1
|
He B, Wei Y, Wang Y, Zhong Y, Fan M, Gong Q, Lu S, Hassan MU, Li X. Silicon application improves tomato yield and nutritional quality. BMC PLANT BIOLOGY 2025; 25:252. [PMID: 39994511 PMCID: PMC11852564 DOI: 10.1186/s12870-025-06249-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND Silicon (Si) is a beneficial nutrient well-known for its functions in enhancing plant resistance to abiotic and biotic stresses. How Si application affects tomato yield and quality and underlying physiological mechanisms remain largely unclear. RESULTS Our pot experiment showed that Si application (45 kg ha⁻¹ Na₂SiO₃) significantly promoted accumulation of nitrogen, phosphorus, potassium, and Si in the shoot of soil-cultured tomato in the greenhouse. Such improved mineral nutrition favored Si-applied plant performance in terms of plant height, stem diameter, single fruit weight, and yield, as indicated by significant increases of 11.34%, 53.57%, 62.12%, and 33.81%, respectively, when compared to the control (0 kg ha⁻¹ Na₂SiO₃). Higher catalase and superoxide dismutase activities in contrast to lower concentrations of hydrogen peroxide and malondialdehyde in the fruit suggested that Si application facilitated plant health. Importantly, Si upregulated expression of phytoene synthase and carotenoid isomerase and enhanced corresponding enzyme activities, resulting in higher lycopene concentrations in the fruit. Si also stimulated expression of vitamin C synthesis genes (GDP-D-mannose-3', 5'-isomerase, GDP-L-galactose phosphorylase, dehydroascorb-ate reductase, and monodehydroascorbate reductase) for higher levels of vitamin C accumulation. CONCLUSION Si promoted tomato health, yield, and nutritional quality at the physiological and molecular level, favoring quality fruit production towards sustainable agricultural development.
Collapse
Affiliation(s)
- Boyi He
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuxuan Wei
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongqi Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yanting Zhong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Meng Fan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Qinyi Gong
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Sibo Lu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Mahmood Ul Hassan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
- Department of Ecology and Ecological Engineering, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xuexian Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Meng X, Jin N, Jin L, Wang S, Zhao W, Xie Y, Huang S, Zhang Z, Xu Z, Liu Z, Lyu J, Yu J. Silicon-seed priming promotes seed germination under CA-induced autotoxicity by improving sucrose and respiratory metabolism in cucumber (Cucumis sativus L.). BMC PLANT BIOLOGY 2024; 24:1164. [PMID: 39627714 PMCID: PMC11616314 DOI: 10.1186/s12870-024-05908-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 12/02/2024] [Indexed: 12/06/2024]
Abstract
Seed germination is one of the critical and sensitive stages of early plant growth, and its process is prevented by cinnamic acid (CA). Silicon (Si) plays a critical role in mitigating abiotic stresses and seed germination in plants, but little is known about its role in seed germination and physiology in CA-stressed cucumber. Here, we conducted experiments in the State Key Laboratory of Aridland Crop Science, Gansu Agricultural University from March to June 2021 to investigate the effects of Si-seed priming on growth, antioxidant capacity, sucrose mobilization and respiratory metabolism during germination under CA stress. Our results showed that seed soaking with Si (9 mmol/L) significantly reduced membrane lipid peroxidation and promoted post-germination growth of cucumber seeds under CA (2.0 mmol/L) stress. Si increased key enzyme activities in sucrose metabolism in CA-stressed seeds after germination, accelerating sucrose degradation and fructose synthesis. Si also enhanced the activities of key enzymes in the glycolytic pathway and pentose phosphate pathway in seeds, as well as in the post-germination tricarboxylic acid cycle, promoting glucose decomposition and ATP synthesis. Principal component analysis significantly separated the CK, Si, and CA + Si treatments from the CA treatment in the first principal component after 48 h of treatment. In addition, qRT-PCR analysis showed that Si induced overexpression of genes related to sucrose and respiratory metabolism in seeds treated with CA for 48 h. In conclusion, our findings provide evidence that Si priming may be an effective method to reverse CA inhibition of cucumber seeds, which effectively improve germination under CA stress by attenuating membrane lipid peroxidation and enhancing sucrose mobilization and respiratory metabolism in cucumber.
Collapse
Affiliation(s)
- Xin Meng
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, PR China
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Ning Jin
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Li Jin
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Shuya Wang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Wang Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Yandong Xie
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, PR China
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Shuchao Huang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zeyu Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zhiqi Xu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Zitong Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Jian Lyu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, PR China.
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China.
| | - Jihua Yu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, PR China.
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
3
|
Touzout N, Bouchibane M, Tahraoui H, Mihoub A, Zhang J, Amrane A, Ahmad I, Danish S, Alahmadi TA, Ansari MJ. Silicon-mediated resilience: Unveiling the protective role against combined cypermethrin and hymexazol phytotoxicity in tomato seedlings. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122370. [PMID: 39236605 DOI: 10.1016/j.jenvman.2024.122370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/18/2024] [Accepted: 08/31/2024] [Indexed: 09/07/2024]
Abstract
Insecticides and fungicides present potential threats to non-target crops, yet our comprehension of their combined phytotoxicity to plants is limited. Silicon (Si) has been acknowledged for its ability to induce crop tolerance to xenobiotic stresses. However, the specific role of Si in alleviating the cypermethrin (CYP) and hymexazol (HML) combined stress has not been thoroughly explored. This study aims to assess the effectiveness of Si in alleviating phytotoxic effects and elucidating the associated mechanisms of CYP and/or HML in tomato seedlings. The findings demonstrated that, compared to exposure to CYP or HML alone, the simultaneous exposure of CYP and HML significantly impeded seedling growth, resulting in more pronounced phytotoxic effects in tomato seedlings. Additionally, CYP and/or HML exposures diminished the content of photosynthetic pigments and induced oxidative stress in tomato seedlings. Pesticide exposure heightened the activity of both antioxidant and detoxification enzymes, increased proline and phenolic accumulation, and reduced thiols and ascorbate content in tomato seedlings. Applying Si (1 mM) to CYP- and/or HML-stressed seedlings alleviated pigment inhibition and oxidative damage by enhancing the activity of the pesticide metabolism system and secondary metabolism enzymes. Furthermore, Si stimulated the phenylpropanoid pathway by boosting phenylalanine ammonia-lyase activity, as confirmed by the increased total phenolic content. Interestingly, the application of Si enhanced the thiols profile, emphasizing its crucial role in pesticide detoxification in plants. In conclusion, these results suggest that externally applying Si significantly alleviates the physio-biochemical level in tomato seedlings exposed to a combination of pesticides, introducing innovative strategies for fostering a sustainable agroecosystem.
Collapse
Affiliation(s)
- Nabil Touzout
- Department of Nature and Life Sciences, Faculty of Sciences, Pole Urban Ouzera, University of Medea, Medea, 26000, Algeria.
| | - Malika Bouchibane
- Department of Nature and Life Sciences, Faculty of Sciences, Pole Urban Ouzera, University of Medea, Medea, 26000, Algeria
| | - Hichem Tahraoui
- Laboratory of Biomaterials and Transport Phenomena (LBMPT), University of MÉDÉA, ALGERIA, Nouveau Pôle Urbain, Médéa University, 26000, Médéa, Algeria
| | - Adil Mihoub
- Biophysical Environment Station, Center for Scientific and Technical Research on Arid Regions, Touggourt, Algeria
| | - Jie Zhang
- School of Engineering, Merz Court, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Abdeltif Amrane
- Univ Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR - UMR6226, F-35000, Rennes, France
| | - Iftikhar Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad Vehari-Campus, Vehari, 61100, Pakistan.
| | - Subhan Danish
- Pesticide Quality Control Laboratory, Agriculture Complex, Old Shujabad Road, Multan, 60000, Punjab, Pakistan.
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia.
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad, Mahatma Jyotiba Phule Rohilkhand University Bareilly, India, 244001.
| |
Collapse
|
4
|
Ge B, Liu Q, Li B, Bi X, Dong K, Guo J, Geng X, Chen Y, Lu C. Characterization and function of promoters of silicon transporter genes PeLsi1-1 and PeLsi1-2 from moso bamboo (Phyllostachys edulis). PLANT CELL REPORTS 2024; 43:233. [PMID: 39287818 DOI: 10.1007/s00299-024-03320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
KEY MESSAGE Promoters of moso bamboo silicon transporter genes PeLsi1-1 and PeLsi1-2 contain elements in response to hormone, silicon, and abiotic stresses, and can drive the expression of PeLsi1-1 and PeLsi1-2 in transgene Arabidopsis. Low silicon 1 (Lsi1) transporters from different species have been shown to play an important role in influxing silicon from soil. In previous study, we cloned PeLsi1-1 and PeLsi1-2 from Phyllostachys edulis and verified that PeLsi1-1 and PeLsi1-2 have silicon uptake ability. Furthermore, in this study, the promoters of PeLsi1-1(1910 bp) and PeLsi1-2(1922 bp) were cloned. Deletion analysis identified the key regions of the PeLsi1-1 and PeLsi1-2 promoters in response to hormone, silicon, and abiotic stresses. RT-qPCR analysis indicated that PeLsi1-1 and PeLsi1-2 were regulated by hormones, salt stress and osmotic stress. In addition, we found that the driving activity of the PeLsi1-1 and PeLsi1-2 promoters was regulated by 2 mM K2SiO3 and PeLsi1-1-P3 ~ P4 and PeLsi1-2-P4 ~ 5 were the regions regulated by silicon. Overexpression of PeLsi1-1 or PeLsi1-2 driven by 35S promoter in Arabidopsis resulted in a threefold increase of Si accumulation, whereas transgenic plants showed deleterious symptoms and dwarf seedlings and shorter roots under 2 mM Si treatment. When the 35S promoter was replaced by PeLsi1-1 or PeLsi1-2 promoter, a similar Si absorption was achieved and the transgene plants grew normally. This study, therefore, demonstrates that the promoters of PeLsi1-1 and PeLsi1-2 are indeed effective in driving the expression of moso bamboo Lsi1 genes and leading to silicon uptake.
Collapse
Affiliation(s)
- Bohao Ge
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Qianru Liu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Bowen Li
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaorui Bi
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Kuo Dong
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jiaojiao Guo
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xin Geng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yuzhen Chen
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| | - Cunfu Lu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
5
|
Shoukat A, Saqib ZA, Akhtar J, Aslam Z, Pitann B, Hossain MS, Mühling KH. Zinc and Silicon Nano-Fertilizers Influence Ionomic and Metabolite Profiles in Maize to Overcome Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1224. [PMID: 38732438 PMCID: PMC11085825 DOI: 10.3390/plants13091224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
Salinity stress is a major factor affecting the nutritional and metabolic profiles of crops, thus hindering optimal yield and productivity. Recent advances in nanotechnology propose an avenue for the use of nano-fertilizers as a potential solution for better nutrient management and stress mitigation. This study aimed to evaluate the benefits of conventional and nano-fertilizers (nano-Zn/nano-Si) on maize and subcellular level changes in its ionomic and metabolic profiles under salt stress conditions. Zinc and silicon were applied both in conventional and nano-fertilizer-using farms under stress (100 mM NaCl) and normal conditions. Different ions, sugars, and organic acids (OAs) were determined using ion chromatography and inductively coupled plasma mass spectroscopy (ICP-MS). The results revealed significant improvements in different ions, sugars, OAs, and other metabolic profiles of maize. Nanoparticles boosted sugar metabolism, as evidenced by increased glucose, fructose, and sucrose concentrations, and improved nutrient uptake, indicated by higher nitrate, sulfate, and phosphate levels. Particularly, nano-fertilizers effectively limited Na accumulation under saline conditions and enhanced maize's salt stress tolerance. Furthermore, nano-treatments optimized the potassium-to-sodium ratio, a critical factor in maintaining ionic homeostasis under stress conditions. With the growing threat of salinity stress on global food security, these findings highlight the urgent need for further development and implementation of effective solutions like the application of nano-fertilizers in mitigating the negative impact of salinity on plant growth and productivity. However, this controlled environment limits the direct applicability to field conditions and needs future research, particularly long-term field trials, to confirm such results of nano-fertilizers against salinity stress and their economic viability towards sustainable agriculture.
Collapse
Affiliation(s)
- Abbas Shoukat
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan; (A.S.); (J.A.)
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany; (B.P.); (M.S.H.)
| | - Zulfiqar Ahmad Saqib
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan; (A.S.); (J.A.)
| | - Javaid Akhtar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan; (A.S.); (J.A.)
| | - Zubair Aslam
- Department of Agronomy, University of Agriculture, Faisalabad 38040, Pakistan;
| | - Britta Pitann
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany; (B.P.); (M.S.H.)
| | - Md. Sazzad Hossain
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany; (B.P.); (M.S.H.)
- Department of Agronomy and Haor Agriculture, Faculty of Agriculture, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Karl Hermann Mühling
- Institute of Plant Nutrition and Soil Science, Kiel University, Hermann-Rodewald-Str. 2, 24118 Kiel, Germany; (B.P.); (M.S.H.)
| |
Collapse
|
6
|
Pang Z, Zhu Y, Guan DX, Wang Y, Peng H, Liang Y. Unveiling mechanisms of silicon-mediated resistance to chromium stress in rice using a newly-developed hierarchical system. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108368. [PMID: 38237424 DOI: 10.1016/j.plaphy.2024.108368] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 03/16/2024]
Abstract
Silicon (Si) has been well-known to enhance plant resistance to heavy-metal stress. However, the mechanisms by which silicon mitigates heavy-metal stress in plants are not clear. In particular, information regarding the role of Si in mediating resistance to heavy-metal stress at a single cell level is still lacking. Here, we developed a hierarchical system comprising the plant, protoplast, and suspension cell subsystems to investigate the mechanisms by which silicon helps to alleviate the toxic effects of trivalent chromium [Cr(III)] in rice. Our results showed that in whole-plant subsystem silicon reduced shoot Cr(III) concentration, effectively alleviating Cr(III) stress in seedlings and causing changes in antioxidant enzyme activities similar to those observed at lower Cr(III) concentrations without silicon added. However, in protoplast subsystem lacking the cell wall, no silicon deposition occurred, leading to insignificant changes in cell survival or antioxidation processes under Cr(III) stress. Conversely, in suspension cell subsystem, silicon supplementation substantially improved cell survival and changes in antioxidant enzyme activities under Cr(III) stress. This is due to the fact that >95% of silicon was on the cell wall, reducing Cr(III) concentration in cells by 7.7%-10.4%. Collectively, the results suggested that the silicon deposited on the cell wall hindered Cr(III) bio-uptake, which consequently delayed Cr(III)-induced changes in antioxidant enzyme activities. This research emphasizes the significance of cell walls in Si-alleviated heavy-metal stress and deepens our understanding of silicon functioning in plants. Furthermore, the hierarchical system has great potential for application in studying the functioning of other elements in plant cell walls.
