1
|
Dong XM, Zhang W, Tu M, Zhang SB. Spatial and Temporal Regulation of Flower Coloration in Cymbidium lowianum. PLANT, CELL & ENVIRONMENT 2025; 48:3844-3860. [PMID: 39834034 DOI: 10.1111/pce.15398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/22/2025]
Abstract
Flower color is a crucial trait that attracts pollinators and determines the ornamental value of floral crops. Cymbidium lowianum, one of the most important breeding parent of Cymbidium hybrids, has two flower morphs (normal and albino) that differ in flower lip color. However, the molecular mechanisms underlying flower color formation in C. lowianum are not well understood. In this study, comparative metabolomic analysis between normal and albino flower lip tissues indicated that cyanidin-3-O-glucoside content was significantly higher in red epichiles than in other lip tissues. This finding suggests that cyanidin-3-O-glucoside is responsible for color variation and differentiation in the lip in C. lowianum. We also found that red coloration in C. lowianum flower is correlated with high levels of F3'H expression; further, anthocyanins, carotenoids and chlorophyll coordinate to influence sepal and petal coloration during flower development. In transgenic Arabidopsis lines, overexpression of F3'H increased anthocyanin concentration, overexpression of BCH increased carotenoid concentration, whereas overexpression of HEMG and CHLI both increased chlorophyll concentration. Identification and assessment of several transcription factors revealed that MYB308-1 activates BCH, MYB111 and PIF4-2 activate HEMG and CHLI expression during flower development. Importantly, MYB14-1 shows interaction with PIF4-2, and appears to act as a connector between anthocyanin and chlorophyll biosynthesis by either activating F3'H expression or inhibiting CHLI expression. These results indicate that, in C. lowianum, variation in flower color and differentiation of lip color patterns are primarily regulated by the types and concentrations of flavonoids; further, carotenoids and chlorophyll also influence flower coloration during development.
Collapse
Affiliation(s)
- Xiu-Mei Dong
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
| | - Wei Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
| | - Mengling Tu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shi-Bao Zhang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming, Yunnan, China
| |
Collapse
|
2
|
Jiang H, Dong Y, Pan S, Zhou H, Cui H. Optimization of the Extraction Process and Comprehensive Evaluation of the Antimicrobial and Antioxidant Properties of Different Polar Parts of the Ethanol Extracts of Cannabis sativa L. ACS OMEGA 2025; 10:17453-17467. [PMID: 40352509 PMCID: PMC12060038 DOI: 10.1021/acsomega.4c10986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 05/14/2025]
Abstract
The total flavonoids of Cannabis sativa L. were selected as the research object, and the extraction process of C. sativa L. was optimized on the basis of a single factor experiment utilizing a five-factor, three-level response surface method. Subsequently, the vitro antimicrobial and antioxidant activities of the flavonoids were evaluated. The optimized extraction conditions were as follows: ratio of liquid to solid, 24.69:1 mL/g; soaking time, 102.12 min; extraction time, 165.96 min; ethanol concentration, 46.59%; extraction temperature, 86.87 °C. The extraction rate of C. sativa L. flavonoids (CSF) was found to be 5.51 ± 0.04 mg/g. The extraction of crude flavonoid (i.e., flavonoids extracted under the optimal extraction process) was conducted using four solvents, resulting in five C. sativa L. flavonoid extracts (petroleum ether, CSFp; n-butanol, CSFb; ethyl acetate, CSFe; aqueous phase, CSFw; and crude flavonoid, CSF). CSF contains 10 flavonoid components. In vitro, all five CSF samples demonstrated good total reducing power, effective scavenging capacity against DPPH and ABTS+ radicals, and pronounced inhibitory effects against Escherichia coli, Bacillus subtilis, and Bacillus pumilus. Analytic Hierarchy Process (AHP) was employed to evaluate the five CSF samples in terms of antibacterial and antioxidant activity. The results indicated that petroleum-ether-extracted C. sativa L. flavonoids (CSFp) exhibited the most pronounced antibacterial and antioxidant effects.
Collapse
Affiliation(s)
- Han Jiang
- School
of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, 45 Chengde Street, Longtan District, Jilin, Jilin 132002, China
| | - Yao Dong
- College
of Biology & Food Engineering, Jilin
Institute of Chemical Technology, 45 Chengde Street, Longtan District, Jilin, Jilin 132002, China
| | - Simeng Pan
- School
of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, 45 Chengde Street, Longtan District, Jilin, Jilin 132002, China
| | - Hongli Zhou
- School
of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, 45 Chengde Street, Longtan District, Jilin, Jilin 132002, China
- Engineering
Research Center for Agricultural Resources and Comprehensive Utilization
of Jilin Province, Jilin Institute of Chemical
Technology, 45 Chengde Street, Longtan District, Jilin, Jilin 132002, China
| | - Hao Cui
- School
of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, 45 Chengde Street, Longtan District, Jilin, Jilin 132002, China
- Engineering
Research Center for Agricultural Resources and Comprehensive Utilization
of Jilin Province, Jilin Institute of Chemical
Technology, 45 Chengde Street, Longtan District, Jilin, Jilin 132002, China
| |
Collapse
|
3
|
Wang H, Li H, Li C, Liu S, Zhang P. The Antarctic moss 2-oxoglutarate/Fe(II)-dependent dioxygenases (Pn2-ODD2) enhanced the tolerance to drought and oxidative stress. BMC PLANT BIOLOGY 2025; 25:549. [PMID: 40295947 PMCID: PMC12036268 DOI: 10.1186/s12870-025-06578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/17/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Flavonoid biosynthesis pathway is generally thought unique to land plants and has assisted plants to adapt the terrestrial ecosystems. In this pathway, four 2-oxoglutarate/Fe(II)-dependent dioxygenases (2-ODDs), i.e., flavone synthase I (FNSI), flavanone-3-hydroxylase (F3H), flavonol synthase (FLS) and anthocyanin synthase/leucoanthocyanidin dioxygenase (ANS/LDOX), catalyze the hydroxylation and desaturation reactions. In bryophytes, the earliest land plant group, little is known about the biological functions of these enzymes. RESULTS Here, we cloned a Pn2-ODD2 gene of flavonoid biosynthesis pathway from Antarctic moss Pohlia nutans, which was induced by exogenous NaCl, PEG and abscisic acid (ABA) treatment. Overexpression of Pn2-ODD2 increased the drought resistance in Physcomitrium patens and Arabidopsis thaliana during gametophyte growth and seed germination, respectively. Overexpressed-Pn2-ODD2 Arabidopsis also exhibited the enhanced tolerance to oxidative stress, with the downregulation of ROS generation gene and increased the total flavonoid content. Also, overexpression of Pn2-ODD2 decreased the ABA sensitivity in transgenic P. patens and Arabidopsis. Meanwhile, overexpression of Pn2-ODD2 resulted in an increase in both anthocyanins and flavonols in Arabidopsis, which was correlated with the up-regulated anthocyanin biosynthesis gene. CONCLUSIONS Taken together, Pn2-ODD2 conferred the resistance to drought and oxidative stress by regulating antioxidant defense system in plants.
