1
|
Influence of the Phagemid PfNC7401 on Cereulide-Producing Bacillus cereus NC7401. Microorganisms 2022; 10:microorganisms10050953. [PMID: 35630395 PMCID: PMC9143728 DOI: 10.3390/microorganisms10050953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
A phagemid-cured strain, NC7401-∆Pf, was constructed to survey the biological function of the plasmidal prophage PfNC7401 in cereulide-producing Bacillus cereus NC7401. The transcriptome analysis between the mutant and the wild strains revealed a series of differentially expressed genes mainly involved in different function classifications, including the two-component signal transduction system, bacterial structure, transporters, related antibiotic response, purine biosynthesis, non-ribosomal peptide synthetases (NRPS) and related secondary metabolites, and aromatic or other amino acid synthesis. BIOLOG and phenotypic experiment analyses confirmed that PfNC7401 may affect phage immunity and the metabolism of several amino acids, including L-Alanine, which was suggested to be related to one precursor (D-Alanine) of cereulide synthesis. However, neither the transcription levels of the cereulide production-related genes (e.g., ilvB, cesA, cesB, and cesH) nor the cereulide production nor cell cytotoxicity were affected by the presence or absence of PfNC7401, corresponding with the transcriptome data, in which only four genes unrelated to cereulide synthesis on the plasmid-carrying ces gene cluster were affected by the curing of PfNC7401.
Collapse
|
2
|
Cerar Kišek T, Pogačnik N, Godič Torkar K. Genetic diversity and the presence of circular plasmids in Bacillus cereus isolates of clinical and environmental origin. Arch Microbiol 2021; 203:3209-3217. [PMID: 33830284 DOI: 10.1007/s00203-021-02302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The diversity of 61 Bacillus cereus strains isolated from different clinical specimens, food including raw milk and milk products, and water was evaluated. PFGE analysis could discriminate 61 distinct pulsotypes with similarity levels from 25 to 82%, which were divided into 13 clonal complexes. The similarity between clonal complexes was at least 40%. Clinical strains were divided into 10 clonal complexes, while the strains, isolated from milk, food and water were included in 9, 6 and 6 clonal complexes, respectively. Three clonal complexes were dominated by clinical isolates, while they were absent in two complexes. Bacterial isolates from food, being a probable source of alimentary toxoinfection, showed low similarity to isolates from stool specimens. The isolates from both sources were classified together in only 4 out of 13 clonal complexes. The large circular and linear plasmids with the sizes between 50 and 200 kb were detected in 24 (39.3%) and 14 (23%) B. cereus strains, respectively. Thirteen (21.3%) strains contained only one plasmid, two plasmids were found in 6 (9.8%) of strains, and three or more plasmids were obtained in 5 (8.2%) of tested strains. The plasmids were confirmed in 30.8% and 40% of isolates from clinical specimens and food and milk samples, respectively. No clear correlation between the PFGE profiles, the source as well as plasmid content among all tested strains was observed.
Collapse
Affiliation(s)
- Tjaša Cerar Kišek
- Institute of Microbiology and Immunology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Nežka Pogačnik
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - Karmen Godič Torkar
- Faculty of Health Sciences, University of Ljubljana, Zdravstvena pot 5, 1000, Ljubljana, Slovenia.
| |
Collapse
|
3
|
Geng P, Cheng J, Yuan Z, Xiong H, Wang H, Hu X. Horizontal transfer of large plasmid with type IV secretion system and mosquitocidal genomic island with excision and integration capabilities in Lysinibacillus sphaericus. Environ Microbiol 2021; 23:5131-5146. [PMID: 33728723 DOI: 10.1111/1462-2920.15467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/05/2021] [Accepted: 03/14/2021] [Indexed: 01/09/2023]
Abstract
We identified a ~30-kb genomic island (named GI8) carrying the binary toxin gene operon binA/binB on both the chromosome and large pBsph plasmid in the mosquitocidal Lysinibacillus sphaericus C3-41 strain. We found that GI8 is related to the occurrence of binA/binB within L. sphaericus and displays excision and integration capability by recognizing the attB region, which consists of a 2-nt target site (AT) flanked by an 11-nt imperfect inverted repeat. pBsph and two pBsph-like plasmids (p2362 and p1593) were found to carry a type IV secretion system (T4SS) and displayed transmissibility within a narrow host range specific to L. sphaericus. GI8 can be co-transferred with pBsph as a composite element by integration into its attB site, then excised from pBsph and re-integrated into the chromosomal attB site in the new host. The potential hosts of GI8, regardless of whether they are toxic or non-toxic to mosquito larvae, share good collinearity at the chromosomal level. Data indicated that the appearance of the mosquitocidal L. sphaericus lineage was driven by horizontal transfer of the T4SS-type conjugative plasmid and GI8 with excision and specific integration capability.
