1
|
Chen X, Gao L, Kou Y, Wang X, Li X, He H, Wang M. Composition, Distribution and Mobility Potential of the Antibiotic Resistome in Sediments from the East China Sea Revealed by Metagenomic Analysis. Microorganisms 2025; 13:697. [PMID: 40142589 PMCID: PMC11944410 DOI: 10.3390/microorganisms13030697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Marine sediments are recognized as crucial reservoirs of antibiotic resistance genes (ARGs). However, the antibiotic resistome in sediments of the East China Sea, an area heavily impacted by human activities, has not been thoroughly studied. Here, we conducted a systematic investigation into the antibiotic resistome in these sediments using metagenomic analysis. Overall, we detected eighty ARG subtypes and nineteen ARG types. Beta-lactams were the dominant ARG type, and Gammaproteobacteria was the main ARG host in this study. Mobile genetic elements (MGEs) were not major drivers of ARG profiles. Although the ARG host communities significantly differed between the spring and autumn (p < 0.05), the antibiotic resistome remained stable across the two seasons. The assembly of ARGs and their hosts was governed by stochastic processes, and a high ratio of stochastic processes implied its crucial role in the assembly and stabilization of the antibiotic resistome. Co-occurrence network analysis revealed an important role of Deltaproteobacteria in the stabilization of ARG profiles across seasons. Environmental parameters (e.g., temperature and density) played certain roles in the stabilization of the antibiotic resistome between spring and autumn. Moreover, nine human pathogen bacteria (HPB) were detected in this study. We also found that the health risks caused by ARGs were relatively higher in the spring. Our results will provide a strong foundation for the development of targeted management strategies to mitigate the further dissemination and spread of ARGs in marine sediments.
Collapse
Affiliation(s)
- Xiaozhong Chen
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
| | - Long Gao
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
| | - Yanxue Kou
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
| | - Xiaoxuan Wang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
| | - Xintong Li
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
| | - Hui He
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
| | - Min Wang
- College of Marine Life Sciences, Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Frontiers Science for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China; (X.C.); (L.G.); (Y.K.); (X.W.); (X.L.); (M.W.)
- Haide College, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
2
|
Le VVH, Gong Z, Maccario L, Bousquet E, Parra B, Dechesne A, Sørensen SJ, Nesme J. Birmingham-group IncP-1 α plasmids revisited: RP4, RP1 and RK2 are identical and their remnants can be detected in environmental isolates. Microb Genom 2025; 11:001381. [PMID: 40152918 PMCID: PMC11952213 DOI: 10.1099/mgen.0.001381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
RP4, RP1, RK2 and R68 were isolated from the multidrug-resistant bacterial wound isolates in 1969 in the Birmingham Accident Hospital, Birmingham, England, and collectively called Birmingham-group IncP-1α plasmids. These plasmids have been widely used as models to study different aspects of plasmid biology, develop genetic delivery systems and design plasmid vectors. Early studies showed that these plasmids conferred the same antibiotic resistance profile, had a similar size and were undistinguishable from each other using DNA heteroduplex electron microscopy and restriction endonuclease analyses. These observations have led to the widely held assumption that they are identical, although there has been no conclusive supporting evidence. In this work, we sequenced the plasmids RP1 and RP4 from our laboratory strain collection and compared these new sequences with the plasmids RP4 and RK2 assembled from a publicly available sequencing database, showing that the RP1, RP4 and RK2 plasmids are 60 095 bp in length and identical at the nucleotide resolution. Noteworthily, the plasmid sequence is highly conserved despite having been distributed to different labs over 50 years and propagated in different bacterial hosts, strengthening the previous observation that the bacterial host adapts to the RP4/RP1/RK2 plasmid rather than the opposite. In the updated RP4/RP1/RK2 sequence, we found a fusion gene, called pecM-orf2, that was formed putatively by a genetic deletion event. By searching for pecM-orf2 in the National Center for Biotechnology Information database, we detected remnants of the RP4/RP1/RK2 plasmid that carry features of laboratory-engineered vectors in bacterial environmental isolates, either in their chromosome or as a plasmid. This suggests a leak of these plasmids from the laboratory into the environment, which may subsequently impact bacterial evolution and raises concerns about the biocontainment of engineered plasmids when being handled in laboratory settings.
Collapse
Affiliation(s)
- Vuong Van Hung Le
- Living Systems Institute, University of Exeter, Exeter, UK
- Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Zhuang Gong
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lorrie Maccario
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Emma Bousquet
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Boris Parra
- Laboratorio de Investigación de Agentes Antibacterianos (LIAA), Departamento de Microbiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
- Instituto de Ciencias Naturales, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Concepción, Chile
| | - Arnaud Dechesne
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | - Søren J. Sørensen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Grudlewska-Buda K, Bauza-Kaszewska J, Wiktorczyk-Kapischke N, Budzyńska A, Gospodarek-Komkowska E, Skowron K. Antibiotic Resistance in Selected Emerging Bacterial Foodborne Pathogens-An Issue of Concern? Antibiotics (Basel) 2023; 12:antibiotics12050880. [PMID: 37237783 DOI: 10.3390/antibiotics12050880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/28/2023] Open
Abstract
Antibiotic resistance (AR) and multidrug resistance (MDR) have been confirmed for all major foodborne pathogens: Campylobacter spp., Salmonella spp., Escherichia coli and Listeria monocytogenes. Of great concern to scientists and physicians are also reports of antibiotic-resistant emerging food pathogens-microorganisms that have not previously been linked to food contamination or were considered epidemiologically insignificant. Since the properties of foodborne pathogens are not always sufficiently recognized, the consequences of the infections are often not easily predictable, and the control of their activity is difficult. The bacteria most commonly identified as emerging foodborne pathogens include Aliarcobacter spp., Aeromonas spp., Cronobacter spp., Vibrio spp., Clostridioides difficile, Escherichia coli, Mycobacterium paratuberculosis, Salmonella enterica, Streptocccus suis, Campylobacter jejuni, Helicobacter pylori, Listeria monocytogenes and Yersinia enterocolitica. The results of our analysis confirm antibiotic resistance and multidrug resistance among the mentioned species. Among the antibiotics whose effectiveness is steadily declining due to expanding resistance among bacteria isolated from food are β-lactams, sulfonamides, tetracyclines and fluoroquinolones. Continuous and thorough monitoring of strains isolated from food is necessary to characterize the existing mechanisms of resistance. In our opinion, this review shows the scale of the problem of microbes related to health, which should not be underestimated.
Collapse
Affiliation(s)
- Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Justyna Bauza-Kaszewska
- Department of Microbiology and Food Technology, Bydgoszcz University of Science and Technology, 85-029 Bydgoszcz, Poland
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Anna Budzyńska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, 85-094 Bydgoszcz, Poland
| |
Collapse
|
4
|
Pavón A, Riquelme D, Jaña V, Iribarren C, Manzano C, Lopez-Joven C, Reyes-Cerpa S, Navarrete P, Pavez L, García K. The High Risk of Bivalve Farming in Coastal Areas With Heavy Metal Pollution and Antibiotic-Resistant Bacteria: A Chilean Perspective. Front Cell Infect Microbiol 2022; 12:867446. [PMID: 35463633 PMCID: PMC9021898 DOI: 10.3389/fcimb.2022.867446] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/09/2022] [Indexed: 11/30/2022] Open
Abstract
Anthropogenic pollution has a huge impact on the water quality of marine ecosystems. Heavy metals and antibiotics are anthropogenic stressors that have a major effect on the health of the marine organisms. Although heavy metals are also associate with volcanic eruptions, wind erosion or evaporation, most of them come from industrial and urban waste. Such contamination, coupled to the use and subsequent misuse of antimicrobials in aquatic environments, is an important stress factor capable of affecting the marine communities in the ecosystem. Bivalves are important ecological components of the oceanic environments and can bioaccumulate pollutants during their feeding through water filtration, acting as environmental sentinels. However, heavy metals and antibiotics pollution can affect several of their physiologic and immunological processes, including their microbiome. In fact, heavy metals and antibiotics have the potential to select resistance genes in bacteria, including those that are part of the microbiota of bivalves, such as Vibrio spp. Worryingly, antibiotic-resistant phenotypes have been shown to be more tolerant to heavy metals, and vice versa, which probably occurs through co- and cross-resistance pathways. In this regard, a crucial role of heavy metal resistance genes in the spread of mobile element-mediated antibiotic resistance has been suggested. Thus, it might be expected that antibiotic resistance of Vibrio spp. associated with bivalves would be higher in contaminated environments. In this review, we focused on co-occurrence of heavy metal and antibiotic resistance in Vibrio spp. In addition, we explore the Chilean situation with respect to the contaminants described above, focusing on the main bivalves-producing region for human consumption, considering bivalves as potential vehicles of antibiotic resistance genes to humans through the ingestion of contaminated seafood.
Collapse
Affiliation(s)
- Alequis Pavón
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Diego Riquelme
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Víctor Jaña
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
| | - Cristian Iribarren
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Camila Manzano
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Carmen Lopez-Joven
- Instituto de Medicina Preventiva Veterinaria, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Paola Navarrete
- Institute of Nutrition and Food Technology (INTA), University of Chile, Santiago, Chile
| | - Leonardo Pavez
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas (NIAVA), Universidad de Las Américas, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| | - Katherine García
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
- Carrera de Nutrición y Dietética, Universidad Autónoma de Chile, Santiago, Chile
- *Correspondence: Leonardo Pavez, ; Katherine García,
| |
Collapse
|
5
|
Ranjan R, Thatikonda S. β-Lactam Resistance Gene NDM-1 in the Aquatic Environment: A Review. Curr Microbiol 2021; 78:3634-3643. [PMID: 34410464 DOI: 10.1007/s00284-021-02630-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 08/05/2021] [Indexed: 11/29/2022]
Abstract
New Delhi Metallo-β-lactamase-1 (NDM-1) offers carbapenem antibiotics resistance that creates an evolving challenge in treating bacterial infections. NDM-1-bearing strains were observed in surface waters around New Delhi in 2010 and after then identified globally. The usage of antibiotics may hasten the growth of the NDM-1-producing bacteria, which pose severe hazards to human and animal health. The emergence of the NDM-1 in the aquatic environment is turning out to be a growing concern worldwide. NDM-1 gene conferring resistance to a widespread class of antibiotics has been observed in bacteria disseminated in animal production wastewaters, hospital sewage, domestic sewage, industrial effluents, wastewater treatment plants, drinking water, surface water, and even in groundwater. This review recapitulates the currently published research studies on the prevalence and geographical distribution of the NDM-1 gene in the aquatic environment, its habitats, and healthcare risk associated with NDM-1-producing bacteria, in addition to molecular techniques employed to reveal the occurrence of the NDM-1 in the aquatic environment, including conventional polymerase chain reaction, real-time qPCR, DNA hybridization, and microarray-based methods.
Collapse
Affiliation(s)
- Rajeev Ranjan
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India
| | - Shashidhar Thatikonda
- Department of Civil Engineering, Indian Institute of Technology Hyderabad, Sangareddy, Kandi, Telangana, 502285, India.
| |
Collapse
|
6
|
Abstract
Pharmaceutical wastewaters are recognized as reservoirs of antibiotic resistance genes (ARGs) and antibiotic resistant bacteria (ARB), and also as hotspots for their horizontal gene transfer (HGT) using mobile genetic elements. Our study employed the use of PCR analysis of metagenomic DNA samples obtained from four pharmaceutical wastewaters using known primers to study the prevalence of thirty-six ARGs and four MGEs active against the commonly used antibiotics in Nigeria. The ARGs most frequently detected from the metagenomic DNA samples in each of the antibiotic classes under study include tetracycline [tet(G)], aminoglycoside [aadA, strA and strB], chloramphenicol [catA1], sulphonamides [sulI and sulII], and β-lactams and penicillins [blaOXA]. The ARGs showed a 100% prevalence in their various environmental sources. The pharmaceutical facility PFIV showed the highest concentration of ARGs in this study. The highest concentration for MGEs was shown by pharmaceutical facility PFIII, positive for intl1, intl2, and IFS genes. This study highlights the wide distribution of ARGs to the antibiotics tested in the wastewater, making pharmaceutical wastewater reservoirs of ARGs which could potentially be transferred from commensal microorganisms to human pathogens.
