1
|
Nagy YI, Hussein MMM, Ragab YM, Attia AS. Isogenic mutations in the Moraxella catarrhalis CydDC system display pleiotropic phenotypes and reveal the role of a palindrome sequence in its transcriptional regulation. Microbiol Res 2017. [PMID: 28647125 DOI: 10.1016/j.micres.2017.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Moraxella catarrhalis is becoming an important human respiratory tract pathogen affecting significant proportions from the population. However, still little is known about its physiology and molecular regulation. To this end, the CydDC, which is a heterodimeric ATP binding cassette transporter that has been shown to contribute to the maintenance of the redox homeostasis across the periplasm in other Gram-negative bacteria, is studied here. Amino acids multiple sequence alignments indicated that M. catarrhalis CydC is different from the CydC proteins of the bacterial species in which this system has been previously studied. These findings prompted further interest in studying this system in M. catarrhalis. Isogenic mutant in the CydDC system showed suppression in growth rate, hypersensitivity to oxidative and reductive stress and increased accumulation of intracellular cysteine levels. In addition, the growth of cydC- mutant exhibited hypersensitivity to exogenous cysteine; however, it did not display a significant difference from its wild-type counterpart in the murine pulmonary clearance model. Moreover, a palindrome was detected 94bp upstream of the cydD ORF suggesting it might act as a potential regulatory element. Real-time reverse transcription-PCR analysis showed that deletion/change in the palindrome resulted into alterations in the transcription levels of cydC. A better understanding of such system and its regulation helps in developing better ways to combat M. catarrhalis infections.
Collapse
Affiliation(s)
- Yosra I Nagy
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Manal M M Hussein
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Yasser M Ragab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Ahmed S Attia
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.
| |
Collapse
|
2
|
Evans AS, Pybus C, Hansen EJ. Development of a LacZ-based transcriptional reporter system for use with Moraxella catarrhalis. Plasmid 2012; 69:180-5. [PMID: 23219721 DOI: 10.1016/j.plasmid.2012.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 11/20/2012] [Indexed: 01/13/2023]
Abstract
The lack of a transcriptional reporter system for use in Moraxella catarrhalis has hindered studies of gene regulation in this pathogen. PCR and recombinant DNA methods were used to insert a multicloning site (MCS) and promoterless full-length Escherichia coli lacZ gene, flanked by transcriptional terminators both immediately upstream and downstream, into the M. catarrhalis recombinant plasmid pWW115. Insertion into the MCS in the newly constructed plasmid pASE222 of M. catarrhalis promoter regions controlled by either a repressor (i.e., NsrR) or activator (i.e., PhoB) yielded transcriptional fusion constructs that were appropriately responsive to signal inputs dependent on the host strain genotype, as measured quantitatively by means of a Miller β-galactosidase assay. The transcriptional reporter plasmid pASE222 should prove to be a useful tool for rapid screening of factors affecting gene expression in M. catarrhalis.
Collapse
Affiliation(s)
- Amanda S Evans
- Department of Pediatrics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA.
| | | | | |
Collapse
|
3
|
Hays J. Mobile genetic elements in Moraxella catarrhalis. Mob Genet Elements 2011; 1:155-158. [PMID: 22016866 DOI: 10.4161/mge.1.2.17632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Revised: 08/04/2011] [Accepted: 08/04/2011] [Indexed: 12/26/2022] Open
Abstract
Moraxella catarrhalis is a Gram-negative diplococcus that is a strict human pathogen, which for a long period of time was regarded as a simple commensal. Research now shows that this organism is a pathogen its own right and is associated with both upper and lower respiratory tract infections. Further, there appears to be a dichotomy in the pathogenic potential of M. catarrhalis with upper respiratory tract infections mainly occurring in children, and lower respiratory tract infections mainly occurring in adults with predisposing pulmonary complications e.g., chronic obstructive pulmonary disease (COPD).
Collapse
Affiliation(s)
- John Hays
- Deptartment of Medical Microbiology and Infectious Disease; Erasmus MC; Rotterdam, The Netherlands
| |
Collapse
|
4
|
Wang W, Kinkel T, Martens-Habbena W, Stahl DA, Fang FC, Hansen EJ. The Moraxella catarrhalis nitric oxide reductase is essential for nitric oxide detoxification. J Bacteriol 2011; 193:2804-13. [PMID: 21441505 PMCID: PMC3133116 DOI: 10.1128/jb.00139-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2011] [Accepted: 03/16/2011] [Indexed: 12/24/2022] Open
Abstract
Moraxella catarrhalis is a Gram-negative obligate aerobe that is an important cause of human respiratory tract infections. The M. catarrhalis genome encodes a predicted truncated denitrification pathway that reduces nitrate to nitrous oxide. We have previously shown that expression of both the M. catarrhalis aniA (encoding a nitrite reductase) and norB (encoding a putative nitric oxide reductase) genes is repressed by the transcriptional regulator NsrR under aerobic conditions and that M. catarrhalis O35E nsrR mutants are unable to grow in the presence of low concentrations of nitrite (W. Wang, et al., J. Bacteriol. 190:7762-7772, 2008). In this study, we constructed an M. catarrhalis norB mutant and showed that planktonic growth of this mutant is inhibited by low levels of nitrite, whether or not an nsrR mutation is present. To determine the importance of NorB in this truncated denitrification pathway, we analyzed the metabolism of nitrogen oxides by norB, aniA norB, and nsrR norB mutants. We found that norB mutants are unable to reduce nitric oxide and produce little or no nitrous oxide from nitrite. Furthermore, nitric oxide produced from nitrite by the AniA protein is bactericidal for a Moraxella catarrhalis O35E norB mutant but not for wild-type O35E bacteria under aerobic growth conditions in vitro, suggesting that nitric oxide catabolism in M. catarrhalis is accomplished primarily by the norB gene product. Measurement of bacterial protein S-nitrosylation directly implicates nitrosative stress resulting from AniA-dependent nitric oxide formation as a cause of the growth inhibition of norB and nsrR mutants by nitrite.
Collapse
Affiliation(s)
- Wei Wang
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas 753901, USA.
| | | | | | | | | | | |
Collapse
|
5
|
Wang W, Richardson AR, Martens-Habbena W, Stahl DA, Fang FC, Hansen EJ. Identification of a repressor of a truncated denitrification pathway in Moraxella catarrhalis. J Bacteriol 2008; 190:7762-72. [PMID: 18820017 PMCID: PMC2583601 DOI: 10.1128/jb.01032-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 09/17/2008] [Indexed: 01/02/2023] Open
Abstract
Growth of Moraxella catarrhalis in a biofilm resulted in marked upregulation of two open reading frames (ORFs), aniA and norB, predicted to encode a nitrite reductase and a nitric oxide reductase, respectively (W. Wang, L. Reitzer, D. A. Rasko, M. M. Pearson, R. J. Blick, C. Laurence, and E. J. Hansen, Infect. Immun. 75:4959-4971, 2007). An ORF designated nsrR, which was located between aniA and norB, was shown to encode a predicted transcriptional regulator. Inactivation of nsrR resulted in increased expression of aniA and norB in three different M. catarrhalis strains, as measured by both DNA microarray analysis and quantitative reverse transcriptase PCR. Provision of a wild-type nsrR gene in trans in an nsrR mutant resulted in decreased expression of the AniA protein. DNA microarray analysis revealed that two other ORFs (MC ORF 683 and MC ORF 1550) were also consistently upregulated in an nsrR mutant. Consumption of both nitrite and nitric oxide occurred more rapidly with cells of an nsrR mutant than with wild-type cells. However, growth of nsrR mutants was completely inhibited by a low level of sodium nitrite. This inhibition of growth by nitrite was significantly reversed by introduction of an aniA mutation into the nsrR mutant and was completely reversed by the presence of a wild-type nsrR gene in trans. NsrR regulation of the expression of aniA was sensitive to nitrite, whereas NsrR regulation of norB was sensitive to nitric oxide.
Collapse
Affiliation(s)
- Wei Wang
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| | | | | | | | | | | |
Collapse
|
6
|
Bullard B, Lipski S, Lafontaine ER. Regions important for the adhesin activity of Moraxella catarrhalis Hag. BMC Microbiol 2007; 7:65. [PMID: 17608944 PMCID: PMC1931440 DOI: 10.1186/1471-2180-7-65] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Accepted: 07/03/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Moraxella catarrhalis Hag protein, an Oca autotransporter adhesin, has previously been shown to be important for adherence of this respiratory tract pathogen to human middle ear and A549 lung cells. RESULTS The present study demonstrates that adherence of M. catarrhalis isogenic hag mutant strains to the human epithelial cell lines Chang (conjunctival) and NCIH292 (lung) is reduced by 50-93%. Furthermore, expressing Hag in a heterologous Escherichia coli background substantially increased the adherence of recombinant bacteria to NCIH292 cells and murine type IV collagen. Hag did not, however, increase the attachment of E. coli to Chang cells. These results indicate that Hag directly mediates adherence to NCIH292 lung cells and collagen, but is not sufficient to confer binding to conjunctival monolayers. Several in-frame deletions were engineered within the hag gene of M. catarrhalis strain O35E and the resulting proteins were tested for their ability to mediate binding to NCIH292 monolayers, middle ear cells, and type IV collagen. These experiments revealed that epithelial cell and collagen binding properties are separable, and that residues 385-705 of this ~2,000 amino acid protein are important for adherence to middle ear and NCIH292 cells. The region of O35E-Hag encompassing aa 706 to 1194 was also found to be required for adherence to collagen. In contrast, beta-roll repeats present in Hag, which are structural features conserved in several Oca adhesins and responsible for the adhesive properties of Yersinia enterocolitica YadA, are not important for Hag-mediated adherence. CONCLUSION Hag is a major adherence factor for human cells derived from various anatomical sites relevant to pathogenesis by M. catarrhalis and its structure-function relationships differ from those of other, closely-related autotransporter proteins.
Collapse
Affiliation(s)
- Brian Bullard
- Department of Medical Microbiology and Immunology, University of Toledo Health Sciences Campus, 3055 Arlington Avenue, Toledo, OH, 43614, USA
| | - Serena Lipski
- Department of Medical Microbiology and Immunology, University of Toledo Health Sciences Campus, 3055 Arlington Avenue, Toledo, OH, 43614, USA
| | - Eric R Lafontaine
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, Athens, GA, 30602, USA
| |
Collapse
|
7
|
Pearson MM, Hansen EJ. Identification of gene products involved in biofilm production by Moraxella catarrhalis ETSU-9 in vitro. Infect Immun 2007; 75:4316-25. [PMID: 17562762 PMCID: PMC1951151 DOI: 10.1128/iai.01347-06] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis ETSU-9 was subjected to random transposon insertion mutagenesis to identify genes encoding products involved in the ability of the organism to form biofilms in vitro. Screening of approximately 3,000 transposon insertion mutants in the crystal violet-based biofilm assay system yielded six mutants that exhibited greatly reduced abilities to form biofilms. Three of these mutants had transposon insertions in the uspA2H gene, which encodes a surface protein previously shown to be involved in the ability of M. catarrhalis to both attach to human cell lines in vitro and resist killing by normal human serum. Random insertion mutagenesis of the uspA2H gene, involving the introduction of a 15-nucleotide fragment encoding 5 amino acids, was used to attempt to identify the domain(s) necessary for biofilm formation. Most of these insertions adversely affected biofilm formation, whereas the abilities of these same mutants to attach to Chang conjunctival epithelial cells in vitro were usually not reduced. Gain-of-function experiments showed that introduction of the M. catarrhalis ETSU-9 uspA2H gene into Escherichia coli conferred biofilm formation ability on this recombinant strain. Two of the other three M. catarrhalis ETSU-9 transposon insertion mutants that had greatly reduced abilities to form biofilms were shown to have insertions in genes encoding products predicted to be directly or indirectly involved in cell wall metabolism.
Collapse
Affiliation(s)
- Melanie M Pearson
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| | | |
Collapse
|
8
|
Balder R, Hassel J, Lipski S, Lafontaine ER. Moraxella catarrhalis strain O35E expresses two filamentous hemagglutinin-like proteins that mediate adherence to human epithelial cells. Infect Immun 2007; 75:2765-75. [PMID: 17371858 PMCID: PMC1932885 DOI: 10.1128/iai.00079-07] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two-partner secretion (TPS) systems are a family of proteins being rapidly identified and characterized in a growing number of gram-negative bacteria. TPS systems mediate the secretion of proteins, many involved in virulence traits such as hemolysis, adherence to epithelial cells, inhibition of bacterial growth, and immunomodulation of the host. A TPS system typically consists of a transporter located in the bacterial outer membrane (OM) which is responsible for the recognition and secretion of at least one large exoprotein. Two of the better-characterized TPS systems specify the Bordetella pertussis FHA and Haemophilus influenzae HMW1/HMW2 proteins. We identified three gene products of Moraxella catarrhalis strain O35E that resemble TPS proteins and designated them MhaC (transporter), MhaB1 (exoprotein), and MhaB2 (exoprotein). Western blot analysis using anti-MhaC, or antibodies reacting to both MhaB1 and MhaB2 (MhaB-reactive), revealed that these antigens are expressed in the OM of 63% of isolates tested. Mutations in the mhaC gene specifying the putative transporter of the M. catarrhalis wild-type strains O35E, O12E, and McGHS1 resulted in the absence of MhaB1/MhaB2 in the OM of mutants. These results are therefore consistent with the Mha proteins functioning as a TPS system. Furthermore, we discovered that these mhaC mutants exhibit markedly decreased binding to human epithelial cells relevant to pathogenesis by M. catarrhalis (Chang, HEp2, A549, and/or 16HBE14o(-)). Expression of O12E MhaC and MhaB1 in a nonadherent strain of Escherichia coli was found to increase the adherence of recombinant bacteria to HEp2 monolayers by sevenfold, thereby demonstrating that this M. catarrhalis TPS system directly mediates binding to human epithelial cells. The construction of isogenic mutants in the mhaB1 and mhaB2 genes of strain O35E also suggests that the MhaB proteins play distinct roles in M. catarrhalis adherence.
Collapse
Affiliation(s)
- Rachel Balder
- Department of Infectious Diseases, University of Georgia College of Veterinary Medicine, 220 Riverbend Road, South Building Room 146, Athens, GA 30602, USA
| | | | | | | |
Collapse
|
9
|
Wang W, Pearson MM, Attia AS, Blick RJ, Hansen EJ. A UspA2H-negative variant of Moraxella catarrhalis strain O46E has a deletion in a homopolymeric nucleotide repeat common to uspA2H genes. Infect Immun 2007; 75:2035-45. [PMID: 17220316 PMCID: PMC1865690 DOI: 10.1128/iai.00609-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis strains can express either a UspA2 protein or a UspA2H protein. The latter protein is encoded by a gene that possesses a homopolymeric nucleotide tract containing eight adenine (A) residues [i.e., a poly(A) tract] which is located near the 5' end. A spontaneous UspA2H-negative variant of M. catarrhalis strain O46E, designated O46E.U2V, was found to have a uspA2H poly(A) tract that contained seven A residues. Northern blot analysis of total RNA from the O46E parent strain revealed a readily detectable uspA2H mRNA transcript, whereas little or no uspA2H transcript was detectable in total RNA from the UspA2H-negative variant O46E.U2V. The 5' end of the uspA2H genes from both the O46E parent strain and the O46E.U2V variant were ligated to a promoterless lacZ gene to prepare translational fusions for use as reporter constructs. The level of beta-galactosidase activity expressed by the fusion construct containing eight A residues in its poly(A) tract was 200-fold greater than that obtained with the construct that had seven A residues. Site-directed mutagenesis of the 5' end of the uspA2H gene confirmed that translation was initiated at a GTG codon located 21 nucleotides (nt) upstream of the poly(A) tract. Primer extension analysis determined that the transcriptional start site of the uspA2H gene was located 291 nt upstream from the GTG translational start codon. This poly(A) tract was also found to be present in the uspA2H genes of other M. catarrhalis strains.
Collapse
MESH Headings
- Amino Acid Sequence
- Artificial Gene Fusion
- Bacterial Outer Membrane Proteins/chemistry
- Bacterial Outer Membrane Proteins/genetics
- Base Sequence
- Blotting, Northern
- Codon, Initiator
- Gene Expression
- Genes, Reporter
- Molecular Sequence Data
- Moraxella catarrhalis/genetics
- Mutagenesis, Site-Directed
- Open Reading Frames
- Poly A/genetics
- RNA, Bacterial/analysis
- RNA, Bacterial/genetics
- RNA, Bacterial/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Deletion
- Transcription Initiation Site
- Transcription, Genetic
- beta-Galactosidase/analysis
- beta-Galactosidase/genetics
Collapse
Affiliation(s)
- Wei Wang
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | | | | | | | | |
Collapse
|
10
|
Wang W, Hansen EJ. Plasmid pWW115, a cloning vector for use with Moraxella catarrhalis. Plasmid 2006; 56:133-7. [PMID: 16757025 DOI: 10.1016/j.plasmid.2006.03.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 03/15/2006] [Accepted: 03/18/2006] [Indexed: 11/25/2022]
Abstract
The plasmid shuttle vector pWW102B is able to replicate in only a modest number of Moraxella catarrhalis strains. Plasmid pWW115, a spontaneous deletion mutant of pWW102B, was shown to lack both the pACYC184-derived origin of replication and the associated chloramphenicol-resistance gene but was able to replicate in every M. catarrhalis strain tested in this study, including one strain that had been previously refractory to all types of genetic manipulations. To test the utility of this plasmid, a M. catarrhalis gene encoding the UspA2 serum-resistance factor was cloned into pWW115 and the resultant recombinant plasmid was shown to confer serum-resistance on a serum-sensitive M. catarrhalis uspA2 mutant.
Collapse
Affiliation(s)
- Wei Wang
- Department of Microbiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| | | |
Collapse
|