Collapse
Affiliation(s)
- Peiling Geng
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jiao Cheng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Zhiming Yuan
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hairong Xiong
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Haiying Wang
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xiaomin Hu
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China
| |
Collapse
|
4
|
A novel anti-dipteran Bacillus thuringiensis strain: Unusual Cry toxin genes in a highly dynamic plasmid environment. Appl Environ Microbiol 2021; 87:AEM.02294-20. [PMID: 33310715 PMCID: PMC8090892 DOI: 10.1128/aem.02294-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacillus thuringiensis emerged as a major bioinsecticide on the global market. It offers a valuable alternative to chemical products classically utilized to control pest insects. Despite the efficiency of several strains and products available on the market, the scientific community is always on the lookout for novel toxins that can replace or supplement the existing products. In this study, H3, a novel B. thuringiensis strain showing mosquitocidal activity, was isolated from Lebanese soil and characterized at an in vivo, genomic and proteomic levels. H3 parasporal crystal is toxic on its own but displays an unusual killing profile with a higher LC50 than the reference B. thuringiensis serovar israelensis crystal proteins. In addition, H3 has a different toxicity order: it is more toxic to Aedes albopictus and Anopheles gambiae than to Culex pipiens Whole genome sequencing and crystal analysis revealed that H3 can produce eleven novel Cry proteins, eight of which are assembled in genes with an orf1-gap-orf2 organization, where orf2 is a potential Cry4-type crystallization domain. Moreover, pH3-180, the toxin-carrying plasmid, holds a wide repertoire of mobile genetic elements that amount to ca 22% of its size., including novel insertion sequences and class II transposable elements Two other large plasmids present in H3 carry genetic determinants for the production of many interesting molecules - such as chitinase, cellulase and bacitracin - that may add up to H3 bioactive properties. This study therefore reports a novel mosquitocidal Bacillus thuringiensis strain with unusual Cry toxin genes in a rich mobile DNA environment.IMPORTANCE Bacillus thuringiensis, a soil entomopathogenic bacteria, is at the base of many sustainable eco-friendly bio-insecticides. Hence stems the need to continually characterize insecticidal toxins. H3 is an anti-dipteran B. thuringiensis strain, isolated from Lebanese soil, whose parasporal crystal contains eleven novel Cry toxins and no Cyt toxins. In addition to its individual activity, H3 showed potential as a co-formulant with classic commercialized B. thuringiensis products, to delay the emergence of resistance and to shorten the time required for killing. On a genomic level, H3 holds three large plasmids, one of which carries the toxin-coding genes, with four occurrences of the distinct orf1-gap-orf2 organization. Moreover, this plasmid is extremely rich in mobile genetic elements, unlike its two co-residents. This highlights the important underlying evolutionary traits between toxin-carrying plasmids and the adaptation of a B. thuringiensis strain to its environment and insect host spectrum.
Collapse
|
5
|
Koné KM, Douamba Z, Halleux MD, Bougoudogo F, Mahillon J. Prevalence and Diversity of the Thermotolerant Bacterium Bacillus cytotoxicus among Dried Food Products. J Food Prot 2019; 82:1210-1216. [PMID: 31233363 DOI: 10.4315/0362-028x.jfp-19-006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HIGHLIGHTS Bacillus cytotoxicus was found in all tested potato flakes but at loads lower than 102 CFU/g. B. cytotoxicus was observed in other potato-containing products and in millet flour. B. cytotoxicus isolates (n = 57) fell into six RAPD patterns and 11 plasmid profiles. A large proportion of B. cytotoxicus isolates contained small and/or large plasmids.
