1
|
Buelow E, Dauga C, Carrion C, Mathé-Hubert H, Achaibou S, Gaschet M, Jové T, Chesneau O, Kennedy SP, Ploy MC, Da Re S, Dagot C. Hospital and urban wastewaters shape the matrix and active resistome of environmental biofilms. WATER RESEARCH 2023; 244:120408. [PMID: 37678036 DOI: 10.1016/j.watres.2023.120408] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 09/09/2023]
Abstract
Understanding the dynamics of antibiotic resistance gene (ARG) transfer and dissemination in natural environments remains challenging. Biofilms play a crucial role in bacterial survival and antimicrobial resistance (AMR) dissemination in natural environments, particularly in aquatic systems. This study focused on hospital and urban wastewater (WW) biofilms to investigate the potential for ARG dissemination through mobile genetic elements (MGEs). The analysis included assessing the biofilm extracellular polymeric substances (EPS), microbiota composition as well as metatranscriptomic profiling of the resistome and mobilome. We produced both in vitro and in situ biofilms and performed phenotypic and genomic analyses. In the in vitro setup, untreated urban and hospital WW was used to establish biofilm reactors, with ciprofloxacin added as a selective agent at minimal selective concentration. In the in situ setup, biofilms were developed directly in hospital and urban WW pipes. We first showed that a) the composition of EPS differed depending on the growth environment (in situ and in vitro) and the sampling origin (hospital vs urban WW) and that b) ciprofloxacin impacted the composition of the EPS. The metatranscriptomic approach showed that a) expression of several ARGs and MGEs increased upon adding ciprofloxacin for biofilms from hospital WW only and b) that the abundance and type of plasmids that carried individual or multiple ARGs varied depending on the WW origins of the biofilms. When the same plasmids were present in both, urban and hospital WW biofilms, they carried different ARGs. We showed that hospital and urban wastewaters shaped the structure and active resistome of environmental biofilms, and we confirmed that hospital WW is an important hot spot for the dissemination and selection of antimicrobial resistance. Our study provides a comprehensive assessment of WW biofilms as crucial hotspots for ARG transfer. Hospital WW biofilms exhibited distinct characteristics, including higher eDNA abundance and expression levels of ARGs and MGEs, highlighting their role in antimicrobial resistance dissemination. These findings emphasize the importance of understanding the structural, ecological, functional, and genetic organization of biofilms in anthropized environments and their contribution to antibiotic resistance dynamics.
Collapse
Affiliation(s)
- Elena Buelow
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000, Limoges, France; CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Univ. Grenoble Alpes, 38000, Grenoble, France.
| | - Catherine Dauga
- Institut Pasteur, Département Biologie Computationnelle, Université Paris Cité, F-75015, Paris, France; Biomics Pole, CITECH, Institut Pasteur, F-75015, Paris, France
| | - Claire Carrion
- CNRS, INSERM, CHU Limoges, BISCEm, UAR 2015, US 42, Univ. Limoges, F-87000, Limoges, France
| | - Hugo Mathé-Hubert
- CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Sophia Achaibou
- Biomics Pole, CITECH, Institut Pasteur, F-75015, Paris, France
| | - Margaux Gaschet
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000, Limoges, France
| | - Thomas Jové
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000, Limoges, France
| | - Olivier Chesneau
- Collection de l'Institut Pasteur (CIP), Microbiology Department, Institut Pasteur, Paris, 75015, France
| | - Sean P Kennedy
- Institut Pasteur, Département Biologie Computationnelle, Université Paris Cité, F-75015, Paris, France
| | - Marie-Cecile Ploy
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000, Limoges, France
| | - Sandra Da Re
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000, Limoges, France
| | - Christophe Dagot
- INSERM, CHU Limoges, RESINFIT, U1092, Univ. Limoges, F-87000, Limoges, France
| |
Collapse
|
2
|
Vereecke N, Vandekerckhove A, Theuns S, Haesebrouck F, Boyen F. Whole genome sequencing to study antimicrobial resistance and RTX virulence genes in equine Actinobacillus isolates. Vet Res 2023; 54:33. [PMID: 37020296 PMCID: PMC10074821 DOI: 10.1186/s13567-023-01160-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Actinobacillus equuli is mostly associated with disease in horses and is most widely known as the causative agent of sleepy foal disease. Even though existing phenotypic tools such as biochemical tests, 16S rRNA gene sequencing, and Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF MS) can be used to identify members of the Actinobacillus genus, these methods struggle to differentiate between certain species and do not allow strain, virulence, and antimicrobial susceptibility typing. Hence, we performed in-depth analysis of 24 equine Actinobacillus isolates using phenotypic identification and susceptibility testing on the one hand, and long-read nanopore whole genome sequencing on the other hand. This allowed to address strain divergence down to the whole genome single nucleotide polymorphism (SNP) level. While lowest resolution was observed for 16S rRNA gene classification, a new multi-locus sequence typing (MLST) scheme allowed proper classification up to the species level. Nevertheless, a SNP-level analysis was required to distinguish A. equuli subspecies equuli and haemolyticus. Our data provided first WGS data on Actinobacillus genomospecies 1, Actinobacillus genomospecies 2, and A. arthritidis, which allowed the identification of a new Actinobacillus genomospecies 1 field isolate. Also, in-depth characterization of RTX virulence genes provided information on the distribution, completeness, and potential complementary nature of the RTX gene operons within the Actinobacillus genus. Even though overall low prevalence of acquired resistance was observed, two plasmids were identified conferring resistance to penicillin-ampicillin-amoxicillin and chloramphenicol in one A. equuli strain. In conclusion our data delivered new insights in the use of long-read WGS in high resolution identification, virulence gene typing, and antimicrobial resistance (AMR) of equine Actinobacillus species.
Collapse
Affiliation(s)
- Nick Vereecke
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
- PathoSense BV, Lier, Belgium.
| | - Arlette Vandekerckhove
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | | | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Filip Boyen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
3
|
Yao X, Song Q, Zhu W, Wei J, Shao D, Liu K, Li Z, Qiu Y, Ma Z, Xia L, Li B. Characterization of small plasmids carrying florfenicol resistance gene floR in Actinobacillus pleuropneumoniae and Pasteurella multocida isolates from swine in China. Front Vet Sci 2023; 10:1084491. [PMID: 36793377 PMCID: PMC9922843 DOI: 10.3389/fvets.2023.1084491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/12/2023] [Indexed: 02/03/2023] Open
Abstract
Actinobacillus pleuropneumoniae and Pasteurella multocida are two important bacterial pathogens in swine industry. In the present study, resistance profiles of nine commonly used antibiotics of A. pleuropneumoniae and P. multocida isolates of swine origin from different regions of China were investigated by determination of minimum inhibitory concentrations (MICs). In addition, genetic relationship of the florfenicol-resistant A. pleuropneumoniae and P. multocida isolates was determined by pulsed-field gel electrophoresis (PFGE). The genetic basis of florfenicol resistance in these isolates were explored by floR detection and whole genome sequencing. High resistance rates (>25%) of florfenicol, tetracycline and trimethoprim- sulfamethoxazole were observed for both bacteria. No ceftiofur- and tiamulin- resistant isolates were detected. Furthermore, all the 17 florfenicol-resistant isolates (nine for A. pleuropneumoniae and eight for P. multocida) were positive for floR gene. The presence of similar PFGE types in these isolates suggested that clonal expansion of some floR-producing strains occurred in the pig farms from same regions. WGS and PCR screening showed that three plasmids, named pFA11, pMAF5, and pMAF6, were the cargos of the floR genes in the 17 isolates. Plasmid pFA11 exhibited novel structure and carried several resistance genes, including floR, sul2, aacC2d, strA, strB, and bla ROB - 1. Plasmids pMAF5 and pMAF6 were presented in A. pleuropneumoniae and P. multocida isolates from different regions, suggesting horizontal transfer of the two plasmids are important for the floR dissemination in these Pasteurellaceae pathogens. Further studies of florfenicol resistance and its transfer vectors in Pasteurellaceae bacteria of veterinary origin are warranted.
Collapse
Affiliation(s)
- Xiaohui Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,College of Veterinary Medicine, Xinjiang Agricultural University, Urmuqi, China
| | - Qiangqiang Song
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,College of Veterinary Medicine, Xinjiang Agricultural University, Urmuqi, China
| | - Wei Zhu
- Tengzhou Animal Disease Prevention and Control Center of Shandong Province, Tengzhou, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Lining Xia
- College of Veterinary Medicine, Xinjiang Agricultural University, Urmuqi, China,*Correspondence: Lining Xia ✉
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China,Beibei Li ✉
| |
Collapse
|
4
|
Detection of Acquired Antibiotic Resistance Genes in Domestic Pig (Sus scrofa) and Common Carp (Cyprinus carpio) Intestinal Samples by Metagenomics Analyses in Hungary. Antibiotics (Basel) 2022; 11:antibiotics11101441. [PMID: 36290099 PMCID: PMC9598914 DOI: 10.3390/antibiotics11101441] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022] Open
Abstract
The aim of this study was metagenomics analyses of acquired antibiotic-resistance genes (ARGs) in the intestinal microbiome of two important food-animal species in Hungary from a One Health perspective. Intestinal content samples were collected from 12 domestic pigs (Sus scrofa) and from a common carp (Cyprinus carpio). Shotgun metagenomic sequencing of DNA purified from the intestinal samples was performed on the Illumina platform. The ResFinder database was applied for detecting acquired ARGs in the assembled metagenomic contigs. Altogether, 59 acquired ARG types were identified, 51 genes from domestic pig and 12 genes from the carp intestinal microbiome. ARG types belonged to the antibiotic classes aminoglycosides (27.1%), tetracyclines (25.4%), β-lactams (16.9%), and others. Of the identified ARGs, tet(E), a blaOXA-48-like β-lactamase gene, as well as cphA4, ampS, aadA2, qnrS2, and sul1, were identified only in carp but not in swine samples. Several of the detected acquired ARGs have not yet been described from food animals in Hungary. The tet(Q), tet(W), tet(O), and mef(A) genes detected in the intestinal microbiome of domestic pigs had also been identified from free-living wild boars in Hungary, suggesting a possible relationship between the occurrence of acquired ARGs in domestic and wild animal populations.
Collapse
|
5
|
Donà V, Ramette A, Perreten V. Comparative genomics of 26 complete circular genomes of 18 different serotypes of Actinobacillus pleuropneumoniae. Microb Genom 2022; 8. [PMID: 35196217 PMCID: PMC8942016 DOI: 10.1099/mgen.0.000776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Actinobacillus pleuropneumoniae is a Gram-negative, rod-shaped bacterium of the family Pasteurellaceae causing pig pleuropneumonia associated with great economic losses worldwide. Nineteen serotypes with distinctive lipopolysaccharide (LPS) and capsular (CPS) compositions have been described so far, yet complete circular genomes are publicly available only for the reference strains of serotypes 1, 4 and 5b, and for field strains of serotypes 1, 3, 7 and 8. We aimed to complete this picture by sequencing the reference strains of 17 different serotypes with the MinION sequencer (Oxford Nanopore Technologies, ONT) and on an Illumina HiSeq (Illumina) platform. We also included two field isolates of serotypes 2 and 3 that were PacBio- and MinION-sequenced, respectively. Genome assemblies were performed following two different strategies, i.e. PacBio- or ONT-only de novo assemblies polished with Illumina reads or a hybrid assembly by directly combining ONT and Illumina reads. Both methods proved successful in obtaining accurate circular genomes with comparable qualities. blast-based genome comparisons and core-genome phylogeny based on core genes, SNP typing and multi-locus sequence typing (cgMLST) of the 26 circular genomes indicated well-conserved genomes across the 18 different serotypes, differing mainly in phage insertions, and CPS, LPS and RTX-toxin clusters, which, consistently, encode serotype-specific antigens. We also identified small antibiotic resistance plasmids, and complete subtype I-F and subtype II-C CRISPR-Cas systems. Of note, highly similar clusters encoding all those serotype-specific traits were also found in other pathogenic and commensal Actinobacillus species. Taken together with the presence of transposable elements surrounding these loci, we speculate a dynamic intra- and interspecies exchange of such virulence-related factors by horizontal gene transfer. In conclusion, our comprehensive genomics analysis provides useful information for diagnostic test and vaccine development, but also for whole-genome-based epidemiological studies, as well as for the surveillance of the evolution of antibiotic resistance and virulence genes in A. pleuropneumoniae.
Collapse
Affiliation(s)
- Valentina Donà
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Alban Ramette
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Vincent Perreten
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Bossé JT, Li Y, Cohen LM, Stegger M, Angen Ø, Lacouture S, Gottschalk M, Lei L, Koene M, Kuhnert P, Bandara AB, Inzana TJ, Holden MTG, Harris D, Oshota O, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR, On Behalf Of The BRaDP T Consortium. Complete genome for Actinobacillus pleuropneumoniae serovar 8 reference strain 405: comparative analysis with draft genomes for different laboratory stock cultures indicates little genetic variation. Microb Genom 2021; 7. [PMID: 34818145 PMCID: PMC8743550 DOI: 10.1099/mgen.0.000687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We report here the complete genome sequence of the widely studied Actinobacillus pleuropneumoniae serovar 8 reference strain 405, generated using the Pacific Biosciences (PacBio) RS II platform. Furthermore, we compared draft sequences generated by Illumina sequencing of six stocks of this strain, including the same original stock used to generate the PacBio sequence, held in different countries and found little genetic variation, with only three SNPs identified, all within the degS gene. However, sequences of two small plasmids, pARD3079 and p405tetH, detected by Illumina sequencing of the draft genomes were not identified in the PacBio sequence of the reference strain.
Collapse
Affiliation(s)
- Janine T Bossé
- Section of Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | - Yanwen Li
- Section of Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | - Liza Miriam Cohen
- Department of Production Animal Clinical Sciences Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Marc Stegger
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Øystein Angen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Sonia Lacouture
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Marcelo Gottschalk
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Faculté de Médecine Vétérinaire, Université de Montréal, Québec, Canada
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, P.R China
| | - Miriam Koene
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Peter Kuhnert
- Institute of Veterinary Bacteriology, Vetsuisse Faculty, Universität Bern, Bern, Switzerland
| | - Aloka B Bandara
- Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, USA
| | - Thomas J Inzana
- Present address: College of Veterinary Medicine, Long Island University, Brookville, USA.,Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, USA
| | - Matthew T G Holden
- Present address: School of Medicine, University of St Andrews, St Andrews, UK.,The Wellcome Trust Sanger Institute, Cambridge, UK
| | - David Harris
- The Wellcome Trust Sanger Institute, Cambridge, UK
| | - Olusegun Oshota
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Brendan W Wren
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Andrew N Rycroft
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hatfield, UK
| | - Paul R Langford
- Section of Paediatric Infectious Diseases, Department of Infectious Diseases, Imperial College London, London, UK
| | | |
Collapse
|
7
|
López-Ochoa AJ, Sánchez-Alonso P, Vázquez-Cruz C, Horta-Valerdi G, Negrete-Abascal E, Vaca-Pacheco S, Mejía R, Pérez-Márquez M. Molecular and genetic characterization of the pOV plasmid from Pasteurella multocida and construction of an integration vector for Gallibacterium anatis. Plasmid 2019; 103:45-52. [PMID: 31022414 DOI: 10.1016/j.plasmid.2019.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/18/2019] [Accepted: 04/21/2019] [Indexed: 11/16/2022]
Abstract
BACKGROUND The pOV plasmid isolated from the Pasteurella multocida strain PMOV is a new plasmid, and its molecular characterization is important for determining its gene content and its replicative properties in Pasteurellaceae family bacteria. METHODS Antimicrobial resistance mediated by the pOV plasmid was tested in bacteria. Purified pOV plasmid DNA was used to transform E. coli DH5α and Gallibacterium anatis 12656-12, including the pBluescript II KS(-) plasmid DNA as a control for genetic transformation. The pOV plasmid was digested with EcoRI for cloning fragments into the pBluescript II KS(-) vector to obtain constructs and to determine the full DNA sequence of pOV. RESULTS The pOV plasmid is 13.5 kb in size; confers sulfonamide, streptomycin and ampicillin resistance to P. multocida PMOV; and can transform E. coli DH5α and G. anatis 12656-12. The pOV plasmid was digested for the preparation of chimeric constructs and used to transform E. coli DH5α, conferring resistance to streptomycin (plasmid pSEP3), ampicillin (pSEP4) and sulfonamide (pSEP5) on the bacteria; however, similar to pBluescript II KS(-), the chimeric plasmids did not transform G. anatis 12656-12. A 1.4 kb fragment of the streptomycin cassette from pSEP3 was amplified by PCR and used to construct pSEP7, which in turn was used to interrupt a chromosomal DNA locus of G. anatis by double homologous recombination, introducing strA-strB into the G. anatis chromosome. CONCLUSION The pOV plasmid is a wide-range, low-copy-number plasmid that is able to replicate in some gamma-proteobacteria. Part of this plasmid was integrated into the G. anatis 12656-12 chromosome. This construct may prove to be a useful tool for genetic studies of G. anatis.
Collapse
Affiliation(s)
- Ana Jaqueline López-Ochoa
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Universidad Autónoma de Puebla, 72570 Puebla, Pue, México
| | - Patricia Sánchez-Alonso
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Universidad Autónoma de Puebla, 72570 Puebla, Pue, México
| | - Candelario Vázquez-Cruz
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Universidad Autónoma de Puebla, 72570 Puebla, Pue, México.
| | - Guillermo Horta-Valerdi
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Universidad Autónoma de Puebla, 72570 Puebla, Pue, México
| | - Erasmo Negrete-Abascal
- Carrera de Biología, Facultad de Estudios Superiores de Iztacala UNAM, Tlalnepantla, Edo de México 54090, México
| | - Sergio Vaca-Pacheco
- Carrera de Biología, Facultad de Estudios Superiores de Iztacala UNAM, Tlalnepantla, Edo de México 54090, México
| | - Ricardo Mejía
- Carrera de Biología, Facultad de Estudios Superiores de Iztacala UNAM, Tlalnepantla, Edo de México 54090, México
| | | |
Collapse
|
8
|
Niemann L, Feudi C, Eichhorn I, Hanke D, Müller P, Brauns J, Nathaus R, Schäkel F, Höltig D, Wendt M, Kadlec K, Schwarz S. Plasmid-located dfrA14 gene in Pasteurella multocida isolates from three different pig-producing farms in Germany. Vet Microbiol 2019; 230:235-240. [PMID: 30827394 DOI: 10.1016/j.vetmic.2019.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 11/15/2022]
Abstract
Pasteurella multocida is an important respiratory tract pathogen in intensive livestock farming, especially in pigs. Antimicrobial agents are frequently used to combat infections caused by this pathogen. In a study on antimicrobial resistance among respiratory tract pathogens of pigs from 30 German pig-producing farms, P. multocida isolates (n = 9) with high minimal inhibitory concentration (MIC) values of 16/304 mg/L (n = 2), 32/608 mg/L (n = 3) or ≥64/1216 mg/L (n = 4) for trimethoprim/sulfamethoxazole (1:19) and of ≥512 mg/L (n = 9) for trimethoprim (TMP) were detected in three of these farms. The genetic relatedness of the isolates was investigated via capsule-specific PCR and macrorestriction analyses with ApaI and SmaI. Pulsed-field gel electrophoresis revealed indistinguishable restriction patterns per farm, with slight differences between the three farms. All isolates represented capsular type A. Four representative isolates, that were subjected to whole genome sequencing, shared the multi-locus sequence type (ST) 3. Their plasmids were transformed into E. coli TOP10 with subsequent selection on TMP-containing agar plates. Antimicrobial susceptibility testing and plasmid analysis of the transformants confirmed that they were resistant to sulfonamides and trimethoprim and carried only a single small plasmid. This plasmid was completely sequenced and revealed a size of 6050 bp. Sequence analyses identified the presence of a resistance gene cluster comprising the genes sul2-ΔstrA-dfrA14-ΔstrA-ΔstrB. Further analysis identified a dfrA14 gene cassette being integrated into the strA reading frame. Neither the gene dfrA14 nor this gene cluster have been detected before in P. multocida.