Collapse
|
7
|
Lundbäck IC, McDougall FK, Dann P, Slip DJ, Gray R, Power ML. Into the sea: Antimicrobial resistance determinants in the microbiota of little penguins (Eudyptula minor). INFECTION GENETICS AND EVOLUTION 2020; 88:104697. [PMID: 33370595 DOI: 10.1016/j.meegid.2020.104697] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/11/2020] [Accepted: 12/22/2020] [Indexed: 12/30/2022]
Abstract
Terrestrial and aquatic birds have been proposed as sentinels for the spread of antimicrobial resistant bacteria, but few species have been investigated specifically in the context of AMR in the marine ecosystem. This study contrasts the occurrence of class 1 integrons and associated antimicrobial resistance genes in wild and captive little penguins (Eudyptula minor), an Australian seabird with local population declines. PCR screening of faecal samples (n = 448) revealed a significant difference in the prevalence of class 1 integrons in wild and captive groups, 3.2% and 44.7% respectively, with genes that confer resistance to streptomycin, spectinomycin, trimethoprim and multidrug efflux pumps detected. Class 1 integrons were not detected in two clinically relevant bacterial species, Klebsiella pneumoniae or Escherichia coli, isolated from penguin faeces. The presence of class 1 integrons in the little penguin supports the use of marine birds as sentinels of AMR in marine environments.
Collapse
Affiliation(s)
- Ida C Lundbäck
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Fiona K McDougall
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Peter Dann
- Conservation Department, Phillip Island Nature Parks, Victoria, Australia
| | - David J Slip
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia; Taronga Conservation Society, Sydney, Australia
| | - Rachael Gray
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Australia
| | - Michelle L Power
- Department of Biological Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia.
| |
Collapse
|
8
|
Shintani M, Nour E, Elsayed T, Blau K, Wall I, Jechalke S, Spröer C, Bunk B, Overmann J, Smalla K. Plant Species-Dependent Increased Abundance and Diversity of IncP-1 Plasmids in the Rhizosphere: New Insights Into Their Role and Ecology. Front Microbiol 2020; 11:590776. [PMID: 33329469 PMCID: PMC7728920 DOI: 10.3389/fmicb.2020.590776] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022] Open
Abstract
IncP-1 plasmids, first isolated from clinical specimens (R751, RP4), are recognized as important vectors spreading antibiotic resistance genes. The abundance of IncP-1 plasmids in the environment, previously reported, suggested a correlation with anthropogenic pollution. Unexpectedly, qPCR-based detection of IncP-1 plasmids revealed also an increased relative abundance of IncP-1 plasmids in total community DNA from the rhizosphere of lettuce and tomato plants grown in non-polluted soil along with plant age. Here we report the successful isolation of IncP-1 plasmids by exploiting their ability to mobilize plasmid pSM1890. IncP-1 plasmids were captured from the rhizosphere but not from bulk soil, and a high diversity was revealed by sequencing 14 different plasmids that were assigned to IncP-1β, δ, and ε subgroups. Although backbone genes were highly conserved and mobile elements or remnants as Tn501, IS1071, Tn402, or class 1 integron were carried by 13 of the sequenced IncP-1 plasmids, no antibiotic resistance genes were found. Instead, seven plasmids had a mer operon with Tn501-like transposon and five plasmids contained putative metabolic gene clusters linked to these mobile elements. In-depth sequence comparisons with previously known plasmids indicate that the IncP-1 plasmids captured from the rhizosphere are archetypes of those found in clinical isolates. Our findings that IncP-1 plasmids do not always carry accessory genes in unpolluted rhizospheres are important to understand the ecology and role of the IncP-1 plasmids in the natural environment.
Collapse
Affiliation(s)
- Masaki Shintani
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu, Japan.,Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University, Hamamatsu, Japan.,Green Energy Research Division, Research Institute of Green Science and Technology, Shizuoka University, Hamamatsu, Japan
| | - Eman Nour
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Tarek Elsayed
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Khald Blau
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Inessa Wall
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Sven Jechalke
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - Cathrin Spröer
- Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Boyke Bunk
- Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Jörg Overmann
- Department Microbial Ecology and Diversity Research, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
9
|
Antibiotic Resistance Genes Occurrence in Wastewaters from Selected Pharmaceutical Facilities in Nigeria. WATER 2020. [DOI: 10.3390/w12071897] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The proliferation of antibiotic-resistant bacteria (ARB) and the prevalence of antibiotic resistance genes (ARGs) in wastewaters are well-established factors that contribute to the reduced potency of antibiotics used in healthcare worldwide. The human health risk associated with the proliferation of ARB and ARGs need to be understood in order to design mitigation measures to combat their dissemination. Using the PCR analysis of genomic DNA, the prevalence of 41 ARGs active against the commonly used six classes of antibiotics was evaluated in 60 bacterial isolates obtained from pharmaceutical wastewaters in Nigeria. The ARGs most frequently detected from the bacterial isolates in each of the antibiotic classes under study include catA1 (58.3%); sulI (31.7%); tet(E) (30%); aac(3)-IV (28.3%); ermC (20%); blaTEM, blaCTX-M, blaNDM-1 at 18.3% each; which encode for resistance to chloramphenicol, sulfonamides, tetracycline, aminoglycoside, macrolide-lincosamide-streptogramin and β-lactams and penicillins, respectively. Acinetobacter spp., accession number MH396735 expressed the highest number of ARGs of all the bacterial isolates, having at least one gene that encodes for resistance to all the classes of antibiotics in the study. This study highlights wide distribution of ARB and ARGs to the antibiotics tested in the wastewater, making pharmaceutical wastewater reservoirs of ARGs which could potentially be transferred from commensal microorganisms to human pathogens.
Collapse
|
10
|
Tian Z, Palomo A, Zhang H, Luan X, Liu R, Awad M, Smets BF, Zhang Y, Yang M. Minimum influent concentrations of oxytetracycline, streptomycin and spiramycin in selecting antibiotic resistance in biofilm type wastewater treatment systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137531. [PMID: 32325576 DOI: 10.1016/j.scitotenv.2020.137531] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 06/11/2023]
Abstract
It has been demonstrated that antibiotic resistance could be induced and selected under high antibiotic concentrations in biological wastewater treatment systems. However, little is available regarding the minimum concentrations of antibiotics for selecting antibiotic resistance during wastewater treatment. Herein, the minimum influent concentrations of oxytetracycline, streptomycin, and spiramycin in selecting antibiotic resistance in biofilm type wastewater treatment systems were investigated by spiking respective antibiotic into wastewater with an antibiotic dose increasing from 0 to 0.1, 1, 5, 25, 50 mg/L stepwise over a period of 606 days. Significant increase (p < .01) in the total abundance of antibiotic resistance genes was observed for both streptomycin and oxytetracycline at a dose of 0.1 mg/L according to metagenomic sequencing, while the concentration levels leading to significant increases (p < .05) in resistant bacteria ratio were higher: 5 mg/L for streptomycin and 25 mg/L for oxytetracycline. Although resistome abundance increased with the increase of spiramycin dose, neither the corresponding Macrolide-Lincosamide-Streptogramin (MLS) resistance genes nor the resistant bacteria ratio showed perceptible increase. Partial canonical correspondence analysis showed that both bacterial community shift and mobile genetic elements alteration contributed to the enrichment of resistomes under the presence of streptomycin and oxytetracycline. Regarding spiramycin which is mainly targeting on Gram-positive bacteria, the dominance of the intrinsically resisting Gram-negative bacteria in the biofilm microbiota might be responsible for the vague change of MLS resistant determinants under the spiramycin stress. The results demonstrated that it is possible to prevent the development of antibiotic resistance during wastewater treatment by controlling the influent streptomycin and oxytetracyline concentrations below 0.1 mg/L. This work proposed an actionable approach for the management of antibiotic production wastewater.
Collapse
Affiliation(s)
- Zhe Tian
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alejandro Palomo
- Department of Environmental Engineering, Technical University of Denmark, Denmark
| | - Hong Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiao Luan
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruyin Liu
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mohammed Awad
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Barth F Smets
- Department of Environmental Engineering, Technical University of Denmark, Denmark
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National Engineering Laboratory for Industrial Wastewater Treatment, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
11
|
Comparison of Antimicrobial Resistance Detected in Environmental and Clinical Isolates from Historical Data for the US. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4254530. [PMID: 32351993 PMCID: PMC7174961 DOI: 10.1155/2020/4254530] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/12/2020] [Accepted: 02/22/2020] [Indexed: 12/21/2022]
Abstract
Antimicrobial resistance (AMR) has become an urgent public health issue, as pathogens are becoming increasingly resistant to commonly used antimicrobials. While AMR isolate data are available in the NCBI Pathogen Detection Isolates Browser (NPDIB) database, few researches have been performed to compare antimicrobial resistance detected in environmental and clinical isolates. To address this, this work conducted the first multivariate statistical analysis of antimicrobial-resistance pathogens detected in NPDIB clinical and environmental isolates for the US from 2013 to 2018. The highly occurring AMR genes and pathogens were identified for both clinical and environmental settings, and the historical profiles of those genes and pathogens were then compared for the two settings. It was found that Salmonella enterica and E. coli and Shigella were the highly occurring AMR pathogens for both settings. Additionally, the genes fosA, oqxB, ble, floR, fosA7, mcr-9.1, aadA1, aadA2, ant(2")-Ia, aph(3")-Ib, aph(3')-Ia, aph(6)-Id, blaTEM-1, qacEdelta1, sul1, sul2, tet(A), and tet(B) were mostly detected for both clinical and environmental settings. Ampicillin, ceftriaxone, gentamicin, tetracycline, and cefoxitin were the antimicrobials which got the most resistance in both settings. The historical profiles of these genes, pathogens, and antimicrobials indicated that higher occurrence frequencies generally took place earlier in the environmental setting than in the clinical setting.
Collapse
|
12
|
Lee S, Mir RA, Park SH, Kim D, Kim HY, Boughton RK, Morris JG, Jeong KC. Prevalence of extended-spectrum β-lactamases in the local farm environment and livestock: challenges to mitigate antimicrobial resistance. Crit Rev Microbiol 2020; 46:1-14. [PMID: 31976793 DOI: 10.1080/1040841x.2020.1715339] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The effectiveness of antibiotics has been challenged by the increasing frequency of antimicrobial resistance (AR), which has emerged as a major threat to global health. Despite the negative impact of AR on health, there are few effective strategies for reducing AR in food-producing animals. Of the antimicrobial resistant microorganisms (ARMs), extended-spectrum β-lactamases (ESBLs)-producing Enterobacteriaceae are an emerging global threat due to their increasing prevalence in livestock, even in animals raised without antibiotics. Many reviews are available for the positive selection of AR associated with antibiotic use in livestock, but less attention has been given to how other factors including soil, water, manure, wildlife, and farm workers, are associated with the emergence of ESBL-producing bacteria. Understanding of antibiotic resistance genes and bacteria transfer at the interfaces of livestock and other potential reservoirs will provide insights for the development of mitigation strategies for AR.