Collapse
Affiliation(s)
- Klèma Marcel Koné
- 1 Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud 2/L7.05.12 1348, Louvain-la-Neuve, Belgium
| | - Zoénabo Douamba
- 1 Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud 2/L7.05.12 1348, Louvain-la-Neuve, Belgium
| | - Maëlle de Halleux
- 1 Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud 2/L7.05.12 1348, Louvain-la-Neuve, Belgium
| | - Flabou Bougoudogo
- 2 Faculty of Pharmacy, Université des Sciences, des Techniques et des Technologies de Bamako, BP:1805, Bamako, Mali
| | - Jacques Mahillon
- 1 Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCLouvain, Croix du Sud 2/L7.05.12 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
6
|
Ali MM, Provoost A, Maertens L, Leys N, Monsieurs P, Charlier D, Van Houdt R. Genomic and Transcriptomic Changes that Mediate Increased Platinum Resistance in Cupriavidus metallidurans. Genes (Basel) 2019; 10:E63. [PMID: 30669395 PMCID: PMC6357080 DOI: 10.3390/genes10010063] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/11/2019] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
The extensive anthropogenic use of platinum, a rare element found in low natural abundance in the Earth's continental crust and one of the critical raw materials in the EU innovation partnership framework, has resulted in increased concentrations in surface environments. To minimize its spread and increase its recovery from the environment, biological recovery via different microbial systems is explored. In contrast, studies focusing on the effects of prolonged exposure to Pt are limited. In this study, we used the metal-resistant Cupriavidus metallidurans NA4 strain to explore the adaptation of environmental bacteria to platinum exposure. We used a combined Nanopore⁻Illumina sequencing approach to fully resolve all six replicons of the C. metallidurans NA4 genome, and compared them with the C. metallidurans CH34 genome, revealing an important role in metal resistance for its chromid rather than its megaplasmids. In addition, we identified the genomic and transcriptomic changes in a laboratory-evolved strain, displaying resistance to 160 µM Pt4+. The latter carried 20 mutations, including a large 69.9 kb deletion in its plasmid pNA4_D (89.6 kb in size), and 226 differentially-expressed genes compared to its parental strain. Many membrane-related processes were affected, including up-regulation of cytochrome c and a lytic transglycosylase, down-regulation of flagellar and pili-related genes, and loss of the pNA4_D conjugative machinery, pointing towards a significant role in the adaptation to platinum.
Collapse
Affiliation(s)
- Md Muntasir Ali
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium.
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussel, Belgium.
| | - Ann Provoost
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium.
| | - Laurens Maertens
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium.
- Research Unit in Biology of Microorganisms (URBM), Faculty of Sciences, UNamur, 5000 Namur, Belgium.
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium.
| | - Pieter Monsieurs
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium.
| | - Daniel Charlier
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, 1050 Brussel, Belgium.
| | - Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium.
| |
Collapse
|
7
|
Nguyen TPO, Hansen MA, Hansen LH, Horemans B, Sørensen SJ, De Mot R, Springael D. Intra- and inter-field diversity of 2,4-dichlorophenoxyacetic acid-degradative plasmids and their tfd catabolic genes in rice fields of the Mekong delta in Vietnam. FEMS Microbiol Ecol 2019; 95:5149497. [PMID: 30380047 DOI: 10.1093/femsec/fiy214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/29/2018] [Indexed: 11/14/2022] Open
Abstract
The tfd genes mediating degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) differ in composition and organization in bacterial isolates from different geographical origin and are carried by different types of mobile genetic elements (MGE). It is not known whether such global diversity of 2,4-D-catabolic MGE and their tfd gene cargo is reflected in the diversity at field scale. The genomic context of the 2,4-D catabolic genes of 2,4-D-degrading isolates from two rice fields with a 2,4-D application history, located in two distant provinces of the Vietnam Mekong delta, was compared. All isolates were β-proteobacteria, were unique for each rice field and carried the catabolic genes on MGE and especially plasmids. Most plasmids were IncP-1β plasmids and carried tfd clusters highly similar to those of the IncP-1β plasmid pJP4, typified by two chlorophenol catabolic gene modules (tfd-I and tfd-II). IncP-1β plasmids from the same field showed small deletions and/or insertions in accessory metabolic genes. One plasmid belonged to an unclassified plasmid group and carries a copy of both tfdA and tfd-II identical to those in the IncP-1β plasmids. Our results indicate intra-field evolution and inter-field exchange of 2,4-D-catabolic IncP-1β plasmids as well as the exchange of tfd genes between different plasmids within a confined local environment.
Collapse
Affiliation(s)
- Thi Phi Oanh Nguyen
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, Heverlee-Leuven B-3001, Belgium.,Department of Biology, College of Natural Sciences, Can Tho University, Campus II, 3/2 street, Ninh Kieu district, Can Tho City, Vietnam
| | - Martin Asser Hansen
- Section for Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark
| | - Lars Hestbjerg Hansen
- Section for Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark.,Department of Environmental Science - Environmental Microbiology & Biotechnology, Aarhus University, Frederiksborgvej 399, Building 7411 B2.12, Roskilde DK-4000, Denmark
| | - Benjamin Horemans
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, Heverlee-Leuven B-3001, Belgium
| | - Søren Johannes Sørensen
- Section for Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Heverlee-Leuven B-3001, Belgium
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, Heverlee-Leuven B-3001, Belgium
| |
Collapse
|
8
|
Van Houdt R, Provoost A, Van Assche A, Leys N, Lievens B, Mijnendonckx K, Monsieurs P. Cupriavidus metallidurans Strains with Different Mobilomes and from Distinct Environments Have Comparable Phenomes. Genes (Basel) 2018; 9:genes9100507. [PMID: 30340417 PMCID: PMC6210171 DOI: 10.3390/genes9100507] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/16/2022] Open
Abstract
Cupriavidus metallidurans has been mostly studied because of its resistance to numerous heavy metals and is increasingly being recovered from other environments not typified by metal contamination. They host a large and diverse mobile gene pool, next to their native megaplasmids. Here, we used comparative genomics and global metabolic comparison to assess the impact of the mobilome on growth capabilities, nutrient utilization, and sensitivity to chemicals of type strain CH34 and three isolates (NA1, NA4 and H1130). The latter were isolated from water sources aboard the International Space Station (NA1 and NA4) and from an invasive human infection (H1130). The mobilome was expanded as prophages were predicted in NA4 and H1130, and a genomic island putatively involved in abietane diterpenoids metabolism was identified in H1130. An active CRISPR-Cas system was identified in strain NA4, providing immunity to a plasmid that integrated in CH34 and NA1. No correlation between the mobilome and isolation environment was found. In addition, our comparison indicated that the metal resistance determinants and properties are conserved among these strains and thus maintained in these environments. Furthermore, all strains were highly resistant to a wide variety of chemicals, much broader than metals. Only minor differences were observed in the phenomes (measured by phenotype microarrays), despite the large difference in mobilomes and the variable (shared by two or three strains) and strain-specific genomes.
Collapse
Affiliation(s)
- Rob Van Houdt
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium.
| | - Ann Provoost
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium.
| | - Ado Van Assche
- Laboratory for Process Microbial Ecology and Bioinspirational Management, KU Leuven, B-2860 Sint-Katelijne-Waver, Belgium.
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium.
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management, KU Leuven, B-2860 Sint-Katelijne-Waver, Belgium.
| | - Kristel Mijnendonckx
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium.
| | - Pieter Monsieurs
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium.
| |
Collapse
|
9
|
Rabha M, Sharma S, Acharjee S, Sarmah BK. Isolation and characterization of Bacillus thuringiensis strains native to Assam soil of North East India. 3 Biotech 2017; 7:303. [PMID: 28944151 PMCID: PMC5591175 DOI: 10.1007/s13205-017-0935-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 09/02/2017] [Indexed: 11/29/2022] Open
Abstract
We have identified both crystalliferous and acrystalliferous Bt isolates from the Assam soil of North East India for the first time. A total of 301 Bacillus type colonies were selected based on their appearance and colony morphology. Out of these colonies, 42 isolates had characteristics similar to Bt isolates on MYP (Mannitol Egg Yolk Polymyxin) agar base medium. The ERIC-PCR and 16S rDNA analyses confirmed that 42 isolates are Bacillus thuringiensis. Phase contrast microscopy showed that 37 isolates produced crystal endospore during the sporulation phase and 5 acrystalliferous isolates were also found. Amplification of cry gene was carried out using general Cry primers along with one cry2 gene specific primer. Out of 42 isolates, 50% of the isolates showed presence of cry2 gene followed by cry9 (40.47) and cry1 (40.47). Moreover, 21.42% of isolates showed the presence of more than one cry genes. We also screened these isolates for the possibility of having new Bt genes using universal primer and found two strains having a new type of Cry1I gene with 82 and 85% similarities with the available Cry1I gene sequences. Thus, these new types of Bt gene could be useful for Bt-based bioformulations and generation of transgenic plants.
Collapse
Affiliation(s)
- Mihir Rabha
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India
| | - Shaswati Sharma
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India
| | - Sumita Acharjee
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India
- DBT-AAU Centre, Assam Agricultural University, Jorhat, Assam 785013 India
| | - Bidyut Kumar Sarmah
- Department of Agricultural Biotechnology, Assam Agricultural University, Jorhat, Assam 785013 India
- DBT-AAU Centre, Assam Agricultural University, Jorhat, Assam 785013 India
| |
Collapse
|
10
|
Geng P, Tian S, Yuan Z, Hu X. Identification and genomic comparison of temperate bacteriophages derived from emetic Bacillus cereus. PLoS One 2017; 12:e0184572. [PMID: 28886124 PMCID: PMC5590980 DOI: 10.1371/journal.pone.0184572] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/25/2017] [Indexed: 01/21/2023] Open
Abstract
Cereulide-producing Bacillus cereus isolates can cause serious emetic (vomiting) syndrome and even acute lethality. As mobile genetic elements, the exploration of prophages derived from emetic B. cereus isolates will help in our understanding of the genetic diversity and evolution of these pathogens. In this study, five temperate phages derived from cereulide-producing B. cereus strains were induced, with four of them undergoing genomic sequencing. Sequencing revealed that they all belong to the Siphoviridae family, but presented in different forms in their hosts. PfNC7401 and PfIS075 have typical icosahedral heads, probably existing alone as phagemids in the host with self-replicating capability in the lysogenic state. PfEFR-4, PfEFR-5, and PfATCC7953 have elongated heads, with the genomes of the former two identified as linear dsDNA, which could be integrated into the host genome during the lysogenic state. Genomic comparison of the four phages with others also derived from emetic B. cereus isolates showed similar genome structures and core genes, thus displaying host spectrum specificity. In addition, phylogenic analysis based on the complete genome and conserved tail fiber proteins of 36 Bacillus species-derived phages confirmed that the phages derived from emetic B. cereus strains were highly similar. Furthermore, one endolysin LysPfEFR-4 was cloned and showed lytic activity against all tested emetic B. cereus strains and cross-lytic activity against some other pathogenic bacteria, implying a potential to control bacterial contamination in the food supply.
Collapse
Affiliation(s)
- Peiling Geng
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shen Tian
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Zhiming Yuan
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (XH); (ZY)
| | - Xiaomin Hu
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- * E-mail: (XH); (ZY)
| |
Collapse
|
11
|
Gillan DC, Van Camp C, Mergeay M, Provoost A, Thomas N, Vermard L, Billon G, Wattiez R. Paleomicrobiology to investigate copper resistance in bacteria: isolation and description ofCupriavidus necatorB9 in the soil of a medieval foundry. Environ Microbiol 2017; 19:770-787. [DOI: 10.1111/1462-2920.13645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 12/04/2016] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Max Mergeay
- Molecular & Cellular Biology; Unit of Microbiology SCK•CEN; Mol Belgium
| | - Ann Provoost
- Molecular & Cellular Biology; Unit of Microbiology SCK•CEN; Mol Belgium
| | - Nicolas Thomas
- Médiévistique occidentale, Université Paris 1 Panthéon-Sorbonne-CNRS; Inrap-UMR 8589 Lamop France
- Institut National de Recherches Archéologiques Préventives (INRAP); France
| | - Laurent Vermard
- Institut National de Recherches Archéologiques Préventