and plant quality.
Collapse
Affiliation(s)
- Thainan Sipriano dos Santos
- Center for Agrarian, Environmental, and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, BA, Brazil; (T.S.d.S.); (M.R.S.C.); (L.S.S.); (L.P.d.S.S.); (G.B.G.d.S.); (K.S.L.); (E.V.d.S.D.); (M.E.A.); (M.C.B.d.O.R.); (R.F.R.)
| | - Marcos Roberto Santos Correia
- Center for Agrarian, Environmental, and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, BA, Brazil; (T.S.d.S.); (M.R.S.C.); (L.S.S.); (L.P.d.S.S.); (G.B.G.d.S.); (K.S.L.); (E.V.d.S.D.); (M.E.A.); (M.C.B.d.O.R.); (R.F.R.)
| | - Luma Santos Sena
- Center for Agrarian, Environmental, and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, BA, Brazil; (T.S.d.S.); (M.R.S.C.); (L.S.S.); (L.P.d.S.S.); (G.B.G.d.S.); (K.S.L.); (E.V.d.S.D.); (M.E.A.); (M.C.B.d.O.R.); (R.F.R.)
| | - Laura Pereira dos Santos Santana
- Center for Agrarian, Environmental, and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, BA, Brazil; (T.S.d.S.); (M.R.S.C.); (L.S.S.); (L.P.d.S.S.); (G.B.G.d.S.); (K.S.L.); (E.V.d.S.D.); (M.E.A.); (M.C.B.d.O.R.); (R.F.R.)
| | - Geovanna Buique Gualberto da Silva
- Center for Agrarian, Environmental, and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, BA, Brazil; (T.S.d.S.); (M.R.S.C.); (L.S.S.); (L.P.d.S.S.); (G.B.G.d.S.); (K.S.L.); (E.V.d.S.D.); (M.E.A.); (M.C.B.d.O.R.); (R.F.R.)
| | - Keilane Silva Lima
- Center for Agrarian, Environmental, and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, BA, Brazil; (T.S.d.S.); (M.R.S.C.); (L.S.S.); (L.P.d.S.S.); (G.B.G.d.S.); (K.S.L.); (E.V.d.S.D.); (M.E.A.); (M.C.B.d.O.R.); (R.F.R.)
| | - Elienay Vinícius da Silva Dutra
- Center for Agrarian, Environmental, and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, BA, Brazil; (T.S.d.S.); (M.R.S.C.); (L.S.S.); (L.P.d.S.S.); (G.B.G.d.S.); (K.S.L.); (E.V.d.S.D.); (M.E.A.); (M.C.B.d.O.R.); (R.F.R.)
| | - Myriam El Adas
- Center for Agrarian, Environmental, and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, BA, Brazil; (T.S.d.S.); (M.R.S.C.); (L.S.S.); (L.P.d.S.S.); (G.B.G.d.S.); (K.S.L.); (E.V.d.S.D.); (M.E.A.); (M.C.B.d.O.R.); (R.F.R.)
| | - Maria Carolina Borges de Oliveira Ribeiro
- Center for Agrarian, Environmental, and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, BA, Brazil; (T.S.d.S.); (M.R.S.C.); (L.S.S.); (L.P.d.S.S.); (G.B.G.d.S.); (K.S.L.); (E.V.d.S.D.); (M.E.A.); (M.C.B.d.O.R.); (R.F.R.)
| | - João Everthon da Silva Ribeiro
- Department of Agricultural and Forestry Sciences, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil; (J.E.d.S.R.); (E.F.d.S.); (A.P.B.J.)
| | - Rogério Ferreira Ribas
- Center for Agrarian, Environmental, and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, BA, Brazil; (T.S.d.S.); (M.R.S.C.); (L.S.S.); (L.P.d.S.S.); (G.B.G.d.S.); (K.S.L.); (E.V.d.S.D.); (M.E.A.); (M.C.B.d.O.R.); (R.F.R.)
| | - Elania Freire da Silva
- Department of Agricultural and Forestry Sciences, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil; (J.E.d.S.R.); (E.F.d.S.); (A.P.B.J.)
- Department of Plant Biology and Ecology, University of Seville, Av. Reina Mercedes, s/n, 41012 Sevilla, Spain;
| | - Alfredo Emilio Rubio-Casal
- Department of Plant Biology and Ecology, University of Seville, Av. Reina Mercedes, s/n, 41012 Sevilla, Spain;
| | - Aurélio Paes Barros Júnior
- Department of Agricultural and Forestry Sciences, Federal Rural University of the Semi-Arid, Mossoró 59625-900, RN, Brazil; (J.E.d.S.R.); (E.F.d.S.); (A.P.B.J.)
| | - Xuguang Tang
- Institute of Remote Sensing and Geosciences, Hangzhou Normal University, Hangzhou 311121, China;
| | - Thieres George Freire da Silva
- Department of Agricultural Engineering, Federal Rural University of Pernambuco, Dom Manoel de Medeiros Avenue, s/n, Dois Irmãos, Recife 52171-900, PE, Brazil;
| | | | - Toshik Iarley da Silva
- Center for Agrarian, Environmental, and Biological Sciences, Universidade Federal do Recôncavo da Bahia, Cruz das Almas 44380-000, BA, Brazil; (T.S.d.S.); (M.R.S.C.); (L.S.S.); (L.P.d.S.S.); (G.B.G.d.S.); (K.S.L.); (E.V.d.S.D.); (M.E.A.); (M.C.B.d.O.R.); (R.F.R.)
| |
Collapse
|
2
|
Zhao Y, Xu J, Xu X, Liu H, Chang Q, Xu L, Liang Z. Genome-Wide Identification of CONSTANS- like ( COL) Gene Family and the Potential Function of ApCOL08 Under Salt Stress in Andrographis paniculata. Int J Mol Sci 2025; 26:724. [PMID: 39859441 PMCID: PMC11765704 DOI: 10.3390/ijms26020724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Andrographis paniculata is an important medicinal herb known as a "natural antibiotic", which has been used in Southeast Asia for thousands of years. The CONSTANS-like (COL) gene is an important regulatory factor for plant photoperiod flowering and stress response. However, there is currently no detailed research on the COL genes of A. paniculata. In our study, we performed a genome-wide analysis of A. paniculata COL (ApCOL) family members using bioinformatics tools and identified nine ApCOL genes. Based on phylogenetic analysis, ApCOLs were categorized into three groups, with members of the same group having similar structures. Gene duplication events indicated that only one pair of duplicated genes was identified, possibly caused by segmental duplication. In terms of evolutionary relationships, the COL proteins of A. paniculata and Sesamum indicum were closely related, showing that they are highly similar in the phylogenetic tree. In addition, ApCOL genes showed tissue specificity and were specifically highly expressed mainly in leaves and flowers. Based on the cis-regulatory element prediction results, we examined the expression levels of ApCOLs under hormone and salt stress, and ApCOL08 was significantly induced. With subcellular localization results consistent with the prediction, we transformed ApCOL08 into yeast and showed significant resistance to salt stress. Our study suggests that ApCOL genes have important roles in response to abiotic stress and plant development and initially identifies key genes for future molecular regulation studies.
Collapse
Affiliation(s)
- Yizhu Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.Z.)
| | - Jiahao Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.Z.)
| | - Xinyi Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.Z.)
| | - Hui Liu
- The UWA Institute of Agriculture, UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Qinxiang Chang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.Z.)
| | - Ling Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.Z.)
| | - Zongsuo Liang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.Z.)
| |
Collapse
|
3
|
Zhang Y, Fu W, Pu Q, He Z, Li Z, Liu L, Ma X, Peng Y. The White Clover Single-Copy Nuclear Gene TrNAC002 Promotes Growth and Confers Drought Resistance in Plants Through Flavonoid Synthesis. PLANTS (BASEL, SWITZERLAND) 2024; 14:31. [PMID: 39795290 PMCID: PMC11722983 DOI: 10.3390/plants14010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025]
Abstract
White clover (Trifolium repens) is vulnerable to drought stress. In response to abiotic stress, plants are regulated by NAC transcription factors. The NAC in white clover has not been thoroughly documented until recently. We have identified one white clover NAC transcription factor called TrNAC002. TrNAC002's coding sequence is localized to specific regions on the 3P and 5O chromosomes of white clover and is part of a single-copy nuclear gene. Subcellular localization demonstrates that TrNAC002 is located in the nucleus, while the transcriptional activity assay indicates its transcriptional activity. Arabidopsis plants overexpressing TrNAC002 (OE) exhibit enlarged leaves and increased lateral root growth compared to the wild type (WT). Additionally, the expression levels of the shoot apical meristem (SAM), WUSCHEL (WUS), DNA-binding protein (DBP), and auxin-induced in root cultures3 (AIR3) genes are significantly higher in OE as compared to WT. These findings imply that TrNAC002 could promote vegetative growth by increasing the expression of these genes. Under natural drought stress, OE can survive in dry soil for a longer period of time than WT. Furthermore, OE exhibits a lower level of reactive oxygen species (ROS) level and a higher content of flavonoids than WT. This is also positively correlated with an increased flavonoid content. In white clover, the expression of TrNAC002, chalcone synthase (CHS), and chalcone isomerase (CHI) in leaves demonstrates significant upregulation after drought stress and ABA treatment, as does the flavonoid content. However, the pTRV-VIGS experiment suggests that pTRV2-TrNAC002 white clover shrinks compared to the Mock and Water controls. Additionally, pTRV2-TrNAC002 white clover displays a statistically higher malondialdehyde (MDA) content than the Mock and Water controls, and a significantly lower level of total antioxidant activities, flavonoid content, CHS and CHI relative expression than that of the Mock and Water controls. These findings indicate that TrNAC002 responds to drought and modulates flavonoid biosynthesis in white clover. This study is the first to suggest that TrNAC002 likely responds to drought via ABA and enhances plant drought resistance by synthesizing flavonoids.
Collapse
Affiliation(s)
- Youzhi Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (W.F.); (Q.P.); (Z.H.); (Z.L.); (L.L.); (X.M.)
- College of Life Science, Changchun Normal University, Changchun 130032, China
| | - Wei Fu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (W.F.); (Q.P.); (Z.H.); (Z.L.); (L.L.); (X.M.)
| | - Qi Pu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (W.F.); (Q.P.); (Z.H.); (Z.L.); (L.L.); (X.M.)
| | - Zhirui He
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (W.F.); (Q.P.); (Z.H.); (Z.L.); (L.L.); (X.M.)
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (W.F.); (Q.P.); (Z.H.); (Z.L.); (L.L.); (X.M.)
| | - Lin Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (W.F.); (Q.P.); (Z.H.); (Z.L.); (L.L.); (X.M.)
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (W.F.); (Q.P.); (Z.H.); (Z.L.); (L.L.); (X.M.)
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (W.F.); (Q.P.); (Z.H.); (Z.L.); (L.L.); (X.M.)
| |
Collapse
|
4
|
Zhou Z, Luo X, Fu M, Li S, Cheng Y, Li Y, Zhang X. Ethylamine, beyond the synthetic precursor of theanine: CsCBF4-CsAlaDC module promoted ethylamine synthesis to enhance osmotic tolerance in tea plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1920-1932. [PMID: 39474903 DOI: 10.1111/tpj.17089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 12/11/2024]
Abstract
The tea plant (Camellia sinensis) is a perennial green plant, and its tender leaves are rich in secondary metabolites, such as theanine. Ethylamine (EA), a small amine, is an important prerequisite for theanine synthesis. However, beyond its involvement in theanine synthesis, the other physiological functions of EA in tea plants remain unknown. In vitro experiments indicate that EA may function as scavengers of reactive oxygen species (ROS) to protect the plant against damage caused by osmotic stress. Additionally, a significant correlation between EA levels and osmotic tolerance has been observed in different tea varieties. From the results, alanine decarboxylase (CsAlaDC)-silenced tea leaves and overexpressed CsAlaDC Arabidopsis thaliana lines decreased and increased EA levels, respectively, and mediated ROS homeostasis, thus exhibiting a sensitive and tolerant phenotype. In addition, the transcription factor (TF) CsCBF4 was functionally identified, which can directly bind to the CsAlaDC promoter. CsCBF4-silenced tea leaves significantly reduced the expression levels of CsAlaDC and in turn EA content, resulting in excess ROS accumulation and an osmotic-sensitive phenotype. Taken together, these results established a new regulatory module consisting of CBF4-CsAlaDC responsible for EA accumulation and ROS homeostasis in response to osmotic stress.
Collapse
Affiliation(s)
- Ziwen Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiangzong Luo
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Siya Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Yaohua Cheng
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Yeyun Li
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Xianchen Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
5
|
Kong J, Xiong R, Qiu K, Lin X, Li D, Lu L, Zhou J, Zhu S, Liu M, Sun Q. Genome-Wide Identification and Characterization of the Laccase Gene Family in Fragaria vesca and Its Potential Roles in Response to Salt and Drought Stresses. PLANTS (BASEL, SWITZERLAND) 2024; 13:3366. [PMID: 39683159 DOI: 10.3390/plants13233366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/18/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
Laccase (LAC, EC 1.10.3.2) is integral to the formation of lignin synthesis, flavonoid production, and responses to both biotic and abiotic stresses. While recent studies have characterized numerous LAC gene families and their functions across various plants, information regarding LAC genes in woodland strawberry (Fragaria vesca) remains limited. In this study, we identified a total of 57 FvLAC genes in the Fragaria vesca genome, which were phylogenetically categorized into five distinct groups. Analysis of the gene structures revealed a uniformity in the exon-intron structure among the subgroups, while conserved motifs identified unique motifs specific to certain subgroups, suggesting functional variations. Chromosomal localization studies indicated that FvLACs are distributed across seven chromosomes, and collinearity analysis demonstrated that FvLACs exhibit collinearity within the species. Additionally, cis-acting element analysis suggested that FvLAC genes are involved in stress responses, hormone responses, light responses, and the growth and development of plants. qRT-PCR demonstrated that FvLACs responded to salt, drought, and hormone stresses, with the expression levels of FvLAC24, FvLAC32, and FvLAC51 continuously increasing under these stress conditions. Furthermore, transgenic yeast experiments revealed that FvLAC51 enhanced yeast tolerance to both salt and drought stresses, while FvLAC24 and FvLAC32 negatively regulated yeast tolerance under these same conditions. These findings provide a theoretical foundation for further investigation into the functions of FvLAC genes in woodland strawberry.
Collapse
Affiliation(s)
- Jingjing Kong
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Rui Xiong
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Keli Qiu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China
| | - Xinle Lin
- Anhui Province Key Laboratory of Horticultural Crop Quality Biology, Anhui Agricultural University, Hefei 230036, China
| | - Debao Li
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Lijuan Lu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Junyong Zhou
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Shufang Zhu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Mao Liu
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| | - Qibao Sun
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-Construction by Ministry and Province), Institute of Horticultural, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Anhui Provincial Key Laboratory for Germplasm Resources Creation and High-Efficiency Cultivation of Horticultural Crops, Hefei 230001, China
| |
Collapse
|
6
|
Iqbal MZ, Liang Y, Anwar M, Fatima A, Hassan MJ, Ali A, Tang Q, Peng Y. Overexpression of Auxin/Indole-3-Acetic Acid Gene TrIAA27 Enhances Biomass, Drought, and Salt Tolerance in Arabidopsis thaliana. PLANTS (BASEL, SWITZERLAND) 2024; 13:2684. [PMID: 39409554 PMCID: PMC11478388 DOI: 10.3390/plants13192684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/01/2024] [Accepted: 08/13/2024] [Indexed: 10/20/2024]
Abstract
White clover (Trifolium repens L.) is an important forage and aesthetic plant species, but it is susceptible to drought and heat stress. The phytohormone auxin regulates several aspects of plant development and alleviates the effects of drought stress in plants, including white clover, by involving auxin/indole acetic acid (Aux/IAA) family genes. However, Aux/IAA genes and the underlying mechanism of auxin-mediated drought response remain elusive in white clover. To extend our understanding of the multiple functions of Aux/IAAs, the current study described the characterization of a member of the Aux/IAA family TrIAA27 of white clover. TrIAA27 protein had conserved the Aux/IAA family domain and shared high sequence similarity with the IAA27 gene of a closely related species and Arabidopsis. Expression of TrIAA27 was upregulated in response to heavy metal, drought, salt, NO, Ca2+, H2O2, Spm, ABA, and IAA treatments, while downregulated under cold stress in the roots and leaves of white clover. TrIAA27 protein was localized in the nucleus. Constitutive overexpression of TrIAA27 in Arabidopsis thaliana led to enhanced hypocotyl length, root length, plant height, leaf length and width, and fresh and dry weights under optimal and stress conditions. There was Improved photosynthesis activity, chlorophyll content, survival rate, relative water content, endogenous catalase (CAT), and peroxidase (POD) concentration with a significantly lower electrolyte leakage percentage, malondialdehyde (MDA) content, and hydrogen peroxide (H2O2) concentration in overexpression lines compared to wild-type Arabidopsis under drought and salt stress conditions. Exposure to stress conditions resulted in relatively weaker roots and above-ground plant growth inhibition, enhanced endogenous levels of major antioxidant enzymes, which correlated well with lower lipid peroxidation, lower levels of reactive oxygen species, and reduced cell death in overexpression lines. The data of the current study demonstrated that TrIAA27 is involved in positively regulating plant growth and development and could be considered a potential target gene for further use, including the breeding of white clover for higher biomass with improved root architecture and tolerance to abiotic stress.
Collapse
Affiliation(s)
- Muhammad Zafar Iqbal
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
- Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang 261000, China
| | - Yuzhou Liang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| | - Muhammad Anwar
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Akash Fatima
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan 60000, Pakistan
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| | - Asif Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qilin Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China; (M.Z.I.)
| |
Collapse
|
7
|
Wang X, Meng Y, Zhang S, Wang Z, Zhang K, Gao T, Ma Y. Characterization of bZIP Transcription Factors in Transcriptome of Chrysanthemum mongolicum and Roles of CmbZIP9 in Drought Stress Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2064. [PMID: 39124182 PMCID: PMC11314283 DOI: 10.3390/plants13152064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
bZIP transcription factors play important roles in regulating plant development and stress responses. Although bZIPs have been identified in many plant species, there is little information on the bZIPs in Chrysanthemum. In this study, bZIP TFs were identified from the leaf transcriptome of C. mongolicum, a plant naturally tolerant to drought. A total of 28 full-length bZIP family members were identified from the leaf transcriptome of C. mongolicum and were divided into five subfamilies based on their phylogenetic relationships with the bZIPs from Arabidopsis. Ten conserved motifs were detected among the bZIP proteins of C. mongolicum. Subcellular localization assays revealed that most of the CmbZIPs were predicted to be localized in the nucleus. A novel bZIP gene, designated as CmbZIP9, was cloned based on a sequence of the data of the C. mongolicum transcriptome and was overexpressed in tobacco. The results indicated that the overexpression of CmbZIP9 reduced the malondialdehyde (MDA) content and increased the peroxidase (POD) and superoxide dismutase (SOD) activities as well as the expression levels of stress-related genes under drought stress, thus enhancing the drought tolerance of transgenic tobacco lines. These results provide a theoretical basis for further exploring the functions of the bZIP family genes and lay a foundation for stress resistance improvement in chrysanthemums in the future.
Collapse
Affiliation(s)
- Xuan Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Yuan Meng
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Shaowei Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Zihan Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Kaimei Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China;
| | - Tingting Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| | - Yueping Ma
- College of Life and Health Sciences, Northeastern University, Shenyang 110169, China; (X.W.); (Y.M.); (S.Z.); (Z.W.); (T.G.)
| |
Collapse
|
8
|
Zhang Y, Qin X, He Z, Zhang Y, Li Z, Nie G, Zhao J, Feng G, Peng Y. The White Clover TrMYB33-TrSAMS1 Module Contributes to Drought Tolerance by Modulation of Spermidine Biosynthesis via an ABA-Dependent Pathway. Int J Mol Sci 2024; 25:6974. [PMID: 39000081 PMCID: PMC11241196 DOI: 10.3390/ijms25136974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/12/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Spermidine is well known to accumulate in plants exposed to drought, but the regulatory network associated with its biosynthesis and accumulation and the underlying molecular mechanisms remain unclear. Here, we demonstrated that the Trifolium repens TrMYB33 relayed the ABA signal to modulate drought-induced spermidine production by directly regulating the expression of TrSAMS1, which encodes an S-adenosylmethionine synthase. This gene was identified by transcriptome and expression analysis in T. repens. TrSAMS1 overexpression and its pTRV-VIGS-mediated silencing demonstrated that TrSAMS1 is a positive regulator of spermidine synthesis and drought tolerance. TrMYB33 was identified as an interacting candidate through yeast one-hybrid library screening with the TrSAMS1 promoter region as the bait. TrMYB33 was confirmed to bind directly to the predicted TAACCACTAACCA (the TAACCA MYB binding site is repeated twice in tandem) within the TrSAMS1 promoter and to act as a transcriptional activator. Additionally, TrMYB33 contributed to drought tolerance by regulating TrSAMS1 expression and modulating spermidine synthesis. Additionally, we found that spermidine accumulation under drought stress depended on ABA and that TrMYB33 coordinated ABA-mediated upregulation of TrSAMS1 and spermidine accumulation. This study elucidated the role of a T. repens MYB33 homolog in modulating spermidine biosynthesis. The further exploitation and functional characterization of the TrMYB33-TrSAMS1 regulatory module can enhance our understanding of the molecular mechanisms responsible for spermidine accumulation during drought stress.