Collapse
Affiliation(s)
- Shinyoung Lee
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Raies A Mir
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA
| | - Si Hong Park
- Department of Food Science and Technology, Oregon State University, Corvallis, OR, USA
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, School of Biological Sciences, and Korean Genomics Industrialization and Commercialization Center, Ulsan National Institute of Science and Technology, Ulsan, Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung-Hee University, Yongin, Korea
| | - Raoul K Boughton
- Range Cattle Research and Education Center, Department of Wildlife Ecology and Conservation, University of Florida, Ona, FL, USA
| | - J Glenn Morris
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Kwangcheol C Jeong
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA.,Department of Animal Sciences, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, USA.,Institute of Life Sciences and Resources and Department of Food Science and Biotechnology, Kyung-Hee University, Yongin, Korea
| |
Collapse
|
13
|
Use of synthesized double-stranded gene fragments as qPCR standards for the quantification of antibiotic resistance genes. J Microbiol Methods 2019; 164:105670. [PMID: 31325465 DOI: 10.1016/j.mimet.2019.105670] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 11/23/2022]
Abstract
Pollution of various environmental matrices by antibiotic resistance genes (ARGs) has become a growing threat to human health. For the quantitative analysis of the presence of ARGs, there is a need for sensitive and robust qPCR assays which can detect various genes from different types of DNA extracts. Fourteen ARGs were selected as target genes in this study including: blaTEM, blaOXA-1 and blaCTX-M coded for resistance to β-lactams; ermB for macrolides; tetA, tetG, tetM, tetQ, tetW and tetX for tetracyclines; sul I and sul II for sulfonamides; drfA1 and drfA12 d for trimethoprim; and integron gene intI 1 and intI 2. Chemically synthesized double-stranded gene fragments were modified using molecular biology methods and used as real-time PCR standards as well as to establish in-house qPCR assays. The ermB gene from a naturally occurring plasmid was used to compare the performance of qPCR assay with the chemically synthesized ermB. Additionally, environmental water, soil and faeces samples were used to validate the established qPCR assays. Importantly, the study proves the usefulness of rapidly synthesized oligonucleotides serving as qPCR standards for ARG analysis and provides comparable sensitivity and reliability to a traditional amplicon standard.
Collapse
|
14
|
Pinilla-Redondo R, Cyriaque V, Jacquiod S, Sørensen SJ, Riber L. Monitoring plasmid-mediated horizontal gene transfer in microbiomes: recent advances and future perspectives. Plasmid 2018; 99:56-67. [PMID: 30086339 DOI: 10.1016/j.plasmid.2018.08.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/31/2018] [Accepted: 08/01/2018] [Indexed: 10/28/2022]
Abstract
The emergence of antimicrobial resistant bacteria constitutes an increasing global health concern. Although it is well recognized that the cornerstone underlying this phenomenon is the dissemination of antimicrobial resistance via plasmids and other mobile genetic elements, the antimicrobial resistance transfer routes remain largely uncharted. In this review, we describe different methods for assessing the transfer frequency and host ranges of plasmids within complex microbiomes. The discussion is centered around the critical evaluation of recent advances for monitoring the fate of fluorescently tagged plasmids in bacterial communities through the coupling of fluorescence activated cell sorting and next generation sequencing techniques. We argue that this approach constitutes an exceptional tool for obtaining quantitative data regarding the extent of plasmid transfer, key disseminating taxa, and possible propagation routes. The integration of this information will provide valuable insights on how to develop alternative avenues for fighting the rise of antimicrobial resistant pathogens, as well as the means for constructing more comprehensive risk assessment models.
Collapse
Affiliation(s)
| | - Valentine Cyriaque
- Proteomics and Microbiology Lab, Research Institute for Biosciences, UMONS, Mons, Belgium
| | | | - Søren J Sørensen
- Section of Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Leise Riber
- Section for Functional Genomics, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
15
|
Unlu O, Aktas Z, Tugrul HM. Analysis of Virulence Factors and Antimicrobial Resistance in Salmonella Using Molecular Techniques and Identification of Clonal Relationships Among the Strains. Microb Drug Resist 2018; 24:1475-1482. [PMID: 29920160 DOI: 10.1089/mdr.2018.0042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A total of 50 Salmonella enterica strains were isolated from clinical samples from 2009 to 2012 and analyzed for the presence of virulence genes found in SPI-1, SPI-2, and plasmids. The distribution and frequency of the antimicrobial resistance genes and plasmids were revealed, and pulsed-field gel electrophoresis (PFGE) patterns were investigated. Five genes were identified from the seven strains with resistance or intermediate resistance to ampicillin: blaSHV-1 (present in six strains), qnrS1 (present in five strains), blaTEM-1 (present in three strains), blaCTX-M-1 (present in one strain), and qnrB1 (present in one strain). One trimethoprim-sulfamethoxazole-resistant strain was positive for sulI but negative for sulII. In addition, we detected TEM-1 and qnrS1 in one strain; SHV-1 and qnrS1 in two strains; TEM-1, SHV-1, CTX-M-1, and qnrS1 in one strain; TEM-1, SHV-1, and qnrB1 in one strain; and SHV-1 and sulI genes in one strain together. Plasmid-based replicon typing assay revealed that all 50 strains carried FIIS, 13 carried I1, 1 carried I2, 4 carried P, 1 carried A/C, and 4 carried X1 replicon. PFGE was used to type 46 of the 50 strains and classify them into 22 major groups, 33 pulsotypes, and 8 major clusters. All strains carried all the virulence genes of interest on both Salmonella Pathogenicity Islands 1 and 2 and plasmids suggested high potential for pathogenicity. All antimicrobial-resistant strains contained at least one of the resistance genes of interest, confirming a phenotype-genotype association in antimicrobial resistance.
Collapse
Affiliation(s)
- Ozge Unlu
- Department of Medical Microbiology, Faculty of Medicine, Beykent University, Istanbul, Turkey
| | - Zerrin Aktas
- Department of Medical Microbiology, Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Hamdi Murat Tugrul
- Department of Medical Microbiology, Faculty of Medicine, Trakya University, Edirne, Turkey
| |
Collapse
|
16
|
Shao S, Hu Y, Cheng J, Chen Y. Research progress on distribution, migration, transformation of antibiotics and antibiotic resistance genes (ARGs) in aquatic environment. Crit Rev Biotechnol 2018; 38:1195-1208. [PMID: 29807455 DOI: 10.1080/07388551.2018.1471038] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antimicrobial and antibiotics resistance caused by misuse or overuse of antibiotics exposure is a growing and significant threat to global public health. The spread and horizontal transfer of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) by the selective pressure of antibiotics in an aquatic environment is a major public health issue. To develop a better understanding of potential ecological risks die to antibiotics and ARGs, this study mainly summarizes research progress about: (i) the occurrence, concentration, fate, and potential ecological effects of antibiotics and ARGs in various aquatic environments, (ii) the threat, spread, and horizontal gene transfer (HGT) of ARGs, and (iii) the relationship between antibiotics, ARGs, and ARB. Finally, this review also proposes future research direction on antibiotics and ARGs.
Collapse
Affiliation(s)
- Sicheng Shao
- a School of Environment and Energy , South China University of Technology, Guangzhou Higher Education Mega Centre , Guangzhou , PR China.,b The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education , South China University of Technology, Guangzhou Higher Education Mega Centre , Guangzhou , PR China
| | - Yongyou Hu
- a School of Environment and Energy , South China University of Technology, Guangzhou Higher Education Mega Centre , Guangzhou , PR China.,b The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education , South China University of Technology, Guangzhou Higher Education Mega Centre , Guangzhou , PR China
| | - Jianhua Cheng
- a School of Environment and Energy , South China University of Technology, Guangzhou Higher Education Mega Centre , Guangzhou , PR China.,b The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education , South China University of Technology, Guangzhou Higher Education Mega Centre , Guangzhou , PR China
| | - Yuancai Chen
- a School of Environment and Energy , South China University of Technology, Guangzhou Higher Education Mega Centre , Guangzhou , PR China.,b The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education , South China University of Technology, Guangzhou Higher Education Mega Centre , Guangzhou , PR China
| |
Collapse
|
17
|
Gao H, Zhang L, Lu Z, He C, Li Q, Na G. Complex migration of antibiotic resistance in natural aquatic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:1-9. [PMID: 28986079 DOI: 10.1016/j.envpol.2017.08.078] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 05/16/2017] [Accepted: 08/20/2017] [Indexed: 05/23/2023]
Abstract
Antibiotic resistance is a worsening global concern, and the environmental behaviors and migration patterns of antibiotic resistance genes (ARGs) have attracted considerable interest. Understanding the long-range transport of ARG pollution is crucial. In this study, we characterized the dynamics of ARG changes after their release into aquatic environments and demonstrated the importance of traditional chemical contaminants in the transmission mechanisms of ARGs. We hypothesized that the main route of ARG proliferation switches from active transmission to passive transmission. This antibiotic-dominated switch is motivated and affected by non-corresponding contaminants. The effect of anthropogenic activities gradually weakens from inland aquatic environments to ocean environments; however, the effect of changes in environmental conditions is enhanced along this gradient. The insights discussed in this study will help to improve the understanding of the distribution and migration of ARG pollution in various aquatic environments, and provide a modern perspective to reveal the effect of corresponding contaminants and non-corresponding contaminants in the process of antibiotic resistance proliferation.
Collapse
Affiliation(s)
- Hui Gao
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, China
| | - Linxiao Zhang
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zihao Lu
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, China
| | - Chunming He
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, China; School of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Qianwei Li
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, China; School of Marine Science, Shanghai Ocean University, Shanghai 201306, China
| | - Guangshui Na
- Key Laboratory for Ecological Environment in Coastal Areas (SOA), National Marine Environmental Monitoring Center, Dalian, China.
| |
Collapse
|
18
|
Tahrani L, Mehri I, Reyns T, Anthonissen R, Verschaeve L, Khalifa ABH, Loco JV, Abdenaceur H, Mansour HB. UPLC-MS/MS analysis of antibiotics in pharmaceutical effluent in Tunisia: ecotoxicological impact and multi-resistant bacteria dissemination. Arch Microbiol 2017; 200:553-565. [PMID: 29230492 DOI: 10.1007/s00203-017-1467-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 11/23/2017] [Accepted: 12/06/2017] [Indexed: 11/30/2022]
Abstract
The UPLC MS/MS analysis showed the presence of the two antibiotics in the pharmaceutical industry discharges during 3 months; norfloxacin and spiramycin which were quantified with the mean concentrations of 226.7 and 84.2 ng mL-1, respectively. Sixteen resistant isolates were obtained from the pharmaceutical effluent and identified by sequencing. These isolates belong to different genera, namely Citrobacter, Acinetobacter, Pseudomonas, Delftia, Shewanella, and Rheinheimera. The antibiotic resistance phenotypes of these isolates were determined (27 tested antibiotics-discs). All the studied isolates were found resistant to amoxicillin and gentamicin, and 83.33% of isolates were resistant to ciprofloxacin. Multiple antibiotic resistances were revealed against β-lactams, quinolones, and aminoglycosides families. Our overall results suggest that the obtained bacterial isolates may constitute potential candidates for bioremediation and can be useful for biotechnological applications. Genotoxic effects were assessed by a battery of biotests; the pharmaceutical wastewater was genotoxic according to the bacterial Vitotox test and micronuclei test. Genotoxicity was also evaluated by the comet test; the tail DNA damages reached 38 and 22% for concentrated sample (10×) and non-concentrated sample (1×), respectively. However, the histological sections of kidney and liver's mice treated by pharmaceutical effluent showed normal histology and no visible structural effects or alterations as cytolysis, edema, or ulcerative necrosis were observed. Residual antibiotics can reach water environment through wastewater and provoke dissemination of the antibiotics resistance and induce genotoxic effects.
