Chohra H, Lee KA, Choe H, Cho JY, Kantharaj V, Cheong MS, Kim YN, Lee YB. Dose-Dependent Physiological Response to Transient Bioaccumulation of Tetracycline in Kimchi Cabbage (
Brassica campestris L.).
Antibiotics (Basel) 2025;
14:501. [PMID:
40426567 PMCID:
PMC12108208 DOI:
10.3390/antibiotics14050501]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 05/01/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES
Globally, antibiotic contamination has become an emerging issue in agricultural lands. The presence of antibiotic residues in farmlands, especially through the application of manure fertilizers containing veterinary antibiotics, e.g., tetracycline (TC), can cause severe toxicity, which inhibits crop growth and performance, subsequently threatening human health via consumption of contaminated products. This study was conducted to evaluate the phytotoxicity of TC on Kimchi cabbage (Brassica campestris L.) during seed germination, seedling, and vegetative growth stages, along with its physiological responses and bioaccumulation under TC stress.
METHODS
The responses of cabbage plants to TC stress were assessed through a germination test and a pot experiment, conducted for three days and six weeks, respectively, under different doses of TC (0, 5, 10, 25, and 50 mg/L).
RESULTS
As a result of the germination test, higher TC doses (25 and 50 mg/L) tended to delay seed germination, but all treatments achieved a 100% germination percentage by Day 3 after sowing. Eight days after sowing, the length of shoots and roots of seedlings exhibited a TC dose-dependent decline, specifically under 50 mg TC/L, showing a considerable decrease of 24% and 77%, respectively, compared to control. Similar results were observed in the plants transitioning from the seedling to vegetative stages in the pot experiment. Four and six weeks after sowing, the 50 mg TC/L dose showed the strongest phytotoxicity in cabbage plants with physiological parameters, such as the maximum photosystem II quantum yield (Fv/Fm), pigment content (chlorophyll and carotenoid), biomass, and leaf number, significantly reduced by 26 to 60% compared to control. Interestingly, at lower TC doses (5 and 10 mg/L), a hormesis effect was observed in the phenotype and biomass of the plants. In addition, the degree of TC accumulation in the plants was highly dose-dependent at Week 4 and Week 6, but a temporal decline in TC accumulation was noted between these time points in all TC treatments. This phenomenon might affect the value of the bio-concentration factor (BCF) as an indicator of the plant's tendency to uptake TC. That is, in Week 6, the dose-dependent reduction in BCF for TC in the plants was likely attributed to a dilution effect caused by plant biomass increase or a degradation mechanism within the plant.
CONCLUSIONS
Overall, our findings suggest that tetracycline toxicity induces seed germination delay and influences seedling elongation and photosynthetic functions, ultimately impairing crop growth and performance. Also, the antibiotic dynamics related to accumulation and degradation in plants were identified. These results will not only suggest the toxicity threshold of TC for cabbage but also provide insights into effective soil management strategies for food production safety and agroecosystem sustainability in antibiotic-contaminated soils.
Collapse