Collapse
Affiliation(s)
- Youzhi Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaofang Qin
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhirui He
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Guangyan Feng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
9
|
Rahman A, Kulik E, Majláth I, Khan I, Janda T, Pál M. Different reactions of wheat, maize, and rice plants to putrescine treatment. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:807-822. [PMID: 38846465 PMCID: PMC11150351 DOI: 10.1007/s12298-024-01462-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/25/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
Polyamines play an important role in growth and differentiation by regulating numerous physiological and biochemical processes at the cellular level. In addition to their roborative effect, their essential role in plant stress responses has been also reported. However, the positive effect may depend on the fine-tuning of polyamine metabolism, which influences the production of free radicals and/or signalling molecules. In the present study, 0.3 mM hydroponic putrescine treatment was tested in wheat, maize, and rice in order to reveal differences in their answers and highlight the relation of these with polyamine metabolism. In the case of wheat, the chlorophyll content and the actual quantum yield increased after putrescine treatment, and no remarkable changes were detected in the stress markers, polyamine contents, or polyamine metabolism-related gene expression. Although, in maize, the actual quantum yield decreased, and the root hydrogen peroxide content increased, no other negative effect was observed after putrescine treatment due to activation of polyamine oxidases at enzyme and gene expression levels. The results also demonstrated that after putrescine treatment, rice with a higher initial polyamine content, the balance of polyamine metabolism was disrupted and a significant amount of putrescine was accumulated, accompanied by a detrimental decrease in the level of higher polyamines. These initial differences and the putrescine-induced shift in polyamine metabolism together with the terminal catabolism or back-conversion-induced release of a substantial quantity of hydrogen peroxide could contribute to oxidative stress observed in rice.
Collapse
Affiliation(s)
- Altafur Rahman
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network, Brunszvik 2, Martonvásár, 2462 Hungary
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, 1118 Hungary
| | | | - Imre Majláth
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network, Brunszvik 2, Martonvásár, 2462 Hungary
| | - Imran Khan
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Budapest, 1118 Hungary
| | - Tibor Janda
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network, Brunszvik 2, Martonvásár, 2462 Hungary
| | - Magda Pál
- Department of Plant Physiology and Metabolomics, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network, Brunszvik 2, Martonvásár, 2462 Hungary
| |
Collapse
|
10
|
Cao H, Ding R, Du T, Kang S, Tong L, Chen J, Gao J. A meta-analysis highlights the cross-resistance of plants to drought and salt stresses from physiological, biochemical, and growth levels. PHYSIOLOGIA PLANTARUM 2024; 176:e14282. [PMID: 38591354 DOI: 10.1111/ppl.14282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
In nature, drought and salt stresses often occur simultaneously and affect plant growth at multiple levels. However, the mechanisms underlying plant responses to drought and salt stresses and their interactions are still not fully understood. We performed a meta-analysis to compare the effects of drought, salt, and combined stresses on plant physiological, biochemical, morphological and growth traits, analyze the different responses of C3 and C4 plants, as well as halophytes and non-halophytes, and identify the interactive effects on plants. There were numerous similarities in plant responses to drought, salt, and combined stresses. C4 plants had a more effective antioxidant defense system, and could better maintain above-ground growth. Halophytes could better maintain photosynthetic rate (Pn) and relative water content (RWC), and reduce growth as an adaptation strategy. The responses of most traits (Pn, RWC, chlorophyll content, soluble sugar content, H2O2 content, plant dry weight, etc.) to combined stress were less-than-additive, indicating cross-resistance rather than cross-sensitivity of plants to drought and salt stresses. These results are important to improve our understanding of drought and salt cross-resistance mechanisms and further induce resistance or screen-resistant varieties under stress combination.
Collapse
Affiliation(s)
- Heli Cao
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Risheng Ding
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Taisheng Du
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Ling Tong
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Jinliang Chen
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| | - Jia Gao
- Center for Agricultural Water Research in China, China Agricultural University, Beijing, China
- State Key Laboratory of Efficient Utilization of Agricultural Water Resources, Beijing, China
- National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province, China
| |
Collapse
|
11
|
Fu N, Wang L, Han X, Yang Q, Zhang Y, Tong Z, Zhang J. Genome-Wide Identification and Expression Analysis of Calmodulin and Calmodulin-like Genes, Revealing CaM3 and CML13 Participating in Drought Stress in Phoebe bournei. Int J Mol Sci 2023; 25:545. [PMID: 38203715 PMCID: PMC10778748 DOI: 10.3390/ijms25010545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Calmodulin (CaM) and calmodulin-like (CML) proteins are major Ca2+ sensors involved in the regulation of plant development and stress responses by converting Ca2+ signals into appropriate cellular responses. However, characterization and expression analyses of CaM/CML genes in the precious species, Phoebe bournei, remain limited. In this study, five PbCaM and sixty PbCML genes were identified that only had EF-hand motifs with no other functional domains. The phylogenetic tree was clustered into 11 subgroups, including a unique clade of PbCaMs. The PbCaMs were intron-rich with four EF-hand motifs, whereas PbCMLs had two to four EF-hands and were mostly intronless. PbCaMs/CMLs were unevenly distributed across the 12 chromosomes of P. bournei and underwent purifying selection. Fragment duplication was the main driving force for the evolution of the PbCaM/CML gene family. Cis-acting element analysis indicated that PbCaMs/CMLs might be related to hormones, growth and development, and stress response. Expression analysis showed that PbCaMs were generally highly expressed in five different tissues and under drought stress, whereas PbCMLs showed specific expression patterns. The expression levels of 11 candidate PbCaMs/CMLs were responsive to ABA and MeJA, suggesting that these genes might act through multiple signaling pathways. The overexpression of PbCaM3/CML13 genes significantly increased the tolerance of yeast cells to drought stress. The identification and characterization of the CaM/CML gene family in P. bournei laid the foundation for future functional studies of these genes.