Collapse
Affiliation(s)
- Huijuan Wang
- National Glycoengineering Research Center, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Han Li
- National Glycoengineering Research Center, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Chaochao Li
- National Glycoengineering Research Center, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Shenghao Liu
- Marine Ecology Research Center, First Institute of Oceanography, Natural Resources Ministry, Qingdao, 266061, China
| | - Pengying Zhang
- National Glycoengineering Research Center, School of Life Science, Shandong University, Qingdao, 266237, China.
- Shandong Key Laboratory of Carbohydrate and Carbohydrate-conjugate Drugs, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
4
|
Zhou L, Chen X, Su W, Ou Z, Qu Y. Identification of the UGT Family and Functional Validation of MwUGT2 in Meconopsis wilsonii. PLANTS (BASEL, SWITZERLAND) 2025; 14:944. [PMID: 40265876 PMCID: PMC11946591 DOI: 10.3390/plants14060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/04/2025] [Accepted: 03/13/2025] [Indexed: 04/24/2025]
Abstract
Flower color is one of the most ornamental values of Meconopsis wilsonii, but very limited studies have been reported on its flower color formation. The UDP-glycosyltransferase (UGT) gene family plays a crucial role in plant flower color formation. In this study, the full-length transcriptome data of M. wilsonii was used to identify MwUGTs, focusing on protein physicochemical properties' subcellular localization, and phylogenetic relationships. In addition, sequence analysis, expression pattern analysis, subcellular localization, and functional validation of MwUGT2 were also performed. A total of 26 MwUGTs were identified in full-length transcriptome and clustered into eight subgroups. Phylogenetic analysis and KEGG database annotation showed that MwUGT2 is associated with anthocyanin synthesis and accumulation. Subsequently, based on the expression of MwUGT2 during flower development and in different tissues, it was preliminarily determined that MwUGT2 plays a role in the flower bud stage. Subcellular localization assays suggested that MwUGT2 is present in the nucleus and cytoplasm. Overexpression in Nicotiana tabacum showed that MwUGT2 significantly increased the content of Cyanidin-3-O-glucoside and resulted in dark pink flowers in transgenic plants. In summary, our findings suggest that MwUGT2 plays a crucial role in the biosynthesis of anthocyanin and will also contribute to understanding the mechanisms of flower color formation in M. wilsonii.
Collapse
Affiliation(s)
| | | | | | - Zhi Ou
- Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Science, Southwest Forestry University, Kunming 650224, China; (L.Z.); (X.C.); (W.S.)
| | - Yan Qu
- Southwest Research Center for Engineering Technology of Landscape Architecture (State Forestry and Grassland Administration), Yunnan Engineering Research Center for Functional Flower Resources and Industrialization, College of Landscape Architecture and Horticulture Science, Southwest Forestry University, Kunming 650224, China; (L.Z.); (X.C.); (W.S.)
| |
Collapse
|
5
|
Duan H, Wang D, Zheng Y, Zhou Y, Yan W. The powerful antioxidant effects of plant fruits, flowers, and leaves help to improve retinal damage and support the relief of visual fatigue. Heliyon 2024; 10:e34299. [PMID: 39113954 PMCID: PMC11305225 DOI: 10.1016/j.heliyon.2024.e34299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
With the popularization of electronic products, visual fatigue is inevitably frequent. The causes of visual fatigue are varied, but from the perspective of physiological mechanisms, it is mainly closely related to retinal function or structural damage, especially the light source from various mobile devices and office equipments nowadays, which induces oxidative stress damage in the retina and exacerbates the degree of visual fatigue, resulting in the inability to use the eyes for a long period of time, pain in the eyes and periorbital area, blurred vision, dry eyes, tearing, and other discomforts. Food ingredients derived from natural plants have greater application in relieving visual fatigue. Therefore, this paper presents a detailed compilation of six plants that are widely used for their visual fatigue-relieving function, in the hope of providing more raw material choices for the development of products with visual fatigue-relieving functions in the future.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
| | - Diandian Wang
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
| | - Yue Zheng
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yaxi Zhou
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023, China
- Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, 100023, China
| |
Collapse
|
6
|
Marin-Recinos MF, Pucker B. Genetic factors explaining anthocyanin pigmentation differences. BMC PLANT BIOLOGY 2024; 24:627. [PMID: 38961369 PMCID: PMC11221117 DOI: 10.1186/s12870-024-05316-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Anthocyanins are important contributors to coloration across a wide phylogenetic range of plants. Biological functions of anthocyanins span from reproduction to protection against biotic and abiotic stressors. Owing to a clearly visible phenotype of mutants, the anthocyanin biosynthesis and its sophisticated regulation have been studied in numerous plant species. Genes encoding the anthocyanin biosynthesis enzymes are regulated by a transcription factor complex comprising MYB, bHLH and WD40 proteins. RESULTS A systematic comparison of anthocyanin-pigmented vs. non-pigmented varieties was performed within numerous plant species covering the taxonomic diversity of flowering plants. The literature was screened for cases in which genetic factors causing anthocyanin loss were reported. Additionally, transcriptomic data sets from four previous studies were reanalyzed to determine the genes possibly responsible for color variation based on their expression pattern. The contribution of different structural and regulatory genes to the intraspecific pigmentation differences was quantified. Differences concerning transcription factors are by far the most frequent explanation for pigmentation differences observed between two varieties of the same species. Among the transcription factors in the analyzed cases, MYB genes are significantly more prone to account for pigmentation differences compared to bHLH or WD40 genes. Among the structural genes, DFR genes are most often associated with anthocyanin loss. CONCLUSIONS These findings support previous assumptions about the susceptibility of transcriptional regulation to evolutionary changes and its importance for the evolution of novel coloration phenotypes. Our findings underline the particular significance of MYBs and their apparent prevalent role in the specificity of the MBW complex.
Collapse
Affiliation(s)
- Maria F Marin-Recinos
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology and BRICS, TU Braunschweig, Braunschweig, Germany
| | - Boas Pucker
- Plant Biotechnology and Bioinformatics, Institute of Plant Biology and BRICS, TU Braunschweig, Braunschweig, Germany.
| |
Collapse
|
7
|
Huang S, Chen Z, Chen H, Quan C, Xu M, Wei F, Tang D. Widely targeted metabolomics reveals the phytoconstituent changes in Platostoma palustre leaves and stems at different growth stages. FRONTIERS IN PLANT SCIENCE 2024; 15:1378881. [PMID: 38957601 PMCID: PMC11217517 DOI: 10.3389/fpls.2024.1378881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/02/2024] [Indexed: 07/04/2024]
Abstract
Platostoma palustre (Blume) A. J. Paton is an important edible and medicinal plant. To gain a comprehensive and clear understanding of the variation patterns of metabolites in P. palustre, we employed the UPLC-MS platform along with widely targeted metabolomics techniques to analyze the metabolites in the stems and leaves of P. palustre at different stages. Our results revealed a total of 1228 detected metabolites, including 241 phenolic acids, 203 flavonoids, 152 lipids, 128 terpenes, 106 amino acids, 79 organic acids, 74 saccharides, 66 alkaloids, 44 lignans, etc. As the growth time increased, the differential metabolites (DAMs) mainly enriched in P. palustre leaves were terpenoids, phenolic acids, and lipids, while the DAMs primarily enriched in stems were terpenoids. Compared to stems, there were more differential flavonoids in leaves, and saccharides and flavonoids were significantly enriched in leaves during the S1 and S2 stages. Additionally, we identified 13, 10, and 23 potential markers in leaf, stem, and leaf vs. stem comparison groups. KEGG enrichment analysis revealed that arginine biosynthesis was the common differential metabolic pathway in different growth stages and tissues. Overall, this study comprehensively analyzed the metabolic profile information of P. palustre, serving as a solid foundation for its further development and utilization.
Collapse
Affiliation(s)
- Suhua Huang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Zhining Chen
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
| | - Hao Chen
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- College of Pharmacy, Guangxi Medical University, Nanning, China
| | - Changqian Quan
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Meihua Xu
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Fan Wei
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
| | - Danfeng Tang
- Guangxi Key Laboratory of Medicinal Resources Protection and Genetic Improvement/Guangxi Engineering Research Center of TCM Resource Intelligent Creation, National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- College of Pharmacy, Guangxi Medical University, Nanning, China
- College of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing, China
- National Engineering Research Center for Southwest Endangered Medicinal Materials Resources Development, Guangxi Botanical Garden of Medicinal Plants, Nanning, China
- College of Agriculture, Guangxi University, Nanning, China
| |
Collapse
|
8
|
Yang H, Zhang X, Cui D, Zhu YG, Zhang Y, Zhang Z. Mechanism of flavonols on detoxification, migration and transformation of indium in rhizosphere system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172693. [PMID: 38663607 DOI: 10.1016/j.scitotenv.2024.172693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/12/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Soil contamination by toxic heavy metal induces serious environmental hazards. In recent years, the use of indium (In) in semiconductor products has increased considerably and the release of In is inevitable, which will pose great risk to the ecosystem. The interaction between metal and plants which are the fundamental components of all ecosystems are an indispensable aspect of indium assessment and remediation. The role of flavonols, which is essential to plant resistance to In stress, remains largely unknown. FLS1 related lines of A. thaliana (Col, fls1-3 and OE) were exposed to In stress in soil and flavonols as root exudates were analyzed in exogenous application test. The accumulation and release of flavonols could be induced by In stress. However, flavonols exhibited different function in vivo and in vitro of plant. The basic function of flavonols was to affect root morphology via regulating auxin, but being intervened by In stress. The synthesis and accumulation of flavonols in vivo could activate the antioxidant system and the metal detoxification system to alleviate the toxic effects of In on plant. In addition, plants could make phone calls to rhizosphere microbes for help when exposed to In. Flavonols in vitro might act as the information transmission. Combination of endogenous and exogenous flavonols could affect the migration and transformation of In in soil-plant system via metal complexation and transportation pathway.
Collapse
Affiliation(s)
- Huanhuan Yang
- School of Life Sciences, Qilu Normal University, Jinan 250200, China
| | - Xu Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Dayong Cui
- School of Life Sciences, Qilu Normal University, Jinan 250200, China
| | - Yong Guan Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanhao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, China.
| |
Collapse
|
9
|
Geng Z, Liu M, Wang Y, Wang Y, Wang Y, Sun Y, Wang H, Zhou L, Jiang J, Chen S, Chen F. Transcriptomic and metabolomic analyses reveal CmMYB308 as a key regulator in the pink flower color variation of 'Dante Purple' chrysanthemum. PLANT CELL REPORTS 2024; 43:157. [PMID: 38819475 DOI: 10.1007/s00299-024-03244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
KEY MESSAGE CmMYB308 was identified as a key regulator in chrysanthemum flower color variation from purple to pink by conducting transcriptome and metabolome analysis. CmMYB308 can inhibit anthocyanin biosynthesis by suppressing the expression of CmPAL, CmC4H, and Cm4CL. Flower color variation is a widespread natural occurrence that plays a significant role in floral breeding. We discovered a variation in the flower of the chrysanthemum cultivar 'Dante Purple' (abbreviated as 'DP'), where the flower color shifted from purple to pink. We successfully propagated these pink flowers through tissue culture and designated them as DPM. By conducting transcriptome and metabolome analysis, we identified a reduction in the expression of critical genes involved in anthocyanin biosynthesis-CmPAL, CmC4H, and Cm4CL-in the DPM. This downregulation led to an accumulation of phenylalanine and cinnamic acid within the general phenylpropanoid pathway (GPP), which prevented their conversion into cyanidin and cyanidin 3-glucoside. As a result, the flowers turned pink. Additional transformation and biochemical experiments confirmed that the upregulation of CmMYB308 gene expression in the DPM directly suppressed CmPAL-1 and CmC4H genes, which indirectly affected Cm4CL-3 expression and ultimately inhibited anthocyanin biosynthesis in the DPM. This study offers a preliminary insight into the molecular mechanism underlying chrysanthemum flower color mutation, paving the way for genetic improvements in chrysanthemum flower color breeding.