Collapse
Affiliation(s)
- Leyla Tahrani
- Laboratory of Chemical Residues and Contaminants, Direction of Food Medicines and Consumer Safety, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium.,Laboratory of toxicology, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium.,Research Unit of Analysis and Process Applied to the Environment, APAE UR17ES32 Higher Institute of Applied Sciences and Technology Mahdia "ISSAT", Monastir University, 5100, Monastir, Tunisia
| | - Ines Mehri
- Laboratoire Traitement et recyclage des eaux, Centre de recherche et technologie des eaux, Borj Cedria, Tunisia
| | - Tim Reyns
- Laboratory of Chemical Residues and Contaminants, Direction of Food Medicines and Consumer Safety, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Roel Anthonissen
- Laboratory of toxicology, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Luc Verschaeve
- Laboratory of toxicology, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Joris Van Loco
- Laboratory of Chemical Residues and Contaminants, Direction of Food Medicines and Consumer Safety, Scientific Institute of Public Health, Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Hassen Abdenaceur
- Laboratoire Traitement et recyclage des eaux, Centre de recherche et technologie des eaux, Borj Cedria, Tunisia
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to the Environment, APAE UR17ES32 Higher Institute of Applied Sciences and Technology Mahdia "ISSAT", Monastir University, 5100, Monastir, Tunisia.
| |
Collapse
|
19
|
Venieri D, Gounaki I, Bikouvaraki M, Binas V, Zachopoulos A, Kiriakidis G, Mantzavinos D. Solar photocatalysis as disinfection technique: Inactivation of Klebsiella pneumoniae in sewage and investigation of changes in antibiotic resistance profile. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 195:140-147. [PMID: 27316624 DOI: 10.1016/j.jenvman.2016.06.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 05/23/2016] [Accepted: 06/06/2016] [Indexed: 05/21/2023]
Abstract
The presence of pathogenic microorganisms in wastewater and their resistant nature to antibiotics impose effective disinfection treatment for public health and environmental protection. In this work, photocatalysis with metal-doped titania under artificial and natural sunlight, chlorination and UV-C irradiation were evaluated for their potential to inactivate Klebsiella pneumoniae in real wastewater. Their overall effect on antibiotic resistance profile and target antibiotic resistance genes (ARGs) was also investigated. In particular, Mn-, Co- and binary Mn/Co-TiO2 were tested resulting in bacterial decrease from 4 to 6 Logs upon 90 min of exposure to simulated solar irradiation. The response of catalysts under natural solar light was insufficient, as only a 2 Log reduction was recorded even after 60 min of treatment. The relative activity of the applied methods for K. pneumoniae inactivation was decreased in the order: photocatalysis with the binary Co/Mn-TiO2 under artificial light > chlorination with dose of 5 mg/L of free chlorine > UV-C irradiation, at an initial bacterial concentration of 107 CFU/mL. The applied methods showed various effects on antibiotic resistance profile in residual cells. Among the tested antibiotics (ampicillin, cefaclor, sulfamethoxazole and tetracycline), considerable changes in MIC values were recorded for cefaclor and tetracycline. Resistance of surviving cells after treatment remained in high levels, reflecting the abundance of the corresponding target ARGs, namely tetA, tetM, sul1, blaTEM and ampC. The notable presence of target ARGs post disinfection raises concerns and makes wastewater effluent a carrier of antibiotic resistance elements into the aquatic environment.
Collapse
Affiliation(s)
- Danae Venieri
- School of Environmental Engineering, Technical University of Crete, GR-73100 Chania, Greece.
| | - Iosifina Gounaki
- School of Environmental Engineering, Technical University of Crete, GR-73100 Chania, Greece
| | - Maria Bikouvaraki
- School of Environmental Engineering, Technical University of Crete, GR-73100 Chania, Greece
| | - Vassilios Binas
- Institute of Electronic Structure and Laser (IESL), FORTH, Vasilika Vouton, GR-70013 Heraklion, Greece; Department of Physics, University of Crete, GR-70013 Heraklion, Greece
| | - Apostolos Zachopoulos
- Institute of Electronic Structure and Laser (IESL), FORTH, Vasilika Vouton, GR-70013 Heraklion, Greece
| | - George Kiriakidis
- Institute of Electronic Structure and Laser (IESL), FORTH, Vasilika Vouton, GR-70013 Heraklion, Greece; Department of Physics, University of Crete, GR-70013 Heraklion, Greece
| | - Dionissios Mantzavinos
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, GR-26504 Patras, Greece
| |
Collapse
|
20
|
Richard D, Ravigné V, Rieux A, Facon B, Boyer C, Boyer K, Grygiel P, Javegny S, Terville M, Canteros BI, Robène I, Vernière C, Chabirand A, Pruvost O, Lefeuvre P. Adaptation of genetically monomorphic bacteria: evolution of copper resistance through multiple horizontal gene transfers of complex and versatile mobile genetic elements. Mol Ecol 2017; 26:2131-2149. [PMID: 28101896 DOI: 10.1111/mec.14007] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 11/28/2016] [Accepted: 12/08/2016] [Indexed: 12/17/2022]
Abstract
Copper-based antimicrobial compounds are widely used to control plant bacterial pathogens. Pathogens have adapted in response to this selective pressure. Xanthomonas citri pv. citri, a major citrus pathogen causing Asiatic citrus canker, was first reported to carry plasmid-encoded copper resistance in Argentina. This phenotype was conferred by the copLAB gene system. The emergence of resistant strains has since been reported in Réunion and Martinique. Using microsatellite-based genotyping and copLAB PCR, we demonstrated that the genetic structure of the copper-resistant strains from these three regions was made up of two distant clusters and varied for the detection of copLAB amplicons. In order to investigate this pattern more closely, we sequenced six copper-resistant X. citri pv. citri strains from Argentina, Martinique and Réunion, together with reference copper-resistant Xanthomonas and Stenotrophomonas strains using long-read sequencing technology. Genes involved in copper resistance were found to be strain dependent with the novel identification in X. citri pv. citri of copABCD and a cus heavy metal efflux resistance-nodulation-division system. The genes providing the adaptive trait were part of a mobile genetic element similar to Tn3-like transposons and included in a conjugative plasmid. This indicates the system's great versatility. The mining of all available bacterial genomes suggested that, within the bacterial community, the spread of copper resistance associated with mobile elements and their plasmid environments was primarily restricted to the Xanthomonadaceae family.
Collapse
Affiliation(s)
- D Richard
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France.,Plant Health Laboratory, ANSES, F-97410, St Pierre, Réunion, France.,Université de la Réunion, UMR PVBMT, F-97490, St Denis, Réunion, France
| | - V Ravigné
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - A Rieux
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - B Facon
- INRA, UMR PVBMT, F-97410, St Pierre, Réunion, France.,INRA, UMR CBGP, F-34090, Montpellier, France
| | - C Boyer
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - K Boyer
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - P Grygiel
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - S Javegny
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - M Terville
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - B I Canteros
- INTA, Estación Experimental Agropecuaria Bella Vista, Bella Vista, Argentina
| | - I Robène
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - C Vernière
- CIRAD, UMR BGPI, F-34398, Montpellier, France
| | - A Chabirand
- Plant Health Laboratory, ANSES, F-97410, St Pierre, Réunion, France
| | - O Pruvost
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| | - P Lefeuvre
- UMR PVBMT, CIRAD, F-97410, St Pierre, Réunion, France
| |
Collapse
|
21
|
Tripathi V, Tripathi P. Antibiotic Resistance Genes: An Emerging Environmental Pollutant. PERSPECTIVES IN ENVIRONMENTAL TOXICOLOGY 2017. [DOI: 10.1007/978-3-319-46248-6_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
22
|
Martini MC, Wibberg D, Lozano M, Torres Tejerizo G, Albicoro FJ, Jaenicke S, van Elsas JD, Petroni A, Garcillán-Barcia MP, de la Cruz F, Schlüter A, Pühler A, Pistorio M, Lagares A, Del Papa MF. Genomics of high molecular weight plasmids isolated from an on-farm biopurification system. Sci Rep 2016; 6:28284. [PMID: 27321040 PMCID: PMC4913263 DOI: 10.1038/srep28284] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/31/2016] [Indexed: 12/02/2022] Open
Abstract
The use of biopurification systems (BPS) constitutes an efficient strategy to eliminate pesticides from polluted wastewaters from farm activities. BPS environments contain a high microbial density and diversity facilitating the exchange of information among bacteria, mediated by mobile genetic elements (MGEs), which play a key role in bacterial adaptation and evolution in such environments. Here we sequenced and characterized high-molecular-weight plasmids from a bacterial collection of an on-farm BPS. The high-throughput-sequencing of the plasmid pool yielded a total of several Mb sequence information. Assembly of the sequence data resulted in six complete replicons. Using in silico analyses we identified plasmid replication genes whose encoding proteins represent 13 different Pfam families, as well as proteins involved in plasmid conjugation, indicating a large diversity of plasmid replicons and suggesting the occurrence of horizontal gene transfer (HGT) events within the habitat analyzed. In addition, genes conferring resistance to 10 classes of antimicrobial compounds and those encoding enzymes potentially involved in pesticide and aromatic hydrocarbon degradation were found. Global analysis of the plasmid pool suggest that the analyzed BPS represents a key environment for further studies addressing the dissemination of MGEs carrying catabolic genes and pathway assembly regarding degradation capabilities.
Collapse
Affiliation(s)
- María C Martini
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Daniel Wibberg
- Center for Biotechnology (CeBiTec), Bielefeld University, Institute for Genome Research and Systems Biology, D-33615 Bielefeld, Germany
| | - Mauricio Lozano
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Gonzalo Torres Tejerizo
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Francisco J Albicoro
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Sebastian Jaenicke
- Center for Biotechnology (CeBiTec), Bielefeld University, Institute for Genome Research and Systems Biology, D-33615 Bielefeld, Germany
| | | | - Alejandro Petroni
- Servicio Antimicrobianos, Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - M Pilar Garcillán-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas (CSIC), 39011 Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-Consejo Superior de Investigaciones Científicas (CSIC), 39011 Santander, Spain
| | - Andreas Schlüter
- Center for Biotechnology (CeBiTec), Bielefeld University, Institute for Genome Research and Systems Biology, D-33615 Bielefeld, Germany
| | - Alfred Pühler
- Center for Biotechnology (CeBiTec), Bielefeld University, Institute for Genome Research and Systems Biology, D-33615 Bielefeld, Germany
| | - Mariano Pistorio
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - Antonio Lagares
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| | - María F Del Papa
- Instituto de Biotecnología y Biología Molecular (IBBM), CONICET- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Calles 47 y 115 (1900) La Plata, Argentina
| |
Collapse
|
23
|
Di Cesare A, Eckert EM, D'Urso S, Bertoni R, Gillan DC, Wattiez R, Corno G. Co-occurrence of integrase 1, antibiotic and heavy metal resistance genes in municipal wastewater treatment plants. WATER RESEARCH 2016; 94:208-214. [PMID: 26945964 DOI: 10.1016/j.watres.2016.02.049] [Citation(s) in RCA: 314] [Impact Index Per Article: 34.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 05/23/2023]
Abstract
The impact of human activities on the spread and on the persistence of antibiotic resistances in the environment is still far from being understood. The natural background of resistances is influenced by human activities, and the wastewater treatment plants (WWTPs) are among the main sources of the release of antibiotic resistance into the environment. The various treatments of WWTPs provide a number of different environmental conditions potentially favoring the selection of antibiotic resistance genes (ARGs) and thereby their well-documented spread in the environment. Although the distribution of different ARGs in WWTPs has been deeply investigated, very little is known on the ecology and on the molecular mechanisms underlying the selection of specific ARGs. This study investigates the fate of diverse ARGs, heavy metal resistance genes (HMRGs) and of a mobile element (the class I integron) in three WWTPs. Abundances of the different genetic markers were correlated to each other and their relation to biotic and abiotic factors (total organic carbon, total nitrogen, prokaryotic cell abundance and its relative distribution in single cells and aggregates) influencing the microbial communities in the different treatment phases in three WWTPs, were investigated. Water samples were analyzed for the abundance of six ARGs (tetA, sulII, blaTEM, blaCTXM,ermB, and qnrS), two HMRGs (czcA and arsB), and of the class I integron (int1). The measured variables clustered in two well-defined groups, the first including tetA, ermB, qnrS and the different biotic and abiotic factors, and a second group around the genes sulII, czcA, arsB and int1. Moreover, the dynamics of sulII, HMRGs, and int1 correlated strongly. Our results suggest a potentially crucial role of HMRGs in the spread, mediated by mobile elements, of some ARGs, i.e. sulII. The possibility of a relation between heavy metal contamination and the spread of ARGs in WWTPs calls for further research to clarify the mechanisms of co-selection and their ecology, in order to implement the removal efficiency of the applied treatments.
Collapse
Affiliation(s)
- Andrea Di Cesare
- Microbial Ecology Group, National Research Council - Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50, 28922, Verbania, Italy
| | - Ester M Eckert
- Microbial Ecology Group, National Research Council - Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50, 28922, Verbania, Italy
| | - Silvia D'Urso
- Microbial Ecology Group, National Research Council - Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50, 28922, Verbania, Italy
| | - Roberto Bertoni
- Microbial Ecology Group, National Research Council - Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50, 28922, Verbania, Italy
| | - David C Gillan
- Proteomics and Microbiology Lab, Mons University, 5 av du Champ de Mars, B-7000, Mons, Belgium
| | - Ruddy Wattiez
- Proteomics and Microbiology Lab, Mons University, 5 av du Champ de Mars, B-7000, Mons, Belgium
| | - Gianluca Corno
- Microbial Ecology Group, National Research Council - Institute of Ecosystem Study (CNR-ISE), Largo Tonolli 50, 28922, Verbania, Italy.
| |
Collapse
|
24
|
Novel Aminoglycoside Resistance Transposons and Transposon-Derived Circular Forms Detected in Carbapenem-Resistant Acinetobacter baumannii Clinical Isolates. Antimicrob Agents Chemother 2016; 60:1801-18. [PMID: 26824943 PMCID: PMC4776018 DOI: 10.1128/aac.02143-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/16/2015] [Indexed: 12/15/2022] Open
Abstract
Acinetobacter baumannii has emerged as an important opportunistic pathogen equipped with a growing number of antibiotic resistance genes. Our study investigated the molecular epidemiology and antibiotic resistance features of 28 consecutive carbapenem-resistant clinical isolates of A. baumannii collected throughout Sweden in 2012 and 2013. The isolates mainly belonged to clonal complexes (CCs) with an extensive international distribution, such as CC2 (n = 16) and CC25 (n = 7). Resistance to carbapenems was related to blaOXA-23 (20 isolates), blaOXA-24/40-like (6 isolates), blaOXA-467 (1 isolate), and ISAba1-blaOXA-69 (1 isolate). Ceftazidime resistance was associated with blaPER-7 in the CC25 isolates. Two classical point mutations were responsible for resistance to quinolones in all the isolates. Isolates with high levels of resistance to aminoglycosides carried the 16S rRNA methylase armA gene. The isolates also carried a variety of genes encoding aminoglycoside-modifying enzymes. Several novel structures involved in aminoglycoside resistance were identified, including Tn6279, ΔTn6279, Ab-ST3-aadB, and different assemblies of Tn6020 and TnaphA6. Importantly, a number of circular forms related to the IS26 or ISAba125 composite transposons were detected. The frequent occurrence of these circular forms in the populations of several isolates indicates a potential role of these circular forms in the dissemination of antibiotic resistance genes.
Collapse
|
25
|
Li X, Wang Y, Brown CJ, Yao F, Jiang Y, Top EM, Li H. Diversification of broad host range plasmids correlates with the presence of antibiotic resistance genes. FEMS Microbiol Ecol 2015; 92:fiv151. [PMID: 26635412 DOI: 10.1093/femsec/fiv151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2015] [Indexed: 11/13/2022] Open
Abstract
The IncP-1ε subgroup is a recently identified phylogenetic clade within IncP-1 plasmids, which plays an important role in the spread of antibiotic resistance and degradation of xenobiotic pollutants. Here, four IncP-1ε plasmids were exogenously captured from a petroleum-contaminated habitat in China and compared phylogenetically and genomically with previously reported IncP-1ε and other IncP-1 plasmids. The IncP-1ε plasmids can be clearly subdivided into two subclades, designated as ε-I and ε-II, based on phylogenetic analysis of backbone proteins TraI and TrfA. This was further supported by comparison of concatenated backbone genes. Moreover, the two subclades differed in the transposon types, phenotypes and insertion locations of the accessory elements. The accessory genes on ε-I plasmids were inserted between parA and traC, and harbored ISPa17 and Tn402-like transposon modules, typically carrying antibiotic resistance genes. In contrast, the accessory elements on ε-II plasmids were typically located between trfA and oriV, and contained IS1071, which was commonly inserted within the Tn501-like transposon, typically harboring a cluster of genes encoding mercury resistance and/or catabolic pathways. Our study is one of the first to compare IncP-1 plasmid genomes from China, expands the available collection of IncP-1ε plasmids and enhances our understanding of their diversity, biogeography and evolutionary history.
Collapse
Affiliation(s)
- Xiaobin Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yafei Wang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Celeste J Brown
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844-3051, USA
| | - Fei Yao
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Jiang
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| | - Eva M Top
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844-3051, USA
| | - Hui Li
- State Key Laboratory of Forest and Soil Ecology, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110164, China
| |
Collapse
|
26
|
Titilawo Y, Obi L, Okoh A. Antimicrobial resistance determinants of Escherichia coli isolates recovered from some rivers in Osun State, South-Western Nigeria: Implications for public health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 523:82-94. [PMID: 25862994 DOI: 10.1016/j.scitotenv.2015.03.095] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/18/2015] [Accepted: 03/22/2015] [Indexed: 06/04/2023]
Abstract
The inevitable development of resistance has sunk the great success achieved in the discovery of antimicrobial agents and dashed the hope of man in the recovery from infections and illnesses, as diseases and disease agents that were once thought to be controlled by antimicrobials are now re-emerging in new leagues resistance to therapy. A total of 300 PCR confirmed Escherichia coli isolates recovered from different river sources in Osun State, Nigeria were evaluated for their antibiogram profiling by the disc diffusion method and the resistant isolates were further profiled for their genotypic antimicrobial resistance determinants by polymerase chain reaction assays. Among the 20 antimicrobials selected from 10 families, resistance among sulfonamides, β-lactams and tetracyclines were found to be most frequent than phenicols and aminoglycosides with a noticeable increase in the number of multi-drug resistance ranging from three to nine antimicrobials. A total of 19 resistance determinants were assessed with their prevalence and distributions obtained as follows; [sulfonamides sulI (8%), sulII (41%)], [β-lactams; ampC 22%; blaTEM, (21%), and blaZ (18%),], [tetracyclines tetA (24%), tetB (23%), tetC (18%), tetD (78%), tetK (15%), and tetM, (10%)], [phenicols; catI (37%), catII (28%), and cmIA1 (19%)] and [aminoglycosides; aacC2 (8%), aphA1 (80%), aphA2 (80%), aadA (79%) and strA (38%)]. The Pearson chi-square exact test revealed many strong significant associations among ampC, blaTEM, blaZ and tetA genes with some determinants screened. The findings signify high increase in the prevalence of multidrug resistant E. coli isolates and resistance determinants indicating increased public health risks associated with the ingestion of waters from untreated sources. Hence, a necessity for safe water supply, provision of proper sanitation facilities and good surveillance programmes to monitor antimicrobial resistance patterns in water bodies.
Collapse
Affiliation(s)
- Yinka Titilawo
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
| | - Larry Obi
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| | - Anthony Okoh
- SA-MRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa; Applied and Environmental Microbiology Research Group, Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
27
|
Laroche-Ajzenberg E, Flores Ribeiro A, Bodilis J, Riah W, Buquet S, Chaftar N, Pawlak B. Conjugative multiple-antibiotic resistance plasmids in Escherichia coli
isolated from environmental waters contaminated by human faecal wastes. J Appl Microbiol 2014; 118:399-411. [DOI: 10.1111/jam.12691] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 10/14/2014] [Accepted: 11/06/2014] [Indexed: 11/30/2022]
Affiliation(s)
| | - A. Flores Ribeiro
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - J. Bodilis
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - W. Riah
- Agri'Terr Laboratory; ESITPA; Mont Saint Aignan France
| | - S. Buquet
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - N. Chaftar
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| | - B. Pawlak
- Microbiology Signals and Microenvironment Laboratory (LMSM) (EA 4312); University of Rouen; Mont Saint Aignan France
| |
Collapse
|
28
|
Roy Chowdhury P, McKinnon J, Wyrsch E, Hammond JM, Charles IG, Djordjevic SP. Genomic interplay in bacterial communities: implications for growth promoting practices in animal husbandry. Front Microbiol 2014; 5:394. [PMID: 25161648 PMCID: PMC4129626 DOI: 10.3389/fmicb.2014.00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/14/2014] [Indexed: 12/22/2022] Open
Abstract
The discovery of antibiotics heralded the start of a “Golden Age” in the history of medicine. Over the years, the use of antibiotics extended beyond medical practice into animal husbandry, aquaculture and agriculture. Now, however, we face the worldwide threat of diseases caused by pathogenic bacteria that are resistant to all existing major classes of antibiotic, reflecting the possibility of an end to the antibiotic era. The seriousness of the threat is underscored by the severely limited production of new classes of antibiotics. Evolution of bacteria resistant to multiple antibiotics results from the inherent genetic capability that bacteria have to adapt rapidly to changing environmental conditions. Consequently, under antibiotic selection pressures, bacteria have acquired resistance to all classes of antibiotics, sometimes very shortly after their introduction. Arguably, the evolution and rapid dissemination of multiple drug resistant genes en-masse across microbial pathogens is one of the most serious threats to human health. In this context, effective surveillance strategies to track the development of resistance to multiple antibiotics are vital to managing global infection control. These surveillance strategies are necessary for not only human health but also for animal health, aquaculture and plant production. Shortfalls in the present surveillance strategies need to be identified. Raising awareness of the genetic events that promote co-selection of resistance to multiple antimicrobials is an important prerequisite to the design and implementation of molecular surveillance strategies. In this review we will discuss how lateral gene transfer (LGT), driven by the use of low-dose antibiotics in animal husbandry, has likely played a significant role in the evolution of multiple drug resistance (MDR) in Gram-negative bacteria and has complicated molecular surveillance strategies adopted for predicting imminent resistance threats.