Collapse
Affiliation(s)
| | | | | | | | | | - Zaikang Tong
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (N.F.); (L.W.); (X.H.); (Q.Y.); (Y.Z.)
| | - Junhong Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry & Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (N.F.); (L.W.); (X.H.); (Q.Y.); (Y.Z.)
| |
Collapse
|
12
|
Wang W, Shi S, Kang W, He L. Enriched endogenous free Spd and Spm in alfalfa (Medicago sativa L.) under drought stress enhance drought tolerance by inhibiting H 2O 2 production to increase antioxidant enzyme activity. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154139. [PMID: 37988872 DOI: 10.1016/j.jplph.2023.154139] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/12/2023] [Accepted: 11/09/2023] [Indexed: 11/23/2023]
Abstract
Drought stress is a major factor limiting agricultural development, and exogenous polyamines (PAs) can increase plant drought resistance by enhancing antioxidant activity, but few studies have examined whether endogenous PAs enhance the plant antioxidant system. Here, to investigate the effects of endogenous PAs on the antioxidant system of alfalfa under drought stress and the underlying mechanisms, two alfalfa cultivars, Longzhong (drought resistant) and Gannong No. 3 (drought sensitive), were used as test materials, and their seedlings were treated with polyethylene glycol (PEG-6000) for 8 days at -1.2 MPa to simulate drought stress. The levels of free PAs [putrescine (Put), spermidine (Spd) and spermine (Spm)], hydrogen peroxide (H2O2), malondialdehyde (MDA), key PA metabolism enzyme [arginine decarboxylase (ADC), ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (SAMDC), polyamine oxidase (PAO), and diamine oxidase (DAO)] activities, and antioxidant enzyme [superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD)] activities were measured. These physiological indicators were used for correlation analysis to investigate the relationship between PA metabolism and the antioxidant enzyme system. The results showed that PA synthesis in alfalfa under drought stress was dominated by the ADC pathway. Spd and Spm played an important role in improving drought tolerance. The high levels of ADC and SAMDC activities were facilitated by the conversion of Put to Spd and Spm. H2O2 generation by oxidative decomposition of PAs was mainly dependent on the oxidative decomposition of DAO but not PAO. Low DAO activity favored low H2O2 production. Spd, Spm, ADC, ODC and SAMDC were positively correlated with the antioxidant enzymes SOD, CAT and POD in both cultivars under drought. Therefore, we concluded that high ADC and SAMDC activities in alfalfa promoted the conversion of Put to Spd and Spm, leading to high accumulation of Spd and Spm and low Put accumulation. Low Put levels led to low H2O2 production through low DAO activity, and low H2O2 levels induced the expression of antioxidant enzyme-encoding genes to improve antioxidant enzyme activity and reduce MDA accumulation and thereby enhanced drought resistance in alfalfa.
Collapse
Affiliation(s)
- Wenjuan Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China
| | - Shangli Shi
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China.
| | - Wenjuan Kang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China.
| | - Long He
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
13
|
Qi T, Tang T, Zhou Q, Yang W, Hassan MJ, Cheng B, Nie G, Li Z, Peng Y. Optimization of Protocols for the Induction of Callus and Plant Regeneration in White Clover ( Trifolium repens L.). Int J Mol Sci 2023; 24:11260. [PMID: 37511020 PMCID: PMC10378747 DOI: 10.3390/ijms241411260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
White clover is a widely grown temperate legume forage with high nutritional value. Research on the functional genomics of white clover requires a stable and efficient transformation system. In this study, we successfully induced calluses from the cotyledons and leaves of 10 different white clover varieties. The results showed that the callus formation rate in the cotyledons did not vary significantly among the varieties, but the highest callus formation rate was observed in 'Koala' leaves. Subsequently, different concentrations of antioxidants and hormones were tested on the browning rate and differentiation ability of the calluses, respectively. The results showed that the browning rate was the lowest on MS supplemented with 20 mg L-1 AgNO3 and 25 mg L-1 VC, respectively, and the differentiation rate was highest on MS supplemented with 1 mg L-1 6-BA, 1 mg L-1 KT and 0.5 mg L-1 NAA. In addition, the transformation system for Agrobacterium tumefaciens-mediated transformation of 4-day-old leaves was optimized to some extent and obtained a positive callus rate of 8.9% using green fluorescent protein (GFP) as a marker gene. According to our data, by following this optimized protocol, the transformation efficiency could reach 2.38%. The results of this study will provide the foundation for regenerating multiple transgenic white clover from a single genetic background.
Collapse
Affiliation(s)
- Tiangang Qi
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Tang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qinyu Zhou
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Weiqiang Yang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Bizhen Cheng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Nie
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
14
|
Yang L, Wang X, Zhao F, Zhang X, Li W, Huang J, Pei X, Ren X, Liu Y, He K, Zhang F, Ma X, Yang D. Roles of S-Adenosylmethionine and Its Derivatives in Salt Tolerance of Cotton. Int J Mol Sci 2023; 24:ijms24119517. [PMID: 37298464 DOI: 10.3390/ijms24119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Salinity is a major abiotic stress that restricts cotton growth and affects fiber yield and quality. Although studies on salt tolerance have achieved great progress in cotton since the completion of cotton genome sequencing, knowledge about how cotton copes with salt stress is still scant. S-adenosylmethionine (SAM) plays important roles in many organelles with the help of the SAM transporter, and it is also a synthetic precursor for substances such as ethylene (ET), polyamines (PAs), betaine, and lignin, which often accumulate in plants in response to stresses. This review focused on the biosynthesis and signal transduction pathways of ET and PAs. The current progress of ET and PAs in regulating plant growth and development under salt stress has been summarized. Moreover, we verified the function of a cotton SAM transporter and suggested that it can regulate salt stress response in cotton. At last, an improved regulatory pathway of ET and PAs under salt stress in cotton is proposed for the breeding of salt-tolerant varieties.
Collapse
Affiliation(s)
- Li Yang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Fuyong Zhao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Junsen Huang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yangai Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kunlun He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
15
|
Zhang YS, Xu Y, Xing WT, Wu B, Huang DM, Ma FN, Zhan RL, Sun PG, Xu YY, Song S. Identification of the passion fruit ( Passiflora edulis Sims) MYB family in fruit development and abiotic stress, and functional analysis of PeMYB87 in abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1124351. [PMID: 37215287 PMCID: PMC10196401 DOI: 10.3389/fpls.2023.1124351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/21/2023] [Indexed: 05/24/2023]
Abstract
Environmental stresses are ubiquitous in agricultural cultivation, and they affect the healthy growth and development of edible tissues in passion fruit. The study of resistance mechanisms is important in understanding the adaptation and resistance of plants to environmental stresses. In this work, two differently resistant passion fruit varieties were selected, using the expression characteristics of the transcription factor MYB, to explore the resistance mechanism of the MYB gene under various environmental stresses. A total of 174 MYB family members were identified using high-quality passion fruit genomes: 98 2R-MYB, 5 3R-MYB, and 71 1R-MYB (MYB-relate). Their family information was systematically analyzed, including subcellular localization, physicochemical properties, phylogeny at the genomic level, promoter function, encoded proteins, and reciprocal regulation. In this study, bioinformatics and transcriptome sequencing were used to identify members of the PeMYB genes in passion fruit whole-genome data, and biological techniques, such as qPCR, gene clone, and transient transformation of yeast, were used to determine the function of the passion fruit MYB genes in abiotic stress tolerance. Transcriptomic data were obtained for differential expression characteristics of two resistant and susceptible varieties, three expression patterns during pulp development, and four induced expression patterns under abiotic stress conditions. We further focused on the resistance mechanism of PeMYB87 in environmental stress, and we selected 10 representative PeMYB genes for quantitative expression verification. Most of the genes were differentially induced by four abiotic stresses, among which PeMYB87 responded significantly to high-temperature-induced expression and overexpression of the PeMYB87 gene in the yeast system. The transgenic PeMYB87 in yeast showed different degrees of stress resistance under exposure to cold, high temperatures, drought, and salt stresses. These findings lay the foundation for further analysis of the biological functions of PeMYBs involved in stress resistance in passion fruit.
Collapse
Affiliation(s)
- Yan-shu Zhang
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
- College of Landscape and Horticulture, Southwest Forestry University, Kunming, Yunnan, China
| | - Yi Xu
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Wen-ting Xing
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Bin Wu
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Dong-mei Huang
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Fu-ning Ma
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Ru-lin Zhan
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Pei-guang Sun
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Yong-yan Xu
- College of Landscape and Horticulture, Southwest Forestry University, Kunming, Yunnan, China
| | - Shun Song
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| |
Collapse
|
16
|
Wang Y, Zhang M, Li X, Zhou R, Xue X, Zhang J, Liu N, Xue R, Qi X. Overexpression of the Wheat TaPsb28 Gene Enhances Drought Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2023; 24:ijms24065226. [PMID: 36982301 PMCID: PMC10049290 DOI: 10.3390/ijms24065226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
Psb28 is a soluble protein in the photosystem II (PSII) complex, but its role in the drought stress response of wheat remains unclear. Here, we functionally characterized the TaPsb28 gene, which positively regulates drought tolerance in wheat. When the full-length 546-bp TaPsb28 cDNA was transferred into Arabidopsis thaliana, it was located in the guard cell chloroplast around the stroma. Overexpression of TaPsb28 conferred drought tolerance, as exhibited by the increases in the survival rate. Transgenic plants maintained lower MDA content and higher chlorophyll content by inducing chlorophyll synthase (ChlG) gene transcription. The content of abscisic acid (ABA) and zeatin increased significantly in wild-type (WT) plants under drought stress, and the transcriptional expression levels of RD22, dihydroflavonol 4-reductase (DFR) and anthocyanin reductase (ANR) genes were induced, thus enhancing the contents of endogenous cyanidin, delphinidin, and proanthocyanidins. However, in transgenic plants, although anthocyanins were further aggregated, the ABA increase was inhibited, zeatin was restored to the control level under drought stress, and stomatal closure was promoted. These findings indicate ABA and zeatin have opposite synergistic effects in the process of drought tolerance caused by TaPsb28 because only after the effect of zeatin is alleviated can ABA better play its role in promoting anthocyanin accumulation and stomatal closure, thus enhancing the drought tolerance of transgenic plants. The results suggest that overexpression of TaPsb28 exerts a positive role in the drought response by influencing the functional metabolism of endogenous hormones. The understanding acquired through the research laid a foundation for further in-depth investigation of the function of TaPsb28 in drought resistance in wheat, especially its relationship with anthocyanidin accumulation.
Collapse
Affiliation(s)
- Yuexia Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
- Correspondence: (Y.W.); (X.Q.); Tel./Fax: +86-(37)-163555319 (Y.W.)
| | - Menghan Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaoyan Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruixiang Zhou
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xinyu Xue
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jing Zhang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Nana Liu
- Department of Biological Science, Purdue University, West Lafayette, IN 47907, USA
| | - Ruili Xue
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xueli Qi
- Institute of Crops Molecular Breeding, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
- The Shennong Laboratory, Zhengzhou 450002, China
- Correspondence: (Y.W.); (X.Q.); Tel./Fax: +86-(37)-163555319 (Y.W.)
| |
Collapse
|
17
|
Zhu M, Chen G, Wu J, Wang J, Wang Y, Guo S, Shu S. Identification of cucumber S-adenosylmethionine decarboxylase genes and functional analysis of CsSAMDC3 in salt tolerance. FRONTIERS IN PLANT SCIENCE 2023; 14:1076153. [PMID: 37152135 PMCID: PMC10162440 DOI: 10.3389/fpls.2023.1076153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/31/2023] [Indexed: 05/09/2023]
Abstract
As one of the key enzymes in the biosynthesis of polyamines, S-adenosylmethionine decarboxylase (SAMDC) plays an important role in plant stress resistance. In this study, four SAMDC genes (CsSAMDC1-4) were identified in cucumber (Cucumis sativus L.) and divided into three groups (I, II, and III) by phylogenetic analysis. Motif analysis suggested the existence of many conserved motifs, which is compatible with SAMDC protein classification. Gene structure analysis revealed that CsSAMDC2 and CsSAMDC3 in group I have no intron, which showed a similar response to salt stress by gene expression analysis. CsSAMDC3 responded differently to hormone and stress treatments, and was more susceptible to salt stress. Compared with wild-type (WT) tobacco, the activities of superoxide dismutase, peroxidase, and catalase were increased in CsSAMDC3-overexpressing tobacco under salt stress, but the content of electrolyte leakage, malondialdehyde, and hydrogen peroxide were decreased, which alleviated the inhibition of growth induced by salt stress. Under salt stress, overexpression of CsSAMDC3 in transgenic tobacco plants exhibited salt tolerance, mainly in the form of a significant increase in dry and fresh weight, the maximal quantum yield of PSII photochemistry, the net photosynthetic rate and the content of spermidine and spermine, while the content of putrescine was reduced. In addition, the expression levels of antioxidase-related coding genes (NtSOD, NtPOD, NtCAT) and PAs metabolism-related coding genes (NtSAMS, NtSPDS, NtSPMS, NtPAO) in transgentic plants was lower than WT under salt stress, which suggested that overexpression of CsSAMDC3 affected the expression of these genes. In summary, our results showed that CsSAMDC3 could be used as a potential candidate gene to improve salt tolerance of cucumber by regulating polyamine and antioxidant metabolism.
Collapse
Affiliation(s)
- Mengliang Zhu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Guangling Chen
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jianqing Wu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jian Wang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, China
| | - Yu Wang
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shirong Guo
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, China
| | - Sheng Shu
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
- Suqian Academy of Protected Horticulture, Nanjing Agricultural University, Suqian, China
- *Correspondence: Sheng Shu,
| |
Collapse
|
18
|
Iqbal MZ, Jia T, Tang T, Anwar M, Ali A, Hassan MJ, Zhang Y, Tang Q, Peng Y. A Heat Shock Transcription Factor TrHSFB2a of White Clover Negatively Regulates Drought, Heat and Salt Stress Tolerance in Transgenic Arabidopsis. Int J Mol Sci 2022; 23:12769. [PMID: 36361560 PMCID: PMC9654841 DOI: 10.3390/ijms232112769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/19/2022] [Accepted: 10/10/2022] [Indexed: 11/15/2023] Open
Abstract
Heat shock transcription factors (HSF) are divided into classes A, B and C. Class A transcription factors are generally recognized as transcriptional activators, while functional characterization of class B and C heat shock transcription factors have not been fully developed in most plant species. We isolated and characterized a novel HSF transcription factor gene, TrHSFB2a (a class B HSF) gene, from the drought stress-sensitive forage crop species, white clover (Trifolium repens). TrHSFB2a was highly homologous to MtHSFB2b, CarHSFB2a, AtHSFB2b and AtHSFB2a. The expression of TrHSFB2a was strongly induced by drought (PEG6000 15% w/v), high temperature (35 °C) and salt stresses (200 mM L-1 NaCl) in white clover, while subcellular localization analysis showed that it is a nuclear protein. Overexpression of the white clover gene TrHSFB2a in Arabidopsis significantly reduced fresh and dry weight, relative water contents (RWC), maximum photosynthesis efficiency (Fv/Fm) and performance index on the absorption basis (PIABS), while it promoted leaf senescence, relative electrical conductivity (REC) and the contents of malondialdehyde (MDA) compared to a wild type under drought, heat and salt stress conditions of Arabidopsis plants. The silencing of its native homolog (AtHSFB2a) by RNA interference in Arabidopsis thaliana showed opposite trends by significantly increasing fresh and dry weights, RWC, maximum photosynthesis efficiency (Fv/Fm) and performance index on the absorption basis (PIABS) and reducing REC and MDA contents under drought, heat and salt stress conditions compared to wild type Arabidopsis plants. These phenotypic and physiological indicators suggested that the TrHSFB2a of white clover functions as a negative regulator of heat, salt and drought tolerance. The bioinformatics analysis showed that TrHSFB2a contained the core B3 repression domain (BRD) that has been reported as a repressor activator domain in other plant species that might repress the activation of the heat shock-inducible genes required in the stress tolerance process in plants. The present study explores one of the potential causes of drought and heat sensitivity in white clover that can be overcome to some extent by silencing the TrHSFB2a gene in white clover.
Collapse
Affiliation(s)
- Muhammad Zafar Iqbal
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tong Jia
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Tao Tang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Anwar
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China
| | - Asif Ali
- Key Laboratory of Southwest Crop Genetic Resources and Genetic Improvement, Ministry of Education, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Muhammad Jawad Hassan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Youzhi Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Qilin Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
19
|
The Identification and Characterization of the KNOX Gene Family as an Active Regulator of Leaf Development in Trifolium repens. Genes (Basel) 2022; 13:genes13101778. [PMID: 36292663 PMCID: PMC9601826 DOI: 10.3390/genes13101778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022] Open
Abstract
Leaves are the primary and critical feed for herbivores. They directly determine the yield and quality of legume forage. Trifolium repens (T. repens) is an indispensable legume species, widely cultivated in temperate pastures due to its nutritional value and nitrogen fixation. Although the leaves of T. repens are typical trifoliate, they have unusual patterns to adapt to herbivore feeding. The number of leaflets in T. repens affects its production and utilization. The KNOX gene family encodes transcriptional regulators that are vital in regulating and developing leaves. Identification and characterization of TrKNOX gene family as an active regulator of leaf development in T. repens were studied. A total of 21 TrKNOX genes were identified from the T. repens genome database and classified into three subgroups (Class I, Class II, and Class M) based on phylogenetic analysis. Nineteen of the genes identified had four conserved domains, except for KNOX5 and KNOX9, which belong to Class M. Varying expression levels of TrKNOX genes were observed at different developmental stages and complexities of leaves. KNOX9 was observed to upregulate the leaf complexity of T. repens. Research on TrKNOX genes could be novel and further assist in exploring their functions and cultivating high-quality T. repens varieties.
Collapse
|
20
|
Genome-Wide Identification, Characterization, and Expression Profiling Analysis of SPL Gene Family during the Inflorescence Development in Trifolium repens. Genes (Basel) 2022; 13:genes13050900. [PMID: 35627286 PMCID: PMC9140761 DOI: 10.3390/genes13050900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023] Open
Abstract
Trifolium repens is the most widely cultivated perennial legume forage in temperate region around the world. It has rich nutritional value and good palatability, seasonal complementarity with grasses, and can improve the feed intake and digestibility of livestock. However, flowering time and inflorescence development directly affects the quality and yield of T. repens, as well as seed production. The Squa promoter binding protein-like (SPL) gene family is a plant specific transcription factor family, which has been proved to play a critical role in regulating plant formation time and development of flowers. In this study, a total of 37 TrSPL genes were identified from the whole genome of T. repens and were divided into nine clades based on phylogenetic tree. Seventeen TrSPL genes have potential target sites for miR156. The conserved motif of squamosa promoter binding protein (SBP) contains two zinc finger structures and one NLS structure. Gene structure analysis showed that all TrSPL genes contained SBP domain, while ankyrin repeat region was just distributed in part of genes. 37 TrSPL genes were relatively dispersedly distributed on 16 chromosomes, and 5 pairs of segmental repeat genes were found, which indicated that segmental duplication was the main way of gene expansion. Furthermore, the gene expression profiling showed that TrSPL11, TrSPL13, TrSPL22, and TrSPL26 were highly expressed only in the early stage of inflorescence development, while TrSPL1 and TrSPL6 are highly expressed only in the mature inflorescence. Significantly, the expression of TrSPL4 and TrSPL12 increased gradually with the development of inflorescences. The results of this study will provide valuable clues for candidate gene selection and elucidating the molecular mechanism of T. repens flowering regulation.
Collapse
|
21
|
Unraveling Cadmium Toxicity in Trifolium repens L. Seedling: Insight into Regulatory Mechanisms Using Comparative Transcriptomics Combined with Physiological Analyses. Int J Mol Sci 2022; 23:ijms23094612. [PMID: 35563002 PMCID: PMC9105629 DOI: 10.3390/ijms23094612] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 01/27/2023] Open
Abstract
Trifolium repens (T. repens) can accumulate significant amounts of heavy metal ions, and has strong adaptability to wide environmental conditions, and relatively large biomass, which is considered a potential plant for phytoremediation. However, the molecular mechanisms of T. repens involved in Cd tolerance have not yet been studied in detail. This study was conducted to examine the integrative responses of T. repens exposed to a high-level CdCl2 by investigating the physiological and transcriptomic analyses. The results suggested that T. repens seedlings had a high degree of tolerance to Cd treatment. The roots accumulated higher Cd concentration than leaves and were mainly distributed in the cell wall. The content of MDA, soluble protein, the relative electrolyte leakage, and three antioxidant enzymes (POD, SOD, and APX) was increased with the Cd treatment time increasing, but the CAT enzymes contents were decreased in roots. Furthermore, the transcriptome analysis demonstrated that the differentially expressed genes (DEGs) mainly enriched in the glutathione (GSH) metabolism pathway and the phenylpropanoid biosynthesis in the roots. Overexpressed genes in the lignin biosynthesis in the roots might improve Cd accumulation in cell walls. Moreover, the DEGs were also enriched in photosynthesis in the leaves, transferase activity, oxidoreductase activity, and ABA signal transduction, which might also play roles in reducing Cd toxicity in the plants. All the above, clearly suggest that T. repens employ several different mechanisms to protect itself against Cd stress, while the cell wall biosynthesis and GSH metabolism could be considered the most important specific mechanisms for Cd retention in the roots of T. repens.