Collapse
Affiliation(s)
- Zhiqiang Geng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Miao Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Yiguang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Yuxi Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - You Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - YanYan Sun
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Haibin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Lijie Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Key Laboratory of Flower Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, No.1 Weigang, Nanjing, 210095, China.
| |
Collapse
|
10
|
Ma X, Hou Y, Umar AW, Wang Y, Yu L, Ahmad N, Yao N, Zhang M, Liu X. Safflower CtFLS1-Induced Drought Tolerance by Stimulating the Accumulation of Flavonols and Anthocyanins in Arabidopsis thaliana. Int J Mol Sci 2024; 25:5546. [PMID: 38791581 PMCID: PMC11122397 DOI: 10.3390/ijms25105546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/04/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
Flavonol synthase gene (FLS) is a member of the 2-oxoglutarate-dependent dioxygenase (2-ODD) superfamily and plays an important role in plant flavonoids biosynthetic pathways. Safflower (Carthamus tinctorius L.), a key source of traditional Chinese medicine, is widely cultivated in China. Although the flavonoid biosynthetic pathway has been studied in several model species, it still remains to be explored in safflower. In this study, we aimed to elucidate the role of CtFLS1 gene in flavonoid biosynthesis and drought stress responses. The bioinformatics analysis on the CtFLS1 gene showed that it contains two FLS-specific motifs (PxxxIRxxxEQP and SxxTxLVP), suggesting its independent evolution. Further, the expression level of CtFLS1 in safflower showed a positive correlation with the accumulation level of total flavonoid content in four different flowering stages. In addition, CtFLS1-overexpression (OE) Arabidopsis plants significantly induced the expression levels of key genes involved in flavonol pathway. On the contrary, the expression of anthocyanin pathway-related genes and MYB transcription factors showed down-regulation. Furthermore, CtFLS1-OE plants promoted seed germination, as well as resistance to osmotic pressure and drought, and reduced sensitivity to ABA compared to mutant and wild-type plants. Moreover, CtFLS1 and CtANS1 were both subcellularly located at the cell membrane and nucleus; the yeast two-hybrid and bimolecular fluorescence complementation (BiFC) assay showed that they interacted with each other at the cell membrane. Altogether, these findings suggest the positive role of CtFLS1 in alleviating drought stress by stimulating flavonols and anthocyanin accumulation in safflower.
Collapse
Affiliation(s)
- Xintong Ma
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.M.); (Y.H.); (Y.W.); (L.Y.)
| | - Yuying Hou
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.M.); (Y.H.); (Y.W.); (L.Y.)
| | - Abdul Wakeel Umar
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai (BNUZ), Zhuhai 519087, China;
| | - Yuhan Wang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.M.); (Y.H.); (Y.W.); (L.Y.)
| | - Lili Yu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.M.); (Y.H.); (Y.W.); (L.Y.)
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Na Yao
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.M.); (Y.H.); (Y.W.); (L.Y.)
| | - Min Zhang
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.M.); (Y.H.); (Y.W.); (L.Y.)
- Ginseng and Antler Products Testing Center of the Ministry of Agriculture PRC, Jilin Agricultural University, Changchun 130118, China
| | - Xiuming Liu
- Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, College of Life Sciences, Jilin Agricultural University, Changchun 130118, China; (X.M.); (Y.H.); (Y.W.); (L.Y.)
| |
Collapse
|
11
|
Kang Y, Li Y, Zhang T, Wang P, Liu W, Zhang Z, Yu W, Wang J, Wang J, Zhou Y. Integrated metabolome, full-length sequencing, and transcriptome analyses unveil the molecular mechanisms of color formation of the canary yellow and red bracts of Bougainvillea × buttiana 'Chitra'. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1441-1461. [PMID: 37648415 DOI: 10.1111/tpj.16439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 08/05/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Bougainvillea is a typical tropical flower of great ornamental value due to its colorful bracts. The molecular mechanism behind color formation is not well-understood. Therefore, this research conducted metabolome analysis, transcriptome analysis, and multi-flux full-length sequencing in two color bracts of Bougainvillea × buttiana 'Chitra' to investigate the significantly different metabolites (SDMs) and differentially expressed genes (DEGs). Overall, 261 SDMs, including 62 flavonoids and 26 alkaloids, were detected, and flavonols and betalains were significantly differentially accumulated among the two bracts. Furthermore, the complete-length transcriptome of Bougainvillea × buttiana was also developed, which contained 512 493 non-redundant isoforms. Among them, 341 210 (66.58%) displayed multiple annotations in the KOG, GO, NR, KEGG, Pfam, Swissprot, and NT databases. RNA-seq findings revealed that 3610 DEGs were identified between two bracts. Co-expression analysis demonstrated that the DEGs and SDMs involved in flavonol metabolism (such as CHS, CHI, F3H, FLS, CYP75B1, kaempferol, and quercetin) and betacyanin metabolism (DODA, betanidin, and betacyanins) were the main contributors for the canary yellow and red bract formation, respectively. Further investigation revealed that several putative transcription factors (TFs) might interact with the promoters of the genes mentioned above. The expression profiles of the putative TFs displayed that they may positively and negatively regulate the structural genes' expression profiles. The data revealed a potential regulatory network between important genes, putative TFs, and metabolites in the flavonol and betacyanin biosynthesis of Bougainvillea × buttiana 'Chitra' bracts. These findings will serve as a rich genetic resource for future studies that could create new color bracts.
Collapse
Affiliation(s)
- Yuqian Kang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Yuxin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Tingting Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
- Xiangyang Academy of Agricultural Sciences, Xiangyang, 441057, Hubei, People's Republic of China
| | - Peng Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Wen Liu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Zhao Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Wengang Yu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Jian Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Jian Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| | - Yang Zhou
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou, 570228, Hainan, People's Republic of China
| |
Collapse
|
12
|
Rudenko NN, Vetoshkina DV, Marenkova TV, Borisova-Mubarakshina MM. Antioxidants of Non-Enzymatic Nature: Their Function in Higher Plant Cells and the Ways of Boosting Their Biosynthesis. Antioxidants (Basel) 2023; 12:2014. [PMID: 38001867 PMCID: PMC10669185 DOI: 10.3390/antiox12112014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Plants are exposed to a variety of abiotic and biotic stresses leading to increased formation of reactive oxygen species (ROS) in plant cells. ROS are capable of oxidizing proteins, pigments, lipids, nucleic acids, and other cell molecules, disrupting their functional activity. During the process of evolution, numerous antioxidant systems were formed in plants, including antioxidant enzymes and low molecular weight non-enzymatic antioxidants. Antioxidant systems perform neutralization of ROS and therefore prevent oxidative damage of cell components. In the present review, we focus on the biosynthesis of non-enzymatic antioxidants in higher plants cells such as ascorbic acid (vitamin C), glutathione, flavonoids, isoprenoids, carotenoids, tocopherol (vitamin E), ubiquinone, and plastoquinone. Their functioning and their reactivity with respect to individual ROS will be described. This review is also devoted to the modern genetic engineering methods, which are widely used to change the quantitative and qualitative content of the non-enzymatic antioxidants in cultivated plants. These methods allow various plant lines with given properties to be obtained in a rather short time. The most successful approaches for plant transgenesis and plant genome editing for the enhancement of biosynthesis and the content of these antioxidants are discussed.