Collapse
Affiliation(s)
- Zhihao Pang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yerong Zhu
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Dong-Xing Guan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuxiao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Hongyun Peng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Alves DMR, de Mello Prado R, Barreto RF. Silicon and sodium attenuate potassium deficiency in Eruca sativa Mill. Food Chem 2024; 432:137225. [PMID: 37625304 DOI: 10.1016/j.foodchem.2023.137225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Potassium (K) fertilizers are limited and non-renewable. Exploring the use of sodium (Na) and silicon (Si) as alternatives to reduce its use may be an alternative. However, the relationship of these elements with arugula nutrition and quality is unknown. Therefore, the objective of this study is to verify the effects of Na and Si on the parameters of arugula under conditions of K deficiency and sufficiency. The experiment was conducted in a greenhouse in a hydroponics system. The treatments used were K-sufficient, K-sufficient with Na, K-sufficient with Si, K-deficient, K-deficient with Na, and K-deficient with Si. Evaluations of physiological, biochemical, nutritional, and growth aspects were performed. Si supply increased the production of total phenols, ascorbic acid, and carotenoids in K-deficient plants. Both elements attenuated the damage caused by K deficiency and improved quality. This is an innovative strategy for the sustainable cultivation of this species.
Collapse
Affiliation(s)
- Deyvielen Maria Ramos Alves
- Department of Agricultural Production Sciences, São Paulo State University (Unesp), Faculty of Agricultural and Veterinary Sciences, Access Route Prof. Paulo Donato Castellane s/n, Jaboticabal, SP 14884-900, Brazil.
| | - Renato de Mello Prado
- Department of Agricultural Production Sciences, São Paulo State University (Unesp), Faculty of Agricultural and Veterinary Sciences, Access Route Prof. Paulo Donato Castellane s/n, Jaboticabal, SP 14884-900, Brazil.
| | - Rafael Ferreira Barreto
- Federal University of Mato Grosso do Sul (UFMS), Chapadão do Sul Campus (CPCS), MS-306 Highway, Km105, Rural Area, Chapadão do Sul, MS 79560-000, Brazil.
| |
Collapse
|
8
|
Ahmad W, Coffman L, Weerasooriya AD, Crawford K, Khan AL. The silicon regulates microbiome diversity and plant defenses during cold stress in Glycine max L. FRONTIERS IN PLANT SCIENCE 2024; 14:1280251. [PMID: 38269137 PMCID: PMC10805835 DOI: 10.3389/fpls.2023.1280251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/14/2023] [Indexed: 01/26/2024]
Abstract
Introduction With climate change, frequent exposure of bioenergy and food crops, specifically soybean (Glycine max L.), to low-temperature episodes is a major obstacle in maintaining sustainable plant growth at early growth stages. Silicon (Si) is a quasi-essential nutrient that can help to improve stress tolerance; however, how Si and a combination of cold stress episodes influence plant growth, plant physiology, and microbiome diversity has yet to be fully discovered. Methods The soybean plants were exposed to cold stress (8-10°C) with or without applying Si, and the different plant organs (shoot and root) and rhizospheric soil were subjected to microbiome analysis. The plant growth, physiology, and gene expression analysis of plant defenses during stress and Si were investigated. Results and discussion We showed that cold stress significantly retarded soybean plants' growth and biomass, whereas, Si-treated plants showed ameliorated negative impacts on plant growth at early seedling stages. The beneficial effects of Si were also evident from significantly reduced antioxidant activities - suggesting lower cold-induced oxidative stress. Interestingly, Si also downregulated critical genes of the abscisic acid pathway and osmotic regulation (9-cis-epoxy carotenoid dioxygenase and dehydration-responsive element binding protein) during cold stress. Si positively influenced alpha and beta diversities of bacterial and fungal microbiomes with or without cold stress. Results showed significant variation in microbiome composition in the rhizosphere (root and soil) and phyllosphere (shoot) in Si-treated plants with or without cold stress exposures. Among microbiome phyla, Proteobacteria, Bacteroidota, and Ascomycota were significantly more abundant in Si treatments in cold stress than in control conditions. For the core microbiome, we identified 179 taxa, including 88 unique bacterial genera in which Edaphobacter, Haliangium, and Streptomyces were highly abundant. Enhanced extracellular enzyme activities in the cold and Si+cold treatments, specifically phosphatase and glucosidases, also reflected the microbiome abundance. In conclusion, this work elucidates cold-mediated changes in microbiome diversity and plant growth, including the positive impact Si can have on cold tolerance at early soybean growth stages - a step toward understanding crop productivity and stress tolerance.
Collapse
Affiliation(s)
- Waqar Ahmad
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
- Department of Biology and Biochemistry, College of Natural Science & Mathematics, University of Houston, Houston, TX, United States
| | - Lauryn Coffman
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
| | - Aruna D Weerasooriya
- Cooperative Agricultural Research Center, College of Agriculture & Human Sciences, Prairie View A&M University, Prairie View, TX, United States
| | - Kerri Crawford
- Department of Biology and Biochemistry, College of Natural Science & Mathematics, University of Houston, Houston, TX, United States
| | - Abdul Latif Khan
- Department of Engineering Technology, Cullen College of Engineering, University of Houston, Sugar Land, TX, United States
- Department of Biology and Biochemistry, College of Natural Science & Mathematics, University of Houston, Houston, TX, United States
| |
Collapse
|
9
|
Khan SR, Ahmad Z, Khan Z, Khan U, Asad M, Shah T. Synergistic effect of silicon and arbuscular mycorrhizal fungi reduces cadmium accumulation by regulating hormonal transduction and lignin accumulation in maize. CHEMOSPHERE 2024; 346:140507. [PMID: 38303379 DOI: 10.1016/j.chemosphere.2023.140507] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 02/03/2024]
Abstract
Cadmium (Cd) stress causes serious damage to plants, inducing various physiological and biochemical disruptions that lead to reduced plant biomass and compromised growth. The study investigated the combined effects of silicon (Si) and arbuscular mycorrhizal fungi (AMF) on mitigating Cd stress in plants, revealing promising results in enhancing plant tolerance to Cd toxicity. Under Cd stress, plant biomass was significantly reduced (-33% and -30% shoot and root dry weights) as compared to control. However, Si and AMF application ameliorated this effect, leading to increased shoot and root dry weights (+47% and +39%). Furthermore, Si and AMF demonstrated their potential in reducing the relative Cd content (-43% and -36% in shoot and root) in plants and positively influencing plant colonization (+648%), providing eco-friendly and sustainable strategies to combat Cd toxicity in contaminated soils. Additionally, the combined treatment in the Cd-stressed conditions resulted in notable increases in saccharide compounds and hormone levels in both leaf and root tissues, further enhancing the plant's resilience to Cd-induced stress. Si and AMF also played a vital role in positively regulating key lignin biosynthesis genes and altering lignin-related metabolites, shedding light on their potential to fortify plants against Cd stress. These findings underscore the significance of Si and AMF as promising tools in addressing Cd toxicity and enhancing plant performance in Cd-contaminated environments.
Collapse
Affiliation(s)
- Shah Rukh Khan
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Zubair Ahmad
- Applied College, Mahala Campus, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Center of Bee Research and Its Products, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Zeeshan Khan
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Umair Khan
- School of Interdisciplinary Engineering & Science (SINES), National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Muhammad Asad
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Tariq Shah
- Plant Science Research Unit United States Department for Agriculture -Agricultural Research Service, Raleigh, NC, USA; Department of Agronomy, Faculty of Crop Production Sciences, The University of Agriculture, Peshawar, 25130, Pakistan.
| |
Collapse
|
10
|
Pang Z, Yin W, Wang Y, Zeng W, Peng H, Liang Y. Silicon-phosphorus pathway mitigates heavy metal stress by buffering rhizosphere acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166887. [PMID: 37683860 DOI: 10.1016/j.scitotenv.2023.166887] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Heavy metal pollution threatens food security, and rhizosphere acidification will increase the bioavailability of heavy metals. As a beneficial element in plants, silicon can relieve heavy metal stress. However, less attention has been paid to its effects on plant rhizosphere processes. Here, we show that for Japonica (Nipponbare and Oochikara) and Indica (Jinzao 47) rice cultivars, the degree of root acidification was significantly reduced after silicon uptake, and the total organic carbon, citric acid, and malic acid concentrations in rice root exudates were significantly reduced. We further confirmed the results by q-PCR that the expressions of proton pump and organic acid secretion genes were down-regulated by 35-61 % after silicon treatment. Intriguingly, phosphorus allocation, an intensively studied mechanism of rhizosphere acidification, was altered by silicon treatment. Specifically, among total phosphorus in rice seedlings, the soluble proportion increased from 52.0 % to 61.7 %, while cell wall phosphorus decreased from 48.0 % to 32.3 %. Additionally, silicon-mediated alleviation of rhizosphere acidification has positive effects on relieving heavy metal stress. Simulation revealed that low acidification of the nutrient solution resulted in a decrease in bioavailable heavy metal concentrations, thereby reducing rice uptake. We further confirmed that the impediment of rhizosphere acidification led to free-state Cr3+ in solutions decreasing by 43 % and contributed up to 63 % of silicon's mitigation of Cr(III) stress. Overall, we propose a novel mechanism in which silicon reduces heavy metal absorption by increasing plant soluble phosphorus concentration and buffering rhizosphere acidification. This paper provides a unique insight into the role of silicon in plants and, more importantly, a theoretical reference for the rational application of silicon fertilizer to improve phosphorus utilization efficiency, alleviate heavy metal stress, and balance soil pH.
Collapse
Affiliation(s)
- Zhihao Pang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weisong Yin
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuxiao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Wen Zeng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Peng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
11
|
Chen B, Deng X, Ma Q, Zhao Y, Wang A, Zhang X, Zeng Q. Cadmium accumulation in brown rice (Oryza sativa L.) depends on environmental factors and nutrient transport: A three-year field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166942. [PMID: 37690756 DOI: 10.1016/j.scitotenv.2023.166942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Cadmium (Cd) accumulation in brown rice is a complex process in agroecosystems and is influenced by multiple factors, such as climate, soil properties, and nutrient transport. However, during the Cd transport process (soil-root-straw-brown rice), it remains unclear how Cd concentration in brown rice (BCd) is causal relationship to environmental factors and nutrient transport. The differences in precipitation, soil properties, nutrient transport, and Cd transport were studied through a three-year fixed-point field trial and linked them to the standard of Cd and nutrient absorption and transport processes. The results showed that the available Cd concentration (ACd), and BCd in 2020 were lower than those in 2019 and 2021, but monthly precipitation (MP) was higher in 2020 than in 2019 and 2021. The MP and niche metrics were significantly negatively associated with ACd and BCd. However, the relationship between the form and location of different nutrient elements and Cd in roots, Cd in straws, and BCd also varied during the transport of nutrient elements and Cd from soil to root to straw to brown rice. Structural equation modelling analysis showed that nitrogen (N 15.5 %), phosphorus (P 14.1 %), silicon (Si 4.2 %), and iron (Fe 7.6 %) transport were more closely related to BCd than to potassium (K), calcium (Ca), magnesium (Mg), and manganese (Mn). The increase in MP significantly inhibited the increase in BCd, whereas the MP led to a decrease in BCd by affecting the transport of N and Fe. Among them, Si, Fe, and BCd had indirect causal relationships, whereas N, P, and BCd had direct causal relationships. Particularly, P is a crucial nutrient in reducing BCd in the Cd transport process. Our results highlight a strong causal relationship between environmental factors and nutrient transport and BCd, and provide a theoretical basis for fertiliser application in Cd-contaminated agroecosystems.
Collapse
Affiliation(s)
- Bin Chen
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Xiao Deng
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Qiao Ma
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Yingyue Zhao
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Andong Wang
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China
| | - Xiaopeng Zhang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230001, China
| | - Qingru Zeng
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, China.
| |
Collapse
|
12
|
Wadas W, Kondraciuk T. Effect of Silicon on Micronutrient Content in New Potato Tubers. Int J Mol Sci 2023; 24:10578. [PMID: 37445755 DOI: 10.3390/ijms241310578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/20/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Since silicon can improve nutrient uptake in plants, the effect of foliar silicon (sodium metasilicate) application on micronutrient content in early crop potato tuber was investigated. Silicon was applied at dosages of 23.25 g Si∙ha-1 or 46.50 g Si∙ha-1 (0.25 L∙ha-1 or 0.50 L∙ha-1 of Optysil) once at the leaf development stage (BBCH 14-16), or at the tuber initiation stage (BBCH 40-1), and twice, at the leaf development and tuber initiation stages. Potatoes were harvested 75 days after planting (the end of June). Foliar-applied silicon reduced the Fe concentration and increased Cu and Mn concentrations in early crop potato tubers under water deficit conditions but did not affect the Zn, B, or Si concentrations. The dosage and time of silicon application slightly affected the Fe and Cu concentration in the tubers. Under drought conditions, the highest Mn content in the tuber was observed when 46.50 g Si∙ha-1 was applied at the leaf development stage, whereas under periodic water deficits, it was highest with the application of the same silicon dosage at the tuber initiation stage (BBCH 40-41). The Si content in tubers was negatively correlated with the Fe and B content, and positively correlated with the Cu and Mn content.
Collapse
Affiliation(s)
- Wanda Wadas
- Institute of Agriculture and Horticulture, Siedlce University of Natural Sciences and Humanities, B. Prusa 14, 08-110 Siedlce, Poland
| | - Tomasz Kondraciuk
- Institute of Agriculture and Horticulture, Siedlce University of Natural Sciences and Humanities, B. Prusa 14, 08-110 Siedlce, Poland
| |
Collapse
|
13
|
Pang Z, Mei Y, Nikolic N, Nikolic M, Li T, Peng H, Liang Y. From promoting aggregation to enhancing obstruction: A negative feedback regulatory mechanism of alleviation of trivalent chromium toxicity by silicon in rice. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131720. [PMID: 37257379 DOI: 10.1016/j.jhazmat.2023.131720] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/19/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
Trivalent chromium [Cr(III)] is a threat to the environment and crop production. Silicon (Si) has been shown to be effective in mitigating Cr(III) toxicity in rice. However, the mechanisms by which Si reduces Cr(III) uptake in rice are unclear. Herein, we hypothesized that the ability of Si to obstruct Cr(III) diffusion via apoplastic bypass is related to silicic acid polymerization, which may be affected by Cr(III) in rice roots. To test this hypothesis, we employed hydroponics experiments on rice (Oryza sativa L.) and utilized apoplastic bypass tracer techniques, as well as model simulations, to investigate 1) the effect of Si on Cr(III) toxicity and its obstruction capacity via apoplastic bypass, 2) the effect of Cr(III) on silicic acid polymerization, and 3) the relationship between the degree of silicic acid polymerization and its Cr(III) obstruction capacity. We found that Si reversed the damage caused by Cr(III) stress in rice. Si exerted an obstruction effect in the apoplast, significantly decreasing the share of Cr(III) uptake via the apoplastic bypass from 18% to 11%. Moreover, Cr(III) reduced silica particles' radii and increased Si concentration in roots. Modeling revealed that a 5-fold reduction in their radii decreased the diffusion of Cr(III) in apoplast by approximately 17%. We revealed that Cr(III) promoted silicic acid polymerization, resulting in the formation of a higher number of Si particles with a smaller radius in roots, which in turn increased the ability of Si to obstruct Cr(III) diffusion. This negative feedback regulatory mechanism is novel and crucially important for maintaining homeostasis in rice, unveiling the unique role of Si under Cr(III) ion stress and providing a theoretical basis for promoting the use of Si fertilizer in the field.
Collapse
Affiliation(s)
- Zhihao Pang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuchao Mei
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Nina Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade, Serbia
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030 Belgrade, Serbia
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongyun Peng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
14
|
Taher D, Nofal E, Hegazi M, El-Gaied MA, El-Ramady H, Solberg SØ. Response of Warm Season Turf Grasses to Combined Cold and Salinity Stress under Foliar Applying Organic and Inorganic Amendments. HORTICULTURAE 2023; 9:49. [DOI: 10.3390/horticulturae9010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Turfgrasses are considered an important part of the landscape and ecological system of golf courses, sports fields, parks, and home lawns. Turfgrass species are affected by many abiotic stresses (e.g., drought, salinity, cold, heat, waterlogging, and heavy metals) and biotic stresses (mainly diseases and pests). In the current study, seashore paspalum (Paspalum vaginatum Sw.) and Tifway bermudagrass (Cynodon transvaalensis Burtt Davy × C. Dactylon) were selected because they are popular turfgrasses frequently used for outdoor lawns and sport fields. The effect of the combined stress from both soil salinity and cold on these warm season grasses was investigated. Some selected organic and inorganic amendments (i.e., humic acid, ferrous sulphate, and silicon) were applied as foliar sprays five times during the winter season from late October to March. This was repeated over two years in field trials involving salt-affected soils. The physiological and chemical parameters of the plants, including plant height; fresh and dry weight per plot; total chlorophyll content; and nitrogen, phosphorus, iron, and potassium content, were measured. The results showed that all the studied amendments improved the growth of seashore paspalum and Tifway bermudagrass during this period compared to the control, with a greater improvement observed when using ferrous sulphate and humic acid compared to silicon. For seashore paspalum, the highest chlorophyll content in April was recorded after the application of ferrous sulphate at a level of 1000 ppm. The current research indicates that when grown on salt-affected soils, these amendments can be used in warm-season grasses to maintain turf quality during cold periods of the year. Further research is needed to examine any negative long-term effects of these amendments and to explain their mechanisms.
Collapse
|
15
|
Albalawi MA, Abdelaziz AM, Attia MS, Saied E, Elganzory HH, Hashem AH. Mycosynthesis of Silica Nanoparticles Using Aspergillus niger: Control of Alternaria solani Causing Early Blight Disease, Induction of Innate Immunity and Reducing of Oxidative Stress in Eggplant. Antioxidants (Basel) 2022; 11:2323. [PMID: 36552531 PMCID: PMC9774718 DOI: 10.3390/antiox11122323] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022] Open
Abstract
The threats to the life and production of crops are exacerbated by climate change and the misuse of chemical pesticides. This study was designed to evaluate the effectiveness of biosynthesized silica nanoparticles (SiO2-NPs) as an alternative to pesticides against early blight disease of eggplant. Antifungal activity, disease index, photosynthetic pigments, osmolytes, oxidative stress, antioxidant enzymes activities were tested for potential tolerance of eggplant infected with Alternaria solani. Silica nanoparticles were successfully biosynthesized using Aspergillus niger through green and ecofriendly method. Results revealed that SiO2-NPs exhibited promising antifungal activity against A. solani where MIC was 62.5 µg/mL, and inhibition growth at concentration 1000 µg/mL recorded 87.8%. The disease Index (DI) as a result of infection with A. solani reached 82.5%, and as a result, a severe decrease in stem and root length and number of leaves occurred, which led to a sharp decrease in the photosynthetic pigments. However, contents of free proline, total phenol and antioxidant enzymes activity were increased in infected plants. On the other hand, the treatment with SiO2-NPs 100 ppm led to a great reduction in the disease Index (DI) by 25% and a high protection rate by 69.69%. A clear improvement in growth characteristics and a high content of chlorophyll and total carotenoids was also observed in the plants as a result of treatment with silica nanoparticles in (healthy and infected) plants. Interestingly, the noticeable rise in the content of infected and healthy plants of proline and phenols and an increase in the activity of super oxide dismutase (SOD) and polyphenol oxidase (PPO). It could be suggested that foliar application of SiO2-NPs especially 100 ppm could be commercially used as antifungal and strong inducer of plant physiological immunity against early blight disease.
Collapse
Affiliation(s)
- Marzough A. Albalawi
- Department of Chemistry, Alwajh College, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Amer M. Abdelaziz
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Mohamed S. Attia
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Ebrahim Saied
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Hussein H. Elganzory
- Department of Chemistry, College of Science, Qassim University, Buraidah 51452, Saudi Arabia
| | - Amr H. Hashem
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
16
|
Mir RA, Bhat BA, Yousuf H, Islam ST, Raza A, Rizvi MA, Charagh S, Albaqami M, Sofi PA, Zargar SM. Multidimensional Role of Silicon to Activate Resilient Plant Growth and to Mitigate Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:819658. [PMID: 35401625 PMCID: PMC8984490 DOI: 10.3389/fpls.2022.819658] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/31/2022] [Indexed: 05/16/2023]
Abstract
Sustainable agricultural production is critically antagonistic by fluctuating unfavorable environmental conditions. The introduction of mineral elements emerged as the most exciting and magical aspect, apart from the novel intervention of traditional and applied strategies to defend the abiotic stress conditions. The silicon (Si) has ameliorating impacts by regulating diverse functionalities on enhancing the growth and development of crop plants. Si is categorized as a non-essential element since crop plants accumulate less during normal environmental conditions. Studies on the application of Si in plants highlight the beneficial role of Si during extreme stressful conditions through modulation of several metabolites during abiotic stress conditions. Phytohormones are primary plant metabolites positively regulated by Si during abiotic stress conditions. Phytohormones play a pivotal role in crop plants' broad-spectrum biochemical and physiological aspects during normal and extreme environmental conditions. Frontline phytohormones include auxin, cytokinin, ethylene, gibberellin, salicylic acid, abscisic acid, brassinosteroids, and jasmonic acid. These phytohormones are internally correlated with Si in regulating abiotic stress tolerance mechanisms. This review explores insights into the role of Si in enhancing the phytohormone metabolism and its role in maintaining the physiological and biochemical well-being of crop plants during diverse abiotic stresses. Moreover, in-depth information about Si's pivotal role in inducing abiotic stress tolerance in crop plants through metabolic and molecular modulations is elaborated. Furthermore, the potential of various high throughput technologies has also been discussed in improving Si-induced multiple stress tolerance. In addition, a special emphasis is engrossed in the role of Si in achieving sustainable agricultural growth and global food security.
Collapse
Affiliation(s)
- Rakeeb Ahmad Mir
- Department of Biotechnology, School of Life Sciences, Central University of Kashmir, Ganderbal, India
| | | | - Henan Yousuf
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | | | - Ali Raza
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Oil Crops Research Institute, Center of Legume Crop Genetics and Systems Biology/College of Agriculture, Fujian Agriculture and Forestry University (FAFU), Fuzhou, China
| | | | - Sidra Charagh
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Science, Hangzhou, China
| | - Mohammed Albaqami
- Department of Biology, Faculty of Applied Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Parvaze A. Sofi
- Division of Genetics and Plant Breeding, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, India
| |
Collapse
|