Collapse
|
22
|
da Silva TI, Dias MG, de Araújo NO, de Sousa Santos MN, Cruz RRP, Dias TJ, Ribeiro WS, Grossi JAS, Barbosa JG. Spermine reduces the harmful effects of salt stress in Tropaeolum majus. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:687-696. [PMID: 35465202 PMCID: PMC8986909 DOI: 10.1007/s12298-022-01165-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/02/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Flowers, leaves, fruits and buds of Tropaeolum majus are used for ornamental, medicinal and food purposes. However, salt stress limits the development and productivity of T. majus due to biochemical, physiological and anatomical disturbances. Polyamine application is an alternative for mitigating the harmful effects of salt stress. Thus, the objective of this work was to evaluate the effects of spermine application in T. majus grown under salt stress. The experiment was carried out in a completely randomized design, in a 3 × 2 factorial scheme, with 0, 40 mM (moderate salt stress) and 80 mM (severe salt stress) NaCl, and 0 and 1 mM spermine, and with five replicates. Growth (plant height, stem diameter, number of leaves, number of flowers, number of buds, leaf dry mass, stem dry mass and flower dry mass), gas exchange (gs, A, E, Ci and WUE), relative water content, contents of free amino acids, phenolic compounds, reducing and non-reducing sugars, lipid peroxidation and enzymatic activities (CAT, POD and APX) were evaluated. Spermine application decreased the harmful effects of salt stress on the growth and gas exchange and increased flowering in T. majus. Furthermore, the relative water content of T. majus increased under severe salt stress conditions. Spermine application reduced the contents of total phenolic compounds, free amino acids, reducing sugars and non-reducing sugars on leaves of T. majus. Spermine application increased CAT and POD activities in plants under severe salt stress and POD and APX in plants under moderate salt stress.
Collapse
Affiliation(s)
| | - Marlon Gomes Dias
- Department of Agronomy, Universidade Federal de Viçosa, 36570900 Viçosa, Brazil
| | | | | | | | - Thiago Jardelino Dias
- Department of Agriculture, Universidade Federal da Paraíba, 58220000 Bananeiras, Brazil
| | | | | | | |
Collapse
|
23
|
Li Z, Geng W, Tan M, Ling Y, Zhang Y, Zhang L, Peng Y. Differential Responses to Salt Stress in Four White Clover Genotypes Associated With Root Growth, Endogenous Polyamines Metabolism, and Sodium/Potassium Accumulation and Transport. FRONTIERS IN PLANT SCIENCE 2022; 13:896436. [PMID: 35720567 PMCID: PMC9201400 DOI: 10.3389/fpls.2022.896436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 05/04/2023]
Abstract
Selection and utilization of salt-tolerant crops are essential strategies for mitigating salinity damage to crop productivity with increasing soil salinization worldwide. This study was conducted to identify salt-tolerant white clover (Trifolium repens) genotypes among 37 materials based on a comprehensive evaluation of five physiological parameters, namely, chlorophyll (Chl) content, photochemical efficiency of PS II (Fv/Fm), performance index on an absorption basis (PIABS), and leaf relative water content (RWC), and to further analyze the potential mechanism of salt tolerance associated with changes in growth, photosynthetic performance, endogenous polyamine metabolism, and Na+/K+ uptake and transport. The results showed that significant variations in salt tolerance were identified among 37 genotypes, as PI237292 and Tr005 were the top two genotypes with the highest salt tolerance, and PI251432 and Korla were the most salt-sensitive genotypes compared to other materials. The salt-tolerant PI237292 and Tr005 not only maintained significantly lower EL but also showed significantly better photosynthetic performance, higher leaf RWC, underground dry weight, and the root to shoot ratio than the salt-sensitive PI251432 and Korla under salt stress. Increases in endogenous PAs, putrescine (Put), and spermidine (Spd) contents could be key adaptive responses to salt stress in the PI237292 and the Tr005 through upregulating genes encoding Put and Spd biosynthesis (NCA, ADC, SAMDC, and SPDS2). For Na+ and K+ accumulation and transport, higher salt tolerance of the PI237292 could be associated with the maintenance of Na+ and Ca+ homeostasis associated with upregulations of NCLX and BTB/POZ. The K+ homeostasis-related genes (KEA2, HAK25, SKOR, POT2/8/11, TPK3/5, and AKT1/5) are differentially expressed among four genotypes under salt stress. However, the K+ level and K+/Na+ ratio were not completely consistent with the salt tolerance of the four genotypes. The regulatory function of these differentially expressed genes (DEGs) on salt tolerance in the white clover and other leguminous plants needs to be investigated further. The current findings also provide basic genotypes for molecular-based breeding for salt tolerance in white clover species.
Collapse
Affiliation(s)
- Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wan Geng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Meng Tan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yao Ling
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liquan Zhang
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, China
- *Correspondence: Liquan Zhang,
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
- Yan Peng,
| |
Collapse
|
24
|
Bueno M, Cordovilla MDP. Plant Growth Regulators Application Enhance Tolerance to Salinity and Benefit the Halophyte Plantago coronopus in Saline Agriculture. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10091872. [PMID: 34579404 PMCID: PMC8469121 DOI: 10.3390/plants10091872] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 06/01/2023]
Abstract
Climate change, soil salinisation and desertification, intensive agriculture and the poor quality of irrigation water all create serious problems for the agriculture that supplies the world with food. Halophyte cultivation could constitute an alternative to glycophytic cultures and help resolve these issues. Plantago coronopus can be used in biosaline agriculture as it tolerates salt concentrations of 100 mM NaCl. To increase the salt tolerance of this plant, plant growth regulators such as polyamine spermidine, salicylic acid, gibberellins, cytokinins, and auxins were added in a hydroponic culture before the irrigation of NaCl (200 mM). In 45-day-old plants, dry weight, water content, osmolyte (sorbitol), antioxidants (phenols, flavonoids), polyamines (putrescine, spermidine, spermine (free, bound, and conjugated forms)) and ethylene were determined. In non-saline conditions, all plant regulators improved growth while in plants treated with salt, spermidine application was the most effective in improving growth, osmolyte accumulation (43%) and an increase of antioxidants (24%) in P. coronopus. The pretreatments that increase the sorbitol content, endogenous amines (bound spermine fraction), phenols and flavonoids may be the most effective in protecting to P. coronopus against stress and, therefore, could contribute to improving the tolerance to salinity and increase nutritional quality of P. coronopus.
Collapse
Affiliation(s)
- Milagros Bueno
- Plant Physiology Laboratory, Department Animal Biology, Plant Biology and Ecology, Faculty of Experimental Science, University of Jaén, Paraje Las Lagunillas, E-23071 Jaén, Spain;
| | - María del Pilar Cordovilla
- Plant Physiology Laboratory, Department Animal Biology, Plant Biology and Ecology, Faculty of Experimental Science, University of Jaén, Paraje Las Lagunillas, E-23071 Jaén, Spain;
- Center for Advances Studies in Olive Grove and Olive Oils, Faculty of Experimental Science, University of Jaén, Paraje Las Lagunillas, E-23071 Jaén, Spain
| |
Collapse
|