Collapse
Affiliation(s)
- Natalia N. Rudenko
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Daria V. Vetoshkina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| | - Tatiana V. Marenkova
- Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Maria M. Borisova-Mubarakshina
- Institute of Basic Biological Problems, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino 142290, Russia; (D.V.V.); (M.M.B.-M.)
| |
Collapse
|
13
|
Wang Y, Zhou LJ, Song A, Wang Y, Geng Z, Zhao K, Jiang J, Chen S, Chen F. Comparative transcriptome analysis and flavonoid profiling of floral mutants reveals CmMYB11 regulating flavonoid biosynthesis in chrysanthemum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111837. [PMID: 37611834 DOI: 10.1016/j.plantsci.2023.111837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 08/25/2023]
Abstract
Flavonoids, of which the major groups are flavones, flavonols, and anthocyanins, confer a variety of colors on plants. Bud sports with variation of floral colors occur occasionally during chrysanthemum cultivation. Although it has been reported that methylation at the promoter of CmMYB6 was related to anthocyanin contents, the regulatory networks of flavonoid biosynthesis still remain largely unknown in mutation of chrysanthemum. We compared phenotypes, pigment composition and transcriptomes in two chrysanthemum cultivars, 'Anastasia Dark Green' and 'Anastasia Pink', and regenerated bud sports of these cultivars with altered floral colors. Increased anthocyanins turned the 'Anastasia Dark Green' mutant red, while decreased anthocyanins turned the 'Anastasia Pink' mutant white. Moreover, total flavonoids were reduced in both mutants. Multiple flavonoid biosynthetic genes and regulatory genes encoding MYBs and bHLHs transcription factors were differentially expressed in pairwise comparisons of transcriptomes in 'Anastasia Dark Green' or 'Anastasia Pink' and their mutants at different flowering stages. Among these regulatory genes, the expression patterns of CmMYB6 and CmbHLH2 correlated to changes of anthocyanin contents, and down-regulation of CmMYB11 correlated to decreased total flavonoid contents in two mutants. CmMYB11 was shown to directly activate the promoter activities of CmCHS2, CmCHI, CmDFR, CmANS, CmFNS, and CmFLS. Furthermore, overexpression of CmMYB11 increased both flavonols and anthocyanins in tobacco petals. Our work provides new insights into regulatory networks involved in flavonoid biosynthesis and coloration in chrysanthemum.
Collapse
Affiliation(s)
- Yiguang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Li-Jie Zhou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Yuxi Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Zhiqiang Geng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Kunkun Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, 210095 Nanjing, China.
| |
Collapse
|
14
|
Shan T, Xu J, Zhong X, Zhang J, He B, Tao Y, Wu J. Full-length transcriptome sequencing provides new insights into the complexity of flavonoid biosynthesis in Glechoma longituba. PHYSIOLOGIA PLANTARUM 2023; 175:e14104. [PMID: 38148235 DOI: 10.1111/ppl.14104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/28/2023]
Abstract
Glechoma longituba has been frequently used in treating urolithiasis and cholelithiasis due to the presence of flavonoids, which are its major bioactive constituents. However, research on the molecular background of flavonoid biosynthesis in G. longituba is limited. In this study, we used single-molecule real-time combined with next-generation sequencing technologies to construct the complete transcriptome of G. longituba. We identified 404,648 non-redundant transcripts, including 249,697 coding sequences, 197,811 simple sequence repeats, 174,846 long noncoding RNA, and 176,554 coding RNA. Moreover, we functionally annotated 346,218 isoforms (85.56%) and identified 86,528 differentially expressed genes. We also identified 55 non-redundant full-length isoforms related to the flavonoid biosynthetic pathway. Pearson correlation analysis revealed that the expression levels of some key genes of the flavonoid biosynthesis pathway were significantly positively correlated with the flavonoid metabolites. Furthermore, we performed bioinformatics analysis (sequence and structural) of isoform_47029 (encoding flavanone 3-hydroxylase) and isoform_53692 (encoding flavonol synthase) to evaluate their potential biological functions. Finally, we validated gene expression levels of 12 flavonoid-related key enzyme genes using quantitative real-time PCR. Overall, this study provides full-length transcriptome information on G. longituba for the first time and valuable molecular resources for further research on the medicinal properties of this plant.
Collapse
Affiliation(s)
- Tingyu Shan
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Jingyao Xu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Xinxin Zhong
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Jingjing Zhang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
| | - Bing He
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
| | - Yijia Tao
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
| | - Jiawen Wu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, China
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei, China
| |
Collapse
|
15
|
Wang Y, Li J, Pan Y, Chen J, Liu Y. Metabolic Responses to Manganese Toxicity in Soybean Roots and Leaves. PLANTS (BASEL, SWITZERLAND) 2023; 12:3615. [PMID: 37896078 PMCID: PMC10610265 DOI: 10.3390/plants12203615] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023]
Abstract
Soybean is one of the most crucial beans in the world. Although Mn (manganese) is a kind of important nutritive element helpful to plant growth and health, excess Mn is harmful to crops. Nevertheless, the effect of Mn toxicity on soybean roots and leaves metabolism is still not clear. To explore this, water culture experiments were conducted on the development, activity of enzyme, and metabolic process of soybeans under varying levels of Mn treatment (5 and 100 μM). Compared with the control, the soybeans under Mn stress showed inhibited growth and development. Moreover, the activity of superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and the soluble protein content in leaves and roots of soybean were all increased. However, soluble sugar and proline contents in soybean roots and leaves showed the opposite trend. In addition, the Mg (magnesium) and Fe (iron) ion contents in soybean leaves significantly decreased, and the Mn ion content greatly increased. In roots, the Mn and Fe ion content increased, whereas the Mg ion content decreased. Furthermore, the metabolomic analysis based on nontargeted liquid chromatography-mass spectrometry identified 136 and 164 differential metabolites (DMs) that responded to Mn toxicity in roots and leaves of soybean, respectively. These DMs might participate in five different primary metabolic pathways in soybean leaves and roots, suggesting that soybean leaves and roots demonstrate different kinds of reactions in response to Mn toxicity. These findings indicate that Mn toxicity will result in enzymes activity being changed and the metabolic pathway being seriously affected, hence inhibiting the development of soybean.
Collapse
Affiliation(s)
| | | | | | | | - Ying Liu
- Department of Biotechnology, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China; (Y.W.)
| |
Collapse
|
16
|
Zhang Y, Lu P, Jin H, Cui J, Miao C, He L, Yu J, Ding X, Zhang H. Integrated Secondary Metabolomic and Antioxidant Ability Analysis Reveals the Accumulation Patterns of Metabolites in Momordica charantia L. of Different Cultivars. Int J Mol Sci 2023; 24:14495. [PMID: 37833943 PMCID: PMC10572697 DOI: 10.3390/ijms241914495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Bitter gourd (Momordica charantia L.) contains rich bioactive ingredients and secondary metabolites; hence, it has been used as medicine and food product. This study systematically quantified the nutrient contents, the total content of phenolic acids (TPC), flavonoids (TFC), and triterpenoids (TTC) in seven different cultivars of bitter gourd. This study also estimated the organic acid content and antioxidative capacity of different cultivars of bitter gourd. Although the TPC, TFC, TTC, organic acid content, and antioxidative activity differed significantly among different cultivars of bitter gourd, significant correlations were also observed in the obtained data. In the metabolomics analysis, 370 secondary metabolites were identified in seven cultivars of bitter gourd; flavonoids and phenolic acids were significantly more. Differentially accumulated metabolites identified in this study were mainly associated with secondary metabolic pathways, including pathways of flavonoid, flavonol, isoflavonoid, flavone, folate, and phenylpropanoid biosyntheses. A number of metabolites (n = 27) were significantly correlated (positive or negative) with antioxidative capacity (r ≥ 0.7 and p < 0.05). The outcomes suggest that bitter gourd contains a plethora of bioactive compounds; hence, bitter gourd may potentially be applied in developing novel molecules of medicinal importance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaotao Ding
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (P.L.); (H.J.); (J.C.); (C.M.); (L.H.); (J.Y.)
| | - Hongmei Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (P.L.); (H.J.); (J.C.); (C.M.); (L.H.); (J.Y.)
| |
Collapse
|
17
|
Qiu Y, Cai C, Mo X, Zhao X, Wu L, Liu F, Li R, Liu C, Chen J, Tian M. Transcriptome and metabolome analysis reveals the effect of flavonoids on flower color variation in Dendrobium nobile Lindl. FRONTIERS IN PLANT SCIENCE 2023; 14:1220507. [PMID: 37680360 PMCID: PMC10481954 DOI: 10.3389/fpls.2023.1220507] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Introduction Dendrobium nobile L. is a rare orchid plant with high medicinal and ornamentalvalue, and extremely few genetic species resources are remaining in nature. In the normal purple flower population, a type of population material with a white flower variation phenotype has been discovered, and through pigment component determination, flavonoids were preliminarily found to be the main reason for the variation. Methods This study mainly explored the different genes and metabolites at different flowering stages and analysed the flower color variation mechanism through transcriptome- and flavonoid-targeted metabolomics. The experimental materials consisted of two different flower color phenotypes, purple flower (PF) and white flower (WF), observed during three different periods. Results and discussion The results identified 1382, 2421 and 989 differentially expressed genes (DEGs) in the white flower variety compared with the purple flower variety at S1 (bud stage), S2 (chromogenic stage) and S3 (flowering stage), respectively. Among these, 27 genes enriched in the ko00941, ko00942, ko00943 and ko00944 pathways were screened as potential functional genes affecting flavonoid synthesis and flower color. Further analysis revealed that 15 genes are potential functional genes that lead to flavonoid changes and flower color variations. The metabolomics results at S3 found 129 differentially accumulated metabolites (DAMs), which included 8 anthocyanin metabolites, all of which (with the exception of delphinidin-3-o-(2'''-o-malonyl) sophoroside-5-o-glucoside) were found at lower amounts in the WF variety compared with the PF variety, indicating that a decrease in the anthocyanin content was the main reason for the inability to form purple flowers. Therefore, the changes in 19 flavone and 62 flavonol metabolites were considered the main reasons for the formation of white flowers. In this study, valuable materials responsible for flower color variation in D. nobile were identified and further analyzed the main pathways and potential genes affecting changes in flavonoids and the flower color. This study provides a material basis and theoretical support for the hybridization and molecular-assisted breeding of D. nobile.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Mengliang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
18
|
Jia K, Zhang X, Meng Y, Liu S, Liu X, Yang T, Wen C, Liu L, Ge S. Metabolomics and transcriptomics provide insights into the flavonoid biosynthesis pathway in the roots of developing Aster tataricus. JOURNAL OF PLANT RESEARCH 2023; 136:139-156. [PMID: 36520245 PMCID: PMC9753034 DOI: 10.1007/s10265-022-01426-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Aster tataricus (L.) is an important medicinal plant in China. Its roots are rich in flavonoids, the main medicinal components. However, the molecular basis of flavonoid biosynthesis in the roots of A. tataricus remains unclear. In this study, the content of total flavonoid of A. tataricus roots at different developmental stages was measured first, and the results showed that the content of total flavonoid gradually decreased from September to November, which may be caused by the stagnation of A. tataricus growth due to the decrease in temperature after September. Then, an integrated analysis of transcriptome and metabolome was conducted on five developing stages of A. tataricus roots to identify flavonoid compositions and potential genes involved in flavonoid biosynthesis. A total of 80 flavonoid metabolites, of which 75% were flavonols and flavonoids, were identified in metabolomic analyses, among which isorhamnetin, kaempferol, quercetin, and myricetin were the main skeletons of these flavonoids. Cluster analysis divided these 80 flavonoids into 3 clusters. The compounds in cluster I mainly accumulated in S1, S3, and S5. In cluster II, the relative content of the flavonoid metabolites showed an upward trend from S2 to S4. In cluster III, the flavonoids decreased from S1 to S5. A total of 129 structural genes, including 43 PAL, 23 4CL, 9 C4H, 4 CHS, 18 CHI, 3 F3H, 5 F3'H, 1 F3'5'H, 21 FLS, and 2 FSII, and 65 transcription factors, including 22 AP2/ERF, 7 bHLH, 5 bZIP, 8 MYB, 11 NAC, and 12 WRKY, showed significant correlation with total flavonoid content. Eighteen genes (7 4CL, 5 C4H, 2 CHI, 1 F3H, and 3 FLS) and 30 genes (5 PAL, 9 4CL, 1 C4H, 2 CHI, 1 F3H, 1 DFR, 7 3AT, 1 BZ1, and 3 UGT79B1) were identified as key structural genes for kaempferol and anthocyanins biosynthesis, respectively. Our study provides valuable information for understanding the mechanism of flavonoid biosynthesis in A. tataricus root.
Collapse
Affiliation(s)
- Kaixuan Jia
- College of Agronomy, West Campus of Hebei Agricultural University, Lianchi District, Baoding, 071000, Hebei, China
- Key Laboratory of Crop Germplasm Resources Research and Utilization in North China, Ministry of Education, Baoding, 071000, China
| | - Xiaoling Zhang
- College of Agronomy, West Campus of Hebei Agricultural University, Lianchi District, Baoding, 071000, Hebei, China
- Key Laboratory of Crop Germplasm Resources Research and Utilization in North China, Ministry of Education, Baoding, 071000, China
| | - Yijiang Meng
- Key Laboratory of Crop Germplasm Resources Research and Utilization in North China, Ministry of Education, Baoding, 071000, China
- College of Life Science, Hebei Agricultural University, Baoding, 071000, China
| | - Shuqi Liu
- College of Agronomy, West Campus of Hebei Agricultural University, Lianchi District, Baoding, 071000, Hebei, China
- Key Laboratory of Crop Germplasm Resources Research and Utilization in North China, Ministry of Education, Baoding, 071000, China
| | - Xiaoqing Liu
- College of Agronomy, West Campus of Hebei Agricultural University, Lianchi District, Baoding, 071000, Hebei, China
- Key Laboratory of Crop Germplasm Resources Research and Utilization in North China, Ministry of Education, Baoding, 071000, China
| | - Taixin Yang
- College of Agronomy, West Campus of Hebei Agricultural University, Lianchi District, Baoding, 071000, Hebei, China
- Key Laboratory of Crop Germplasm Resources Research and Utilization in North China, Ministry of Education, Baoding, 071000, China
| | - Chunxiu Wen
- Institute of Cash Crops, Medicinal Plant Research Center West of Hebei Academy of Agriculture and Forestry Sciences, Nongke Road, Xiyuan Street, Xinhua District, Shijiazhuang, 050000, Hebei, China
| | - Lingdi Liu
- Institute of Cash Crops, Medicinal Plant Research Center West of Hebei Academy of Agriculture and Forestry Sciences, Nongke Road, Xiyuan Street, Xinhua District, Shijiazhuang, 050000, Hebei, China.
| | - Shujun Ge
- College of Agronomy, West Campus of Hebei Agricultural University, Lianchi District, Baoding, 071000, Hebei, China.
- Key Laboratory of Crop Germplasm Resources Research and Utilization in North China, Ministry of Education, Baoding, 071000, China.
| |
Collapse
|
19
|
Luo C, Liu L, Zhao J, Xu Y, Liu H, Chen D, Cheng X, Gao J, Hong B, Huang C, Ma C. CmHY5 functions in apigenin biosynthesis by regulating flavone synthase II expression in chrysanthemum flowers. PLANTA 2022; 257:7. [PMID: 36478305 DOI: 10.1007/s00425-022-04040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The predominant flavones in the ray florets of chrysanthemum flowers are apigenin and its derivatives. CmHY5 participates in apigenin biosynthesis by directly regulating the expression of FNSII-1 in chrysanthemum. Chrysanthemum (Chrysanthemum morifolium) flowers have been used for centuries as functional food and in herbal tea and traditional medicine. The chrysanthemum flower contains significant amounts of the biologically active compound flavones, which has medicinal properties. However, the mechanism regulating flavones biosynthesis in chrysanthemum flowers organs is still unclear. Here, we compared the transcriptomes and metabolomes of different floral organs between two cultivars with contrasting flavone levels in their flowers. We identified 186 flavonoids by metabolome analysis. The predominant flavones in the ray florets of chrysanthemum flowers are apigenin and its derivatives, of which the contents are highly correlated with the expression of flavones synthase II gene CmFNSII-1. We also determined that CmHY5 is a direct upstream regulator of CmFNSII-1 transcription. We showed that CmHY5 RNAi interference lines in chrysanthemum have lower contents of apigenin compared to wild-type chrysanthemum. Our results demonstrated that CmHY5 participates in flavone biosynthesis by directly regulating the expression of FNSII-1 in chrysanthemum.
Collapse
Affiliation(s)
- Chang Luo
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Lei Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jian Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Yanjie Xu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Hua Liu
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China
| | - Dongliang Chen
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China
| | - Xi Cheng
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China
| | - Junping Gao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Bo Hong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Conglin Huang
- Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100092, China.
| | - Chao Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
20
|
Zhu L, Ding Y, Wang S, Wang Z, Dai L. Genome-Wide Identification, Characterization, and Expression Analysis of CHS Gene Family Members in Chrysanthemum nankingense. Genes (Basel) 2022; 13:2145. [PMID: 36421820 PMCID: PMC9690667 DOI: 10.3390/genes13112145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/08/2022] [Accepted: 11/16/2022] [Indexed: 09/10/2023] Open
Abstract
The chalcone synthase (CHS) gene family catalyzes the first committed step in the biosynthesis of flavonoids and plays key roles in various biological processes in plants. However, systematic studies of the CHS gene family in chrysanthemum remain unknown to date. In this study, 16 CnCHS genes were identified by searching the complete genome sequence of Chrysanthemum nankingense. Most contained two exons and one intron with Chal-sti-synt_N and Chal-sti-synt_C domains. A phylogenetic tree of CnCHSs indicated divergence into three major groups, including I, II, and III. Analyses of the genes and promoters of these genes indicated that there are many cis-acting elements that respond to light, phytohormones, stress, and developmental stages. The CnCHS genes have extensive patterns of expression in various tissues and stages of flower development. Tandemly repeated and segmental repeat genes were expressed at higher levels in different tissues than most of the CnCHS genes that have been identified. CnCHS10 is expressed at higher levels in various flower organs than in vegetative tissues, particularly in disc floret petals and pistils. Our study provides valuable information for the systematic analysis of the CnCHS gene family, which also contributes to further research on flavonoid synthesis and petal colors of chrysanthemum.
Collapse
Affiliation(s)
- Lili Zhu
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou 450046, China
| | - Yuqing Ding
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Shunxiang Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Zhimin Wang
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou 450046, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Liping Dai
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, China
- Engineering Center for Comprehensive Development and Utilization of Authentic Medicinal Materials in Henan Province, Zhengzhou 450046, China
| |
Collapse
|
21
|
Huang X, Wu Y, Zhang S, Yang H, Wu W, Lyu L, Li W. Overexpression of RuFLS2 Enhances Flavonol-Related Substance Contents and Gene Expression Levels. Int J Mol Sci 2022; 23:ijms232214230. [PMID: 36430708 PMCID: PMC9699159 DOI: 10.3390/ijms232214230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
As an emerging third-generation fruit, blackberry has high nutritional value and is rich in polyphenols, flavonoids and anthocyanins. Flavonoid biosynthesis and metabolism is a popular research topic, but no related details have been reported for blackberry. Based on previous transcriptome data from this research group, two blackberry flavonol synthase genes were identified in this study, and the encoded proteins were subjected to bioinformatics analysis. RuFLS1 and RuFLS2 are both hydrophobic acidic proteins belonging to the 2OG-Fe(II) dioxygenase superfamily. RuFLS2 was expressed at 27.93-fold higher levels than RuFLS1 in red-purple fruit by RNA-seq analysis. Therefore, RuFLS2-overexpressing tobacco was selected for functional exploration. The identification of metabolites from transgenic tobacco showed significantly increased contents of flavonoids, such as apigenin 7-glucoside, kaempferol 3-O-rutinoside, astragalin, and quercitrin. The high expression of RuFLS2 also upregulated the expression levels of NtF3H and NtFLS in transgenic tobacco. The results indicate that RuFLS2 is an important functional gene regulating flavonoid biosynthesis and provides an important reference for revealing the molecular mechanism of flavonoid accumulation in blackberry fruit.
Collapse
Affiliation(s)
- Xin Huang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Yaqiong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
- Correspondence: (Y.W.); (W.L.); Tel.: +86-25-8434-7022 (Y.W.); +86-25-8542-8513 (W.L.)
| | - Shanshan Zhang
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Hao Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
| | - Wenlong Wu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Lianfei Lyu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Qian Hu Hou Cun No. 1, Nanjing 210014, China
| | - Weilin Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Longpan Road, Nanjing 210037, China
- Correspondence: (Y.W.); (W.L.); Tel.: +86-25-8434-7022 (Y.W.); +86-25-8542-8513 (W.L.)
| |
Collapse
|
22
|
Wang C, Li J, Zhou T, Zhang Y, Jin H, Liu X. Transcriptional regulation of proanthocyanidin biosynthesis pathway genes and transcription factors in Indigofera stachyodes Lindl. roots. BMC PLANT BIOLOGY 2022; 22:438. [PMID: 36096752 PMCID: PMC9469613 DOI: 10.1186/s12870-022-03794-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Proanthocyanidins (PAs) have always been considered as important medicinal value component. In order to gain insights into the PA biosynthesis regulatory network in I. stachyodes roots, we analyzed the transcriptome of the I. stachyodes in Leaf, Stem, RootI (one-year-old root), and RootII (two-year-old root). RESULTS In this study, a total of 110,779 non-redundant unigenes were obtained, of which 63,863 could be functionally annotated. Simultaneously, 75 structural genes that regulate PA biosynthesis were identified, of these 6 structural genes (IsF3'H1, IsANR2, IsLAR2, IsUGT72L1-3, IsMATE2, IsMATE3) may play an important role in the synthesis of PAs in I. stachyodes roots. Furthermore, co-expression network analysis revealed that 34 IsMYBs, 18 IsbHLHs, 15 IsWRKYs, 9 IsMADSs, and 3 IsWIPs hub TFs are potential regulators for PA accumulation. Among them, IsMYB24 and IsMYB79 may be closely involved in the PA biosynthesis in I. stachyodes roots. CONCLUSIONS The biosynthesis of PAs in I. stachyodes roots is mainly produced by the subsequent pathway of cyanidin. Our work provides new insights into the molecular pathways underlying PA accumulation and enhances our global understanding of transcriptome dynamics throughout different tissues.
Collapse
Affiliation(s)
- Chongmin Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Jun Li
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China.
| | - Tao Zhou
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Yongping Zhang
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Haijun Jin
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| | - Xiaoqing Liu
- Guizhou University of Traditional Chinese Medicine, Guiyang, 550025, China
| |
Collapse
|
23
|
Costine B, Zhang M, Chhajed S, Pearson B, Chen S, Nadakuduti SS. Exploring native Scutellaria species provides insight into differential accumulation of flavones with medicinal properties. Sci Rep 2022; 12:13201. [PMID: 35915209 PMCID: PMC9343603 DOI: 10.1038/s41598-022-17586-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/27/2022] [Indexed: 12/30/2022] Open
Abstract
Scutellaria baicalensis is a well-studied medicinal plant belonging to the Lamiaceae family, prized for the unique 4′-deoxyflavones produced in its roots. In this study, three native species to the Americas, S. lateriflora, S. arenicola, and S. integrifolia were identified by DNA barcoding, and phylogenetic relationships were established with other economically important Lamiaceae members. Furthermore, flavone profiles of native species were explored. 4′-deoxyflavones including baicalein, baicalin, wogonin, wogonoside, chrysin and 4′-hydroxyflavones, scutellarein, scutellarin, and apigenin, were quantified from leaves, stems, and roots. Qualitative, and quantitative differences were identified in their flavone profiles along with characteristic tissue-specific accumulation. 4′-deoxyflavones accumulated in relatively high concentrations in root tissues compared to aerial tissues in all species except S. lateriflora. Baicalin, the most abundant 4′-deoxyflavone detected, was localized in the roots of S. baicalensis and leaves of S. lateriflora, indicating differential accumulation patterns between the species. S. arenicola and S. integrifolia are phylogenetically closely related with similar flavone profiles and distribution patterns. Additionally, the S. arenicola leaf flavone profile was dominated by two major unknown peaks, identified using LC–MS/MS to most likely be luteolin-7-O-glucuronide and 5,7,2′-trihydroxy-6-methoxyflavone 7-O-glucuronide. Collectively, results presented in this study suggest an evolutionary divergence of flavonoid metabolic pathway in the Scutellaria genus of Lamiaceae.
Collapse
Affiliation(s)
- Blake Costine
- Department of Environmental Horticulture, University of Florida, Gainesville, FL, USA
| | - Mengzi Zhang
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, University of Florida, Apopka, FL, USA
| | - Shweta Chhajed
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Brian Pearson
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, University of Florida, Apopka, FL, USA
| | - Sixue Chen
- Department of Biology, Genetics Institute, University of Florida, Gainesville, FL, USA.,Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| | - Satya Swathi Nadakuduti
- Department of Environmental Horticulture, University of Florida, Gainesville, FL, USA. .,Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
24
|
Transcriptomic and Chemical Analyses Reveal the Hub Regulators of Flower Color Variation from Camellia japonica Bud Sport. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Camellia japonica is a woody ornamental plant with multiple flower color variations caused by bud sport; however, the molecular mechanism remains unclear. Here, chemical and transcriptomic analyses of C. japonica were performed with white, pink, red, and dark red flowers caused by bud sport. Seven anthocyanins were detected in these samples, except in C. japonica ’YuDan’ (white petals). The total anthocyanin content of C. japonica ’JinBiHuiHuang’ was the highest, and cyanidin 3-O-β-glucoside (Cy3G) was the main anthocyanin affecting the redness of petals. Furthermore, the ratio of Cy3G and cyanidin-3-O-(6-O-(E)-p-coumaroyl)-B-glucoside) was significantly correlated with the red petal phenotype. In total, 5673 genes were identified as differentially expressed genes (DEGs). The potential co-expression modules related to anthocyanin accumulation were established, which featured transcription factors, anthocyanin biosynthesis, and plant hormone signal transduction. Thirteen structural genes in the anthocyanin biosynthetic pathway were identified as DEGs, most of them were upregulated with deepening of flower redness. An integrated promoter and cluster analysis suggested that CjMYB62, CjMYB52, and CjGATA may play important roles in anthocyanin accumulation. These results provide insight and candidate genes for the transcriptional mechanism responsible for the bud sport phenotype.
Collapse
|