Collapse
Affiliation(s)
- Lisa Niemann
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany; Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Claudia Feudi
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Dennis Hanke
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
| | - Petra Müller
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Jasmin Brauns
- Clinic for Swine and Small Ruminants and forensic Medicine and Ambulatory Services, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | - Franziska Schäkel
- Institute for Biometry, Epidemiology and Information Processing, WHO Collaborating Centre for Research and Training for Health at the Human-Animal-Environment Interface, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Doris Höltig
- Clinic for Swine and Small Ruminants and forensic Medicine and Ambulatory Services, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Michael Wendt
- Clinic for Swine and Small Ruminants and forensic Medicine and Ambulatory Services, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Neustadt-Mariensee, Germany
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
9
|
Li Y, da Silva GC, Li Y, Rossi CC, Fernandez Crespo R, Williamson SM, Langford PR, Bazzolli DMS, Bossé JT. Evidence of Illegitimate Recombination Between Two Pasteurellaceae Plasmids Resulting in a Novel Multi-Resistance Replicon, pM3362MDR, in Actinobacillus pleuropneumoniae. Front Microbiol 2018; 9:2489. [PMID: 30405558 PMCID: PMC6206304 DOI: 10.3389/fmicb.2018.02489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/28/2018] [Indexed: 12/11/2022] Open
Abstract
Evidence of plasmids carrying the tetracycline resistance gene, tet(B), was found in the previously reported whole genome sequences of 14 United Kingdom, and 4 Brazilian, isolates of Actinobacillus pleuropneumoniae. Isolation and sequencing of selected plasmids, combined with comparative sequence analysis, indicated that the four Brazilian isolates all harbor plasmids that are nearly identical to pB1001, a plasmid previously found in Pasteurella multocida isolates from Spain. Of the United Kingdom isolates, 13/14 harbor plasmids that are (almost) identical to pTetHS016 from Haemophilus parasuis. The remaining United Kingdom isolate, MIDG3362, harbors a 12666 bp plasmid that shares extensive regions of similarity with pOV from P. multocida (which carries blaROB-1 , sul2, and strAB genes), as well as with pTetHS016. The newly identified multi-resistance plasmid, pM3362MDR, appears to have arisen through illegitimate recombination of pTetHS016 into the stop codon of the truncated strB gene in a pOV-like plasmid. All of the tet(B)-carrying plasmids studied were capable of replicating in Escherichia coli, and predicted origins of replication were identified. A putative origin of transfer (oriT) sequence with similar secondary structure and a nic-site almost identical to that of RP4 was also identified in these plasmids, however, attempts to mobilize them from an RP4-encoding E. coli donor strain were not successful, indicating that specific conjugation machinery may be required.
Collapse
Affiliation(s)
- Yinghui Li
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom.,Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Giarlã Cunha da Silva
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Yanwen Li
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Ciro C Rossi
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| | - Denise Mara Soares Bazzolli
- Laboratório de Genética Molecular de Bactérias, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Janine T Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
10
|
Michael GB, Bossé JT, Schwarz S. Antimicrobial Resistance in Pasteurellaceae of Veterinary Origin. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0022-2017. [PMID: 29916344 PMCID: PMC11633590 DOI: 10.1128/microbiolspec.arba-0022-2017] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Indexed: 12/20/2022] Open
Abstract
Members of the highly heterogeneous family Pasteurellaceae cause a wide variety of diseases in humans and animals. Antimicrobial agents are the most powerful tools to control such infections. However, the acquisition of resistance genes, as well as the development of resistance-mediating mutations, significantly reduces the efficacy of the antimicrobial agents. This article gives a brief description of the role of selected members of the family Pasteurellaceae in animal infections and of the most recent data on the susceptibility status of such members. Moreover, a review of the current knowledge of the genetic basis of resistance to antimicrobial agents is included, with particular reference to resistance to tetracyclines, β-lactam antibiotics, aminoglycosides/aminocyclitols, folate pathway inhibitors, macrolides, lincosamides, phenicols, and quinolones. This article focusses on the genera of veterinary importance for which sufficient data on antimicrobial susceptibility and the detection of resistance genes are currently available (Pasteurella, Mannheimia, Actinobacillus, Haemophilus, and Histophilus). Additionally, the role of plasmids, transposons, and integrative and conjugative elements in the spread of the resistance genes within and beyond the aforementioned genera is highlighted to provide insight into horizontal dissemination, coselection, and persistence of antimicrobial resistance genes. The article discusses the acquisition of diverse resistance genes by the selected Pasteurellaceae members from other Gram-negative or maybe even Gram-positive bacteria. Although the susceptibility status of these members still looks rather favorable, monitoring of their antimicrobial susceptibility is required for early detection of changes in the susceptibility status and the newly acquired/developed resistance mechanisms.
Collapse
Affiliation(s)
- Geovana B Michael
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, D-14163 Germany
| | - Janine T Bossé
- Section of Pediatrics, Department of Medicine London, Imperial College London, London W2 1PG, United Kingdom
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, D-14163 Germany
| |
Collapse
|
11
|
Bossé JT, Li Y, Rogers J, Fernandez Crespo R, Li Y, Chaudhuri RR, Holden MTG, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR. Whole Genome Sequencing for Surveillance of Antimicrobial Resistance in Actinobacillus pleuropneumoniae. Front Microbiol 2017; 8:311. [PMID: 28321207 PMCID: PMC5337627 DOI: 10.3389/fmicb.2017.00311] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/15/2017] [Indexed: 11/25/2022] Open
Abstract
The aim of this study was to evaluate the correlation between antimicrobial resistance (AMR) profiles of 96 clinical isolates of Actinobacillus pleuropneumoniae, an important porcine respiratory pathogen, and the identification of AMR genes in whole genome sequence (wgs) data. Susceptibility of the isolates to nine antimicrobial agents (ampicillin, enrofloxacin, erythromycin, florfenicol, sulfisoxazole, tetracycline, tilmicosin, trimethoprim, and tylosin) was determined by agar dilution susceptibility test. Except for the macrolides tested, elevated MICs were highly correlated to the presence of AMR genes identified in wgs data using ResFinder or BLASTn. Of the isolates tested, 57% were resistant to tetracycline [MIC ≥ 4 mg/L; 94.8% with either tet(B) or tet(H)]; 48% to sulfisoxazole (MIC ≥ 256 mg/L or DD = 6; 100% with sul2), 20% to ampicillin (MIC ≥ 4 mg/L; 100% with blaROB-1), 17% to trimethoprim (MIC ≥ 32 mg/L; 100% with dfrA14), and 6% to enrofloxacin (MIC ≥ 0.25 mg/L; 100% with GyrAS83F). Only 33% of the isolates did not have detectable AMR genes, and were sensitive by MICs for the antimicrobial agents tested. Although 23 isolates had MIC ≥ 32 mg/L for tylosin, all isolates had MIC ≤ 16 mg/L for both erythromycin and tilmicosin, and no macrolide resistance genes or known point mutations were detected. Other than the GyrAS83F mutation, the AMR genes detected were mapped to potential plasmids. In addition to presence on plasmid(s), the tet(B) gene was also found chromosomally either as part of a 56 kb integrative conjugative element (ICEApl1) in 21, or as part of a Tn7 insertion in 15 isolates. Our results indicate that, with the exception of macrolides, wgs data can be used to accurately predict resistance of A. pleuropneumoniae to the tested antimicrobial agents and provides added value for routine surveillance.
Collapse
Affiliation(s)
- Janine T Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London London, UK
| | - Yanwen Li
- Section of Paediatrics, Department of Medicine, Imperial College London London, UK
| | - Jon Rogers
- Animal and Plant Health Agency Bury St Edmunds, UK
| | | | - Yinghui Li
- Section of Paediatrics, Department of Medicine, Imperial College London London, UK
| | - Roy R Chaudhuri
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | | | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Andrew N Rycroft
- Department of Pathology and Pathogen Biology, The Royal Veterinary College Hatfield, UK
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London London, UK
| |
Collapse
|
12
|
Bossé JT, Li Y, Walker S, Atherton T, Fernandez Crespo R, Williamson SM, Rogers J, Chaudhuri RR, Weinert LA, Oshota O, Holden MTG, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR. Identification of dfrA14 in two distinct plasmids conferring trimethoprim resistance in Actinobacillus pleuropneumoniae. J Antimicrob Chemother 2015; 70:2217-22. [PMID: 25957382 PMCID: PMC4500777 DOI: 10.1093/jac/dkv121] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/05/2015] [Indexed: 11/30/2022] Open
Abstract
Objectives The objective of this study was to determine the distribution and genetic basis of trimethoprim resistance in Actinobacillus pleuropneumoniae isolates from pigs in England. Methods Clinical isolates collected between 1998 and 2011 were tested for resistance to trimethoprim and sulphonamide. The genetic basis of trimethoprim resistance was determined by shotgun WGS analysis and the subsequent isolation and sequencing of plasmids. Results A total of 16 (out of 106) A. pleuropneumoniae isolates were resistant to both trimethoprim (MIC >32 mg/L) and sulfisoxazole (MIC ≥256 mg/L), and a further 32 were resistant only to sulfisoxazole (MIC ≥256 mg/L). Genome sequence data for the trimethoprim-resistant isolates revealed the presence of the dfrA14 dihydrofolate reductase gene. The distribution of plasmid sequences in multiple contigs suggested the presence of two distinct dfrA14-containing plasmids in different isolates, which was confirmed by plasmid isolation and sequencing. Both plasmids encoded mobilization genes, the sulphonamide resistance gene sul2, as well as dfrA14 inserted into strA, a streptomycin-resistance-associated gene, although the gene order differed between the two plasmids. One of the plasmids further encoded the strB streptomycin-resistance-associated gene. Conclusions This is the first description of mobilizable plasmids conferring trimethoprim resistance in A. pleuropneumoniae and, to our knowledge, the first report of dfrA14 in any member of the Pasteurellaceae. The identification of dfrA14 conferring trimethoprim resistance in A. pleuropneumoniae isolates will facilitate PCR screens for resistance to this important antimicrobial.
Collapse
Affiliation(s)
- Janine T Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Yanwen Li
- Section of Paediatrics, Department of Medicine, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Stephanie Walker
- Section of Paediatrics, Department of Medicine, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Tom Atherton
- Section of Paediatrics, Department of Medicine, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Roberto Fernandez Crespo
- Section of Paediatrics, Department of Medicine, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | - Susanna M Williamson
- Animal and Plant Health Agency (APHA) Bury St Edmunds, Rougham Hill, Bury St Edmunds, Suffolk IP33 2RX, UK
| | - Jon Rogers
- Animal and Plant Health Agency (APHA) Bury St Edmunds, Rougham Hill, Bury St Edmunds, Suffolk IP33 2RX, UK
| | - Roy R Chaudhuri
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Olusegun Oshota
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Matt T G Holden
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Andrew N Rycroft
- Department of Pathology and Pathogen Biology, The Royal Veterinary College, Hawkshead Campus, Hatfield, Hertfordshire AL9 7TA, UK
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London, St Mary's Campus, London W2 1PG, UK
| | | |
Collapse
|
13
|
Moleres J, Santos-López A, Lázaro I, Labairu J, Prat C, Ardanuy C, González-Zorn B, Aragon V, Garmendia J. Novel blaROB-1-bearing plasmid conferring resistance to β-lactams in Haemophilus parasuis isolates from healthy weaning pigs. Appl Environ Microbiol 2015; 81:3255-67. [PMID: 25747001 PMCID: PMC4393459 DOI: 10.1128/aem.03865-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 02/25/2015] [Indexed: 11/20/2022] Open
Abstract
Haemophilus parasuis, the causative agent of Glässer's disease, is one of the early colonizers of the nasal mucosa of piglets. It is prevalent in swine herds, and lesions associated with disease are fibrinous polyserositis and bronchopneumonia. Antibiotics are commonly used in disease control, and resistance to several antibiotics has been described in H. parasuis. Prediction of H. parasuis virulence is currently limited by our scarce understanding of its pathogenicity. Some genes have been associated with H. parasuis virulence, such as lsgB and group 1 vtaA, while biofilm growth has been associated with nonvirulent strains. In this study, 86 H. parasuis nasal isolates from farms that had not had a case of disease for more than 10 years were obtained by sampling piglets at weaning. Isolates were studied by enterobacterial repetitive intergenic consensus PCR and determination of the presence of lsgB and group 1 vtaA, biofilm formation, inflammatory cell response, and resistance to antibiotics. As part of the diversity encountered, a novel 2,661-bp plasmid, named pJMA-1, bearing the blaROB-1 β-lactamase was detected in eight colonizing strains. pJMA-1 was shown to share a backbone with other small plasmids described in the Pasteurellaceae, to be 100% stable, and to have a lower biological cost than the previously described plasmid pB1000. pJMA-1 was also found in nine H. parasuis nasal strains from a separate collection, but it was not detected in isolates from the lesions of animals with Glässer's disease or in nontypeable Haemophilus influenzae isolates. Altogether, we show that commensal H. parasuis isolates represent a reservoir of β-lactam resistance genes which can be transferred to pathogens or other bacteria.
Collapse
Affiliation(s)
- Javier Moleres
- Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno de Navarra, Mutilva, Spain
| | - Alfonso Santos-López
- Departamento de Sanidad Animal, Facultad de Veterinaria y VISAVET, Universidad Complutense, Madrid, Spain
| | - Isidro Lázaro
- Instituto Navarro de Tecnologías e Infraestructuras Agroalimentarias-INTIA, Navarra, Spain
| | - Javier Labairu
- Instituto Navarro de Tecnologías e Infraestructuras Agroalimentarias-INTIA, Navarra, Spain
| | - Cristina Prat
- Hospital Universitari Germans Trias i Pujol, Badalona, Spain Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Carmen Ardanuy
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain Hospital Universitari Bellvitge, Barcelona, Spain
| | - Bruno González-Zorn
- Departamento de Sanidad Animal, Facultad de Veterinaria y VISAVET, Universidad Complutense, Madrid, Spain
| | - Virginia Aragon
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, CSIC-Universidad Pública Navarra-Gobierno de Navarra, Mutilva, Spain Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
14
|
Yang SS, Sun J, Liao XP, Liu BT, Li LL, Li L, Fang LX, Huang T, Liu YH. Co-location of the erm(T) gene and blaROB-1 gene on a small plasmid in Haemophilus parasuis of pig origin. J Antimicrob Chemother 2013; 68:1930-2. [DOI: 10.1093/jac/dkt112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
15
|
Juárez-Rodríguez MD, Torres-Escobar A, Demuth DR. Construction of new cloning, lacZ reporter and scarless-markerless suicide vectors for genetic studies in Aggregatibacter actinomycetemcomitans. Plasmid 2013; 69:211-22. [PMID: 23353051 DOI: 10.1016/j.plasmid.2013.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 12/28/2022]
Abstract
To elucidate the putative function of a gene, effective tools are required for genetic characterization that facilitate its inactivation, deletion or modification on the bacterial chromosome. In the present study, the nucleotide sequence of the Escherichia coli/Aggregatibacter actinomycetemcomitans shuttle vector pYGK was determined, allowing us to redesign and construct a new shuttle cloning vector, pJT4, and promoterless lacZ transcriptional/translational fusion plasmids, pJT3 and pJT5. Plasmids pJT4 and pJT5 contain the origin of replication necessary to maintain shuttle vector replication. In addition, a new suicide vector, pJT1, was constructed for the generation of scarless and markerless deletion mutations of genes in the oral pathogen A. actinomycetemcomitans. Plasmid pJT1 is a pUC-based suicide vector that is counter-selectable for sucrose sensitivity. This vector does not leave antibiotic markers or scars on the chromosome after gene deletion and thus provides the option to combine several mutations in the same genetic background. The effectiveness of pJT1 was demonstrated by the construction of A. actinomycetemcomitans isogenic qseB single deletion (ΔqseB) mutant and lsrRK double deletion mutants (ΔlsrRK). These new vectors may offer alternatives for genetic studies in A. actinomycetemcomitans and other members of the HACEK (Haemophilus spp., A. actinomycetemcomitans, Cardiobacterium hominis, Eikenella corrodens, and Kingella kingae) group of Gram-negative bacteria.
Collapse
Affiliation(s)
- María Dolores Juárez-Rodríguez
- Research Group in Oral Health and Systemic Disease, University of Louisville School of Dentistry, 501 S. Preston Street, Louisville, KY 40202, USA
| | | | | |
Collapse
|
16
|
Electrotransformation of Haemophilus parasuis with in vitro modified DNA based on a novel shuttle vector. Vet Microbiol 2012; 155:310-6. [DOI: 10.1016/j.vetmic.2011.08.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 08/18/2011] [Accepted: 08/22/2011] [Indexed: 11/22/2022]
|
17
|
Archambault M, Harel J, Gouré J, Tremblay YDN, Jacques M. Antimicrobial susceptibilities and resistance genes of Canadian isolates of Actinobacillus pleuropneumoniae. Microb Drug Resist 2011; 18:198-206. [PMID: 22204596 DOI: 10.1089/mdr.2011.0150] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Actinobacillus pleuropneumoniae is the causative agent of porcine pleuropneumonia, a severe and highly contagious respiratory disease responsible for economic losses in the swine industry worldwide. Although antimicrobial resistance in A. pleuropneumoniae has been recently reported in different countries, the current situation in Canada is unknown. The aim of the current study was to determine the antimicrobial susceptibilities of 43 strains of A. pleuropneumoniae isolated in Canada. In addition, antimicrobial resistance genes were detected with an oligonucleotide microarray. The impact of biofilm formation on susceptibility to antimicrobials was also evaluated. All isolates were susceptible to ceftiofur, florfenicol, enrofloxacin, erythromycin, clindamycin, trimethoprim/sulfamethoxazole, and tilmicosin. A low level of resistance was observed toward tiamulin, penicillin, and ampicillin as well as danofloxacin. We observed a high level of resistance to chlortetracycline (88.4%) and oxytetracycline (90.7%). The strains showing resistance to tetracycline antimicrobials contained at least one of the following tet genes: tetB, tetO, tetH, or tetC. Five isolates showed multiresistance to penicillins (bla(ROB-1)), streptomycin [aph3'' (strA)], sulfonamides (sulII), and tetracyclines (tetO) antimicrobials whereas three others showed multiresistance to streptomycin [aph3'' (strA)], sulfonamides (sulII), and tetracyclines (tetB, tetO, or tetB/tetH) antimicrobials. To the best of our knowledge, this is the first description of tetC gene in Pasteurellaceae. Finally, cells of A. pleuropneumoniae in a biofilm were 100 to 30,000 times more resistant to antimicrobials than their planktonic counterparts.
Collapse
Affiliation(s)
- Marie Archambault
- Centre de Recherche en Infectiologie Porcine, Faculté de Médecine Vétérinaire, Université de Montréal , St-Hyacinthe, Québec, Canada
| | | | | | | | | |
Collapse
|
18
|
Analysis of an Actinobacillus pleuropneumoniae multi-resistance plasmid, pHB0503. Plasmid 2008; 61:135-9. [PMID: 19041669 DOI: 10.1016/j.plasmid.2008.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 10/24/2008] [Accepted: 11/06/2008] [Indexed: 11/21/2022]
Abstract
A plasmid containing multidrug resistance genes has been discovered from a clinical Actinobacillus pleuropneumoniae strain isolated in China. The complete 15079kb sequence of this plasmid, designated pHB0503, was analyzed with regard to the organization and evolution of multidrug resistance genes. The deduced amino acid sequences from seven open reading frames (sul2 catA3, aacC2, strA, truncated strB (strB'), bla(ROB-1) and aph(3')-I) identified in pHB0503 were entirely or nearly identical to resistance genes of plasmids both within and outside of the family Pasteurellaceaea, indicating that pHB0503 arose through inter-plasmid recombination processes among them. In addition, co-transcription of the cluster of resistance genes from the promoter upstream of sul2 and bla(ROB-1) was confirmed by RT-PCR. This is the first report of a complete sequence of the plasmid containing seven resistance genes from A. pleuropneumoniae.
Collapse
|