Collapse
Affiliation(s)
- Piklu Roy Chowdhury
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia ; NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute Camden, NSW, Australia
| | - Jessica McKinnon
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia
| | - Ethan Wyrsch
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia
| | - Jeffrey M Hammond
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute Camden, NSW, Australia
| | - Ian G Charles
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia
| | - Steven P Djordjevic
- The ithree institute, University of Technology Sydney Sydney, NSW, Australia
| |
Collapse
|
29
|
Piotrowska M, Popowska M. The prevalence of antibiotic resistance genes among Aeromonas species in aquatic environments. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0911-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
30
|
Wang Z, Zhang XX, Huang K, Miao Y, Shi P, Liu B, Long C, Li A. Metagenomic profiling of antibiotic resistance genes and mobile genetic elements in a tannery wastewater treatment plant. PLoS One 2013; 8:e76079. [PMID: 24098424 PMCID: PMC3787945 DOI: 10.1371/journal.pone.0076079] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 08/20/2013] [Indexed: 11/18/2022] Open
Abstract
Antibiotics are often used to prevent sickness and improve production in animal agriculture, and the residues in animal bodies may enter tannery wastewater during leather production. This study aimed to use Illumina high-throughput sequencing to investigate the occurrence, diversity and abundance of antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) in aerobic and anaerobic sludge of a full-scale tannery wastewater treatment plant (WWTP). Metagenomic analysis showed that Proteobacteria, Firmicutes, Bacteroidetes and Actinobacteria dominated in the WWTP, but the relative abundance of archaea in anaerobic sludge was higher than in aerobic sludge. Sequencing reads from aerobic and anaerobic sludge revealed differences in the abundance of functional genes between both microbial communities. Genes coding for antibiotic resistance were identified in both communities. BLAST analysis against Antibiotic Resistance Genes Database (ARDB) further revealed that aerobic and anaerobic sludge contained various ARGs with high abundance, among which sulfonamide resistance gene sul1 had the highest abundance, occupying over 20% of the total ARGs reads. Tetracycline resistance genes (tet) were highly rich in the anaerobic sludge, among which tet33 had the highest abundance, but was absent in aerobic sludge. Over 70 types of insertion sequences were detected in each sludge sample, and class 1 integrase genes were prevalent in the WWTP. The results highlighted prevalence of ARGs and MGEs in tannery WWTPs, which may deserve more public health concerns.
Collapse
Affiliation(s)
- Zhu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Yang Y, Li B, Ju F, Zhang T. Exploring variation of antibiotic resistance genes in activated sludge over a four-year period through a metagenomic approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10197-205. [PMID: 23919449 DOI: 10.1021/es4017365] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
In this study, the profiles of ARGs in activated sludge from the Shatin WWTP of Hong Kong were investigated using metagenomic analysis over a four-year period. Forty giga base pairs of metagenomic data were generated from eight activated sludge samples collected biannually at two seasons (winter and summer) from July 2007 to January 2011. A structured database of ARGs was proposed and constructed to facilitate the classification of ARGs in the collected samples from metagenomic data using a customized script. Analysis of the data showed the existence of a broad-spectrum of different ARGs, some of which have never been reported in activated sludge before. The most abundant ARGs were aminoglycoside and tetracycline resistance genes, followed by resistance genes of sulfonamide, multidrug, and chloramphenicol. Seasonal fluctuations were observed for 3 types of ARGs, that is, resistance genes of tetracycline, sulfonamide, and vancomycin. The abundances of these resistance genes were generally higher in the samples collected in the winters than the samples collected in the contiguous summer. Further analyses were carried out for the presence of subtypes of ARGs for aminoglycoside, tetracycline, and beta-lactam. The abundances of some ARGs subtypes were inconsistent with those reported in previous studies of activated sludge using the PCR approach. Statistical analyses showed that the activated sludge data sets from this study can be distinguished from other types of samples based on their ARGs profiles. Furthermore, the results of this study demonstrate that a high throughput-based metagenomic approach combined with a structured database of ARGs provides a powerful tool for a comprehensive survey of the various ARGs not only in the activated sludge of a WWTP but in other environmental samples as well. Thus, the profiling of ARGs in other ecologically important environmental matrixes may help elucidate those environmental factors contributing to the spread of ARGs.
Collapse
Affiliation(s)
- Ying Yang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong , Hong Kong SAR, China
| | | | | | | |
Collapse
|
32
|
Dada AC, Ahmad A, Usup G, Heng LY, Hamid R. High-level aminoglycoside resistance and virulence characteristics among Enterococci isolated from recreational beaches in Malaysia. ENVIRONMENTAL MONITORING AND ASSESSMENT 2013; 185:7427-7443. [PMID: 23417753 DOI: 10.1007/s10661-013-3110-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
We report the first study on the occurrence of high-level aminoglycoside-resistant (HLAR) Enterococci in coastal bathing waters and beach sand in Malaysia. None of the encountered isolates were resistant to high levels of gentamicin (500 μg/mL). However, high-level resistance to kanamycin (2,000 μg/mL) was observed in 14.2 % of tested isolates, the highest proportions observed being among beach sand isolates. High-level resistance to kanamycin was higher among Enterococcus faecalis and Enterococcus faecium than Enterococcus spp. Chi-square analysis showed no significant association between responses to tested antibiotics and the species allocation or source of isolation of all tested Enterococci. The species classification of encountered Enterococci resistance to vancomycin was highest among Enterococcus spp. (5.89 %) followed by E. faecium (4.785) and least among E. faecalis. A total of 160 isolates were also tested for virulence characteristics. On the whole, caseinase production was profoundly highest (15.01 %) while the least prevalent virulence characteristic observed among tested beach Enterococci was haemolysis of rabbit blood (3.65 %). A strong association was observed between the source of isolation and responses for each of caseinase (C = 0.47, V = 0.53) and slime (C = 0.50, V = 0.58) assays. Analysis of obtained spearman's coefficient showed a strong correlation between caseinase and each of the slime production (p = 0.04), gelatinase (p = 0.0035) and haemolytic activity on horse blood (p = 0.004), respectively. Suggestively, these are the main virulent characteristics of the studied beach Enterococci. Our findings suggest that recreational beaches may contribute to the dissemination of Enterococci with HLAR and virulence characteristics.
Collapse
Affiliation(s)
- Ayokunle Christopher Dada
- Faculty of Science and Technology, School of Biosciences and Biotechnology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| | | | | | | | | |
Collapse
|
33
|
Environmental and Public Health Implications of Water Reuse: Antibiotics, Antibiotic Resistant Bacteria, and Antibiotic Resistance Genes. Antibiotics (Basel) 2013; 2:367-99. [PMID: 27029309 PMCID: PMC4790270 DOI: 10.3390/antibiotics2030367] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 07/19/2013] [Accepted: 07/24/2013] [Indexed: 12/21/2022] Open
Abstract
Water scarcity is a global problem, and is particularly acute in certain regions like Africa, the Middle East, as well as the western states of America. A breakdown on water usage revealed that 70% of freshwater supplies are used for agricultural irrigation. The use of reclaimed water as an alternative water source for agricultural irrigation would greatly alleviate the demand on freshwater sources. This paradigm shift is gaining momentum in several water scarce countries like Saudi Arabia. However, microbial problems associated with reclaimed water may hinder the use of reclaimed water for agricultural irrigation. Of particular concern is that the occurrence of antibiotic residues in the reclaimed water can select for antibiotic resistance genes among the microbial community. Antibiotic resistance genes can be associated with mobile genetic elements, which in turn allow a promiscuous transfer of resistance traits from one bacterium to another. Together with the pathogens that are present in the reclaimed water, antibiotic resistant bacteria can potentially exchange mobile genetic elements to create the “perfect microbial storm”. Given the significance of this issue, a deeper understanding of the occurrence of antibiotics in reclaimed water, and their potential influence on the selection of resistant microorganisms would be essential. In this review paper, we collated literature over the past two decades to determine the occurrence of antibiotics in municipal wastewater and livestock manure. We then discuss how these antibiotic resistant bacteria may impose a potential microbial risk to the environment and public health, and the knowledge gaps that would have to be addressed in future studies. Overall, the collation of the literature in wastewater treatment and agriculture serves to frame and identify potential concerns with respect to antibiotics, antibiotic resistant bacteria, and antibiotic resistance genes in reclaimed water.
Collapse
|
34
|
Wellington EMH, Boxall AB, Cross P, Feil EJ, Gaze WH, Hawkey PM, Johnson-Rollings AS, Jones DL, Lee NM, Otten W, Thomas CM, Williams AP. The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. THE LANCET. INFECTIOUS DISEASES 2013; 13:155-65. [PMID: 23347633 DOI: 10.1016/s1473-3099(12)70317-1] [Citation(s) in RCA: 655] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
During the past 10 years, multidrug-resistant Gram-negative Enterobacteriaceae have become a substantial challenge to infection control. It has been suggested by clinicians that the effectiveness of antibiotics is in such rapid decline that, depending on the pathogen concerned, their future utility can be measured in decades or even years. Unless the rise in antibiotic resistance can be reversed, we can expect to see a substantial rise in incurable infection and fatality in both developed and developing regions. Antibiotic resistance develops through complex interactions, with resistance arising by de-novo mutation under clinical antibiotic selection or frequently by acquisition of mobile genes that have evolved over time in bacteria in the environment. The reservoir of resistance genes in the environment is due to a mix of naturally occurring resistance and those present in animal and human waste and the selective effects of pollutants, which can co-select for mobile genetic elements carrying multiple resistant genes. Less attention has been given to how anthropogenic activity might be causing evolution of antibiotic resistance in the environment. Although the economics of the pharmaceutical industry continue to restrict investment in novel biomedical responses, action must be taken to avoid the conjunction of factors that promote evolution and spread of antibiotic resistance.
Collapse
|
35
|
Popowska M, Krawczyk-Balska A. Broad-host-range IncP-1 plasmids and their resistance potential. Front Microbiol 2013; 4:44. [PMID: 23471189 PMCID: PMC3590792 DOI: 10.3389/fmicb.2013.00044] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Accepted: 02/19/2013] [Indexed: 12/28/2022] Open
Abstract
The plasmids of the incompatibility (Inc) group IncP-1, also called IncP, as extrachromosomal genetic elements can transfer and replicate virtually in all Gram-negative bacteria. They are composed of backbone genes that encode a variety of essential functions and accessory genes that have implications for human health and environmental bioremediation. Broad-host-range IncP plasmids are known to spread genes between distinct phylogenetic groups of bacteria. These genes often code for resistances to a broad spectrum of antibiotics, heavy metals, and quaternary ammonium compounds used as disinfectants. The backbone of these plasmids carries modules that enable them to effectively replicate, move to a new host via conjugative transfer and to be stably maintained in bacterial cells. The adaptive, resistance, and virulence genes are mainly located on mobile genetic elements integrated between the functional plasmid backbone modules. Environmental studies have demonstrated the wide distribution of IncP-like replicons in manure, soils and wastewater treatment plants. They also are present in strains of pathogenic or opportunistic bacteria, which can be a cause for concern, because they may encode multiresistance. Their broad distribution suggests that IncP plasmids play a crucial role in bacterial adaptation by utilizing horizontal gene transfer. This review summarizes the variety of genetic information and physiological functions carried by IncP plasmids, which can contribute to the spread of antibiotic and heavy metal resistance while also mediating the process of bioremediation of pollutants. Due to the location of the resistance genes on plasmids with a broad-host-range and the presence of transposons carrying these genes it seems that the spread of these genes would be possible and quite hazardous in infection control. Future studies are required to determine the level of risk of the spread of resistance genes located on these plasmids.
Collapse
Affiliation(s)
- Magdalena Popowska
- Department of Applied Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw Warsaw, Poland
| | | |
Collapse
|
36
|
The IncF plasmid pRSB225 isolated from a municipal wastewater treatment plant's on-site preflooder combining antibiotic resistance and putative virulence functions is highly related to virulence plasmids identified in pathogenic E. coli isolates. Plasmid 2012; 69:127-37. [PMID: 23212116 DOI: 10.1016/j.plasmid.2012.11.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 11/12/2012] [Accepted: 11/18/2012] [Indexed: 11/22/2022]
Abstract
The IncF antibiotic resistance and virulence plasmid pRSB225, isolated from an unknown bacterium released with the purified wastewater from a municipal sewage treatment plant into the environment has been analysed at the genomic level by pyrosequencing. The 164,550bp plasmid comprises 210 coding sequences (cds). It is composed of three replicons (RepFIA, RepFIB, and RepFII) and encodes further plasmid-specific functions for stable maintenance and inheritance and conjugative plasmid transfer. The plasmid is self-transmissible and shows a narrow host range limited to the family Enterobacteriaceae. The accessory modules of the plasmid mainly comprise genes conferring resistance to ampicillin (bla(TEM-1b)), chloramphenicol (catA1), erythromycin (mphA), kanamycin and neomycin (aphA1), streptomycin (strAB), sulphonamides (sul2), tetracycline (tetA(B)) and trimethoprim (dfrA14), as well as mercuric ions (mer genes). In addition, putative virulence-associated genes coding for iron uptake (iutA/iucABCD, sitABCD, and a putative high-affinity Fe²⁺ uptake system) and for a toxin/antitoxin system (vagCD) were identified on the plasmid. All antibiotic and heavy metal resistance genes are located either on class 1 (Tn10-remnant, Tn4352B) and class 2 transposons (Tn2-remnant, Tn21, Tn402-remnant) or a class 1 integron, whereas almost all putative virulence genes are associated with IS elements (IS1, IS26), indicating that transposition and/or recombination events were responsible for acquisition of the accessory pRSB225 modules. Particular modules of plasmid pRSB225 are related to corresponding segments of different virulence plasmids harboured by pathogenic Escherichia coli strains. Moreover, pRSB225 modules were also detected in entero-aggregative-haemorrhagic E. coli (EAHEC) draft genome sequences suggesting that IncF plasmids related to pRSB225 mediated gene transfer into pathogenic E. coli derivatives.
Collapse
|
37
|
Pruden A, Arabi M, Storteboom HN. Correlation between upstream human activities and riverine antibiotic resistance genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11541-9. [PMID: 23035771 DOI: 10.1021/es302657r] [Citation(s) in RCA: 353] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Antimicrobial resistance remains a serious and growing human health challenge. The water environment may represent a key dissemination pathway of resistance elements to and from humans. However, quantitative relationships between landscape features and antibiotic resistance genes (ARGs) have not previously been identified. The objective of this study was to examine correlations between ARGs and putative upstream anthropogenic sources in the watershed. sul1 (sulfonamide) and tet(W) (tetracycline) were measured using quantitative polymerase chain reaction in bed and suspended sediment within the South Platte River Basin, which originates from a pristine region in the Rocky Mountains and runs through a gradient of human activities. A geospatial database was constructed to delineate surface water pathways from animal feeding operations, wastewater treatment plants, and fish hatchery and rearing units to river monitoring points. General linear regression models were compared. Riverine sul1 correlated with upstream capacities of animal feeding operations (R(2) = 0.35, p < 0.001) and wastewater treatment plants (R(2) = 0.34, p < 0.001). Weighting for the inverse distances from animal feeding operations along transport pathways strengthened the observed correlations (R(2) = 0.60-0.64, p < 0.001), suggesting the importance of these pathways in ARG dissemination. Correlations were upheld across the four sampling events during the year, and averaging sul1 measurements in bed and suspended sediments over all events yielded the strongest correlation (R(2) = 0.92, p < 0.001). Conversely, a significant relationship with landscape features was not evident for tet(W), which, in contrast to sul1, is broadly distributed in the pristine region and also relatively more prevalent in animal feeding operation lagoons. The findings highlight the need to focus attention on quantifying the contribution of water pathways to the antibiotic resistance disease burden in humans and offer insight into potential strategies to control the spread of ARGs.
Collapse
Affiliation(s)
- Amy Pruden
- Via Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA 24061, USA.
| | | | | |
Collapse
|
38
|
Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proc Natl Acad Sci U S A 2012; 109:4944-9. [PMID: 22411796 DOI: 10.1073/pnas.1107254109] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibiotic resistance is a worldwide public health concern. Conjugative transfer between closely related strains or species of bacteria is an important method for the horizontal transfer of multidrug-resistance genes. The extent to which nanomaterials are able to cause an increase in antibiotic resistance by the regulation of the conjugative transfer of antibiotic-resistance genes in bacteria, especially across genera, is still unknown. Here we show that nanomaterials in water can significantly promote the horizontal conjugative transfer of multidrug-resistance genes mediated by the RP4, RK2, and pCF10 plasmids. Nanoalumina can promote the conjugative transfer of the RP4 plasmid from Escherichia coli to Salmonella spp. by up to 200-fold compared with untreated cells. We also explored the mechanisms behind this phenomenon and demonstrate that nanoalumina is able to induce oxidative stress, damage bacterial cell membranes, enhance the expression of mating pair formation genes and DNA transfer and replication genes, and depress the expression of global regulatory genes that regulate the conjugative transfer of RP4. These findings are important in assessing the risk of nanomaterials to the environment, particularly from water and wastewater treatment systems, and in the estimation of the effect of manufacture and use of nanomaterials on the environment.
Collapse
|
39
|
Eikmeyer F, Hadiati A, Szczepanowski R, Wibberg D, Schneiker-Bekel S, Rogers LM, Brown CJ, Top EM, Pühler A, Schlüter A. The complete genome sequences of four new IncN plasmids from wastewater treatment plant effluent provide new insights into IncN plasmid diversity and evolution. Plasmid 2012; 68:13-24. [PMID: 22326849 DOI: 10.1016/j.plasmid.2012.01.011] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 11/16/2011] [Accepted: 01/20/2012] [Indexed: 10/14/2022]
Abstract
The dissemination of antibiotic resistance genes among bacteria often occurs by means of plasmids. Wastewater treatment plants (WWTP) were previously recognized as hot spots for the horizontal transfer of genetic material. One of the plasmid groups that is often associated with drug resistance is the incompatibility group IncN. The aim of this study was to gain insights into the diversity and evolutionary history of IncN plasmids by determining and comparing the complete genome sequences of the four novel multi-drug resistance plasmids pRSB201, pRSB203, pRSB205 and pRSB206 that were exogenously isolated from the final effluent of a municipal WWTP. Their sizes range between 42,875 bp and 56,488 bp and they share a common set of backbone modules that encode plasmid replication initiation, conjugative transfer, and plasmid maintenance and control. All plasmids are transferable at high rates between Escherichia coli strains, but did not show a broad host range. Different genes conferring resistances to ampicillin, streptomycin, spectinomycin, sulfonamides, tetracycline and trimethoprim were identified in accessory modules inserted in these plasmids. Comparative analysis of the four WWTP IncN plasmids and IncN plasmids deposited in the NCBI database enabled the definition of a core set of backbone genes for this group. Moreover, this approach revealed a close phylogenetic relationship between the IncN plasmids isolated from environmental and clinical samples. Phylogenetic analysis also suggests the existence of host-specific IncN plasmid subgroups. In conclusion, IncN plasmids likely contribute to the dissemination of resistance determinants between environmental bacteria and clinical strains. This is of particular importance since multi-drug resistance IncN plasmids have been previously identified in members of the Enterobacteriaceae that cause severe infections in humans.
Collapse
Affiliation(s)
- Felix Eikmeyer
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, D-33594 Bielefeld, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Zhang T, Zhang XX, Ye L. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS One 2011; 6:e26041. [PMID: 22016806 PMCID: PMC3189950 DOI: 10.1371/journal.pone.0026041] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Accepted: 09/16/2011] [Indexed: 11/19/2022] Open
Abstract
The overuse or misuse of antibiotics has accelerated antibiotic resistance, creating a major challenge for the public health in the world. Sewage treatment plants (STPs) are considered as important reservoirs for antibiotic resistance genes (ARGs) and activated sludge characterized with high microbial density and diversity facilitates ARG horizontal gene transfer (HGT) via mobile genetic elements (MGEs). However, little is known regarding the pool of ARGs and MGEs in sludge microbiome. In this study, the transposon aided capture (TRACA) system was employed to isolate novel plasmids from activated sludge of one STP in Hong Kong, China. We also used Illumina Hiseq 2000 high-throughput sequencing and metagenomics analysis to investigate the plasmid metagenome. Two novel plasmids were acquired from the sludge microbiome by using TRACA system and one novel plasmid was identified through metagenomics analysis. Our results revealed high levels of various ARGs as well as MGEs for HGT, including integrons, transposons and plasmids. The application of the TRACA system to isolate novel plasmids from the environmental metagenome, coupled with subsequent high-throughput sequencing and metagenomic analysis, highlighted the prevalence of ARGs and MGEs in microbial community of STPs.
Collapse
Affiliation(s)
- Tong Zhang
- Environmental Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China.
| | | | | |
Collapse
|
41
|
Demanèche S, Monier JM, Dugat-Bony E, Simonet P. Exploration of horizontal gene transfer between transplastomic tobacco and plant-associated bacteria. FEMS Microbiol Ecol 2011; 78:129-36. [PMID: 21564143 DOI: 10.1111/j.1574-6941.2011.01126.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The likelihood of gene transfer from transgenic plants to bacteria is dependent on the transgene copy number and on the presence of homologous sequences for recombination. The large number of chloroplast genomes in a plant cell as well as the prokaryotic origin of the transgene may thus significantly increase the likelihood of gene transfer from transplastomic plants to bacteria. In order to assess the probability of such a transfer, bacterial isolates, screened for their ability to colonize decaying tobacco plant tissue and possessing DNA sequence similarity to the chloroplastic genes accD and rbcL flanking the transgene (aadA), were tested for their ability to take up extracellular DNA (broad host-range pBBR1MCS-3-derived plasmid, transplastomic plant DNA and PCR products containing the genes accD-aadA-rbcL) by natural or electrotransformation. The results showed that among the 16 bacterial isolates tested, six were able to accept foreign DNA and acquire the spectinomycin resistance conferred by the aadA gene on plasmid, but none of them managed to integrate transgenic DNA in their chromosome. Our results provide no indication that the theoretical gene transfer-enhancing properties of transplastomic plants cause horizontal gene transfer at rates above those found in other studies with nuclear transgenes.
Collapse
Affiliation(s)
- Sandrine Demanèche
- Environmental Microbial Genomics Group, Laboratoire AMPERE, UMR CNRS 5005, Ecole Centrale de Lyon, Université de Lyon, Ecully, France.
| | | | | | | |
Collapse
|
42
|
Pinyon JL, Hall RM. Evolution of IncP-1α Plasmids by Acquisition of Antibiotic and Mercuric Ion Resistance Transposons. Microb Drug Resist 2011; 17:339-43. [DOI: 10.1089/mdr.2010.0196] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jeremy L. Pinyon
- School of Molecular Bioscience, The University of Sydney, Sydney, Australia
| | - Ruth M. Hall
- School of Molecular Bioscience, The University of Sydney, Sydney, Australia
| |
Collapse
|
43
|
Norberg P, Bergström M, Jethava V, Dubhashi D, Hermansson M. The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination. Nat Commun 2011; 2:268. [PMID: 21468020 PMCID: PMC3104523 DOI: 10.1038/ncomms1267] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Accepted: 03/08/2011] [Indexed: 01/24/2023] Open
Abstract
Plasmids are important members of the bacterial mobile gene pool, and are among the most important contributors to horizontal gene transfer between bacteria. They typically harbour a wide spectrum of host beneficial traits, such as antibiotic resistance, inserted into their backbones. Although these inserted elements have drawn considerable interest, evolutionary information about the plasmid backbones, which encode plasmid related traits, is sparse. Here we analyse 25 complete backbone genomes from the broad-host-range IncP-1 plasmid family. Phylogenetic analysis reveals seven clades, in which two plasmids that we isolated from a marine biofilm represent a novel clade. We also found that homologous recombination is a prominent feature of the plasmid backbone evolution. Analysis of genomic signatures indicates that the plasmids have adapted to different host bacterial species. Globally circulating IncP-1 plasmids hence contain mosaic structures of segments derived from several parental plasmids that have evolved in, and adapted to, different, phylogenetically very distant host bacterial species. Plasmids are present in many bacteria and are often transferred between different species causing horizontal gene transfer. By comparing the sequences of 25 plasmid DNA backbones, the authors show that homologous recombination is prevalent in plasmids and that the plasmids have adapted to persist in different host bacteria.
Collapse
Affiliation(s)
- Peter Norberg
- Department of Cell and Molecular Biology, Microbiology, University of Gothenburg, Box 462, SE 413 46, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
44
|
Zhang XX, Zhang T. Occurrence, abundance, and diversity of tetracycline resistance genes in 15 sewage treatment plants across China and other global locations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:2598-604. [PMID: 21388174 DOI: 10.1021/es103672x] [Citation(s) in RCA: 200] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Activated sludge was sampled from 15 sewage treatment plants (STPs) across China and other global locations to investigate the occurrence, abundance and diversity of tetracycline resistance genes (tet) in the STPs. Occurrence and abundance of 14 tet genes were determined using polymerase chain reaction (PCR) and quantitative real time PCR. Six genes (tet(A), tet(C), tet(G), tet(M), tet(S), and tet(X)) were detected in all the STPs, while no sludge sample contained tet(Q). Total concentration of the 14 genes was significantly different among the STPs and average tet abundance of the STPs varied greatly among the tet types (p<0.05). Tet(G) had the highest concentration in the STPs, followed by tet(C), tet(A) and tet(S). Phylogenetic diversity of the genes was investigated using DNA cloning. BLAST analysis showed that all of the 450 cloned sequences matched known tet genes, except for tet(G). The 56 tet(G) clones were grouped into 14 genotypes, among which type G24 had an identical sequence to tet(G) carried by Salmonella enterica or Acinetobacter baumannii, while the other sequences had low similarity to the known genes in GenBank. The results of this study might be useful to understand the diversity of these resistance genes in STPs.
Collapse
Affiliation(s)
- Xu-Xiang Zhang
- Environmental Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
45
|
Phylogeny of replication initiator protein TrfA reveals a highly divergent clade of incompatibility group P1 plasmids. Appl Environ Microbiol 2011; 77:2522-6. [PMID: 21296948 DOI: 10.1128/aem.02789-10] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Incompatibility group P1 (IncP-1) plasmid diversity was evaluated based on replication initiator protein (TrfA) phylogeny. A new and highly divergent clade was identified. Replication assays indicated that TrfA of recently discovered IncP-1 plasmids from Xylella fastidiosa and Verminephrobacter eiseniae initiated plasmid replication using cognate or heterologous origins of replication.
Collapse
|
46
|
Szczepanowski R, Eikmeyer F, Harfmann J, Blom J, Rogers LM, Top EM, Schlüter A. Sequencing and comparative analysis of IncP-1α antibiotic resistance plasmids reveal a highly conserved backbone and differences within accessory regions. J Biotechnol 2010; 155:95-103. [PMID: 21115076 DOI: 10.1016/j.jbiotec.2010.11.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/08/2010] [Accepted: 11/20/2010] [Indexed: 10/18/2022]
Abstract
Although IncP-1 plasmids are important for horizontal gene transfer among bacteria, in particular antibiotic resistance spread, so far only three plasmids from the subgroup IncP-1α have been completely sequenced. In this study we doubled this number. The three IncP-1α plasmids pB5, pB11 and pSP21 were isolated from bacteria of two different sewage treatment plants and sequenced by a combination of next-generation and capillary sequencing technologies. A comparative analysis including the previously analysed IncP-1α plasmids RK2, pTB11 and pBS228 revealed a highly conserved plasmid backbone (at least 99.9% DNA sequence identity) comprising 54 core genes. The accessory elements of the plasmid pB5 constitute a class 1 integron interrupting the parC gene and an IS6100 copy inserted into the integron. In addition, the tetracycline resistance genes tetAR and the ISTB11-like element are located between the klc operon and the trfA-ssb operon. Plasmid pB11 is loaded with a Tn5053-like mercury resistance transposon between the parCBA and parDE operons and contains tetAR that are identical to those identified in plasmid pB5 and the insertion sequence ISSP21. Plasmid pSP21 harbours an ISPa7 element in a Tn402 transposon including a class 1 integron between the partitioning genes parCBA and parDE. The IS-element ISSP21 (99.89% DNA sequence identity to ISSP21 from pB11), inserted downstream of the tetR gene and a copy of ISTB11 (identical to ISTB11 on pTB11) inserted between the genes pncA and pinR. On all three plasmids the accessory genes are almost always located between the backbone modules confirming the importance of the backbone functions for plasmid maintenance. The striking backbone conservation among the six completely sequenced IncP-1α plasmids is in contrast to the much higher diversity within the IncP-1β subgroup.
Collapse
Affiliation(s)
- Rafael Szczepanowski
- Institute for Genome Research and Systems Biology, Center for Biotechnology, Bielefeld University, D-33594 Bielefeld, Germany.
| | | | | | | | | | | | | |
Collapse
|
47
|
Petrovski S, Stanisich VA. Tn502 and Tn512 are res site hunters that provide evidence of resolvase-independent transposition to random sites. J Bacteriol 2010; 192:1865-74. [PMID: 20118251 PMCID: PMC2838034 DOI: 10.1128/jb.01322-09] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2009] [Accepted: 01/21/2010] [Indexed: 11/20/2022] Open
Abstract
In this study, we report on the transposition behavior of the mercury(II) resistance transposons Tn502 and Tn512, which are members of the Tn5053 family. These transposons exhibit targeted and oriented insertion in the par region of plasmid RP1, since par-encoded components, namely, the ParA resolvase and its cognate res region, are essential for such transposition. Tn502 and, under some circumstances, Tn512 can transpose when par is absent, providing evidence for an alternative, par-independent pathway of transposition. We show that the alternative pathway proceeds by a two-step replicative process involving random target selection and orientation of insertion, leading to the formation of cointegrates as the predominant product of the first stage of transposition. Cointegrates remain unresolved because the transposon-encoded (TniR) recombination system is relatively inefficient, as is the host-encoded (RecA) system. In the presence of the res-ParA recombination system, TniR-mediated (and RecA-mediated) cointegrate resolution is highly efficient, enabling resolution both of cointegrates involving functional transposons (Tn502 and Tn512) and of defective elements (In0 and In2). These findings implicate the target-encoded accessory functions in the second stage of transposition as well as in the first. We also show that the par-independent pathway enables the formation of deletions in the target molecule.
Collapse
Affiliation(s)
- Steve Petrovski
- Department of Microbiology, La Trobe University, Victoria 3086, Australia
| | - Vilma A. Stanisich
- Department of Microbiology, La Trobe University, Victoria 3086, Australia
| |
Collapse
|
48
|
Rosewarne CP, Pettigrove V, Stokes HW, Parsons YM. Class 1 integrons in benthic bacterial communities: abundance, association with Tn402-like transposition modules and evidence for coselection with heavy-metal resistance. FEMS Microbiol Ecol 2009; 72:35-46. [PMID: 20132306 DOI: 10.1111/j.1574-6941.2009.00823.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The integron/gene cassette system contributes to lateral gene transfer of genetic information in bacterial communities, with gene cassette-encoded proteins potentially playing an important role in adaptation to stress. Class 1 integrons are a particularly important class as they themselves seem to be broadly disseminated among the Proteobacteria and have an established role in the spread of antibiotic resistance genes. The abundance and structure of class 1 integrons in freshwater sediment bacterial communities was assessed through sampling of 30 spatially distinct sites encompassing different substrate and catchment types from the Greater Melbourne Area of Victoria, Australia. Real-time PCR was used to demonstrate that the abundance of intI1 was increased as a result of ecosystem perturbation, indicated by classification of sample locations based on the catchment type and a strong positive correlation with the first principal component factor score, comprised primarily of the heavy metals zinc, mercury, lead and copper. Additionally, the abundance of intI1 at sites located downstream from treated sewage outputs was associated with the percentage contribution of the discharge to the basal flow rate. Characterization of class 1 integrons in bacteria cultured from selected sediment samples identified an association with complete Tn402-like transposition modules, and the potential for coselection of heavy-metal and antibiotic resistance mechanisms in benthic environments.
Collapse
Affiliation(s)
- Carly P Rosewarne
- Department of Genetics, La Trobe University, Bundoora, Vic., Australia.
| | | | | | | |
Collapse
|
49
|
Dispersal of carbapenemase blaVIM-1 gene associated with different Tn402 variants, mercury transposons, and conjugative plasmids in Enterobacteriaceae and Pseudomonas aeruginosa. Antimicrob Agents Chemother 2009; 54:320-7. [PMID: 19901094 DOI: 10.1128/aac.00783-09] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The emergence of bla(VIM-1) within four different genetic platforms from distinct Enterobacteriaceae and Pseudomonas aeruginosa isolates in an area with a low prevalence of metallo-beta-lactamase producers is reported. Forty-three VIM-1-producing isolates (including 19 Enterobacter cloacae, 2 Escherichia coli, and 2 P. aeruginosa isolates, 18 Klebsiella pneumoniae isolate, and 2 Klebsiella oxytoca isolate) recovered from 2005 to 2007 and corresponding to 15 pulsed-field gel electrophoresis types were studied. The Enterobacteriaceae isolates corresponded to a hospital outbreak, and the P. aeruginosa isolates were sporadically recovered. The genetic context of the integrons carrying bla(VIM-1) (arbitrarily designated types A, B, C, and D) was characterized by PCR mapping based on known Tn402 and mercury transposons and further sequencing. Among Enterobacteriaceae isolates, bla(VIM-1) was part of integrons located either in an In2-Tn402 element linked to Tn21 (type A; In110-bla(VIM-1)-aacA4-aadA1) or in a Tn402 transposon lacking the whole tni module [type B; In113-bla(VIM-1)-aacA4-dhfrII (also called dfrB1)-aadA1-catB2] and the transposon was associated with an IncHI2 or IncI1 plasmid, respectively. Among P. aeruginosa isolates, bla(VIM-1) was part of a new gene cassette array located in a defective Tn402 transposon carrying either tniBDelta3 and tniA (type C; bla(VIM-1)-aadA1) or tniC and DeltatniQ (type D; bla(VIM-1)-aadB), and both Tn402 variants were associated with conjugative plasmids of 30 kb. The dissemination of bla(VIM-1) was associated with different genetic structures and bacterial hosts, depicting a complex emergence and evolutionary network scenario in our facility, Ramón y Cajal University Hospital, Madrid, Spain. Knowledge of the complex epidemiology of bla(VIM-1) is necessary to control this emerging threat.
Collapse
|
50
|
Bahl MI, Burmølle M, Meisner A, Hansen LH, Sørensen SJ. All IncP-1 plasmid subgroups, including the novel ε subgroup, are prevalent in the influent of a Danish wastewater treatment plant. Plasmid 2009; 62:134-9. [DOI: 10.1016/j.plasmid.2009.05.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 05/27/2009] [Accepted: 05/29/2009] [Indexed: 11/26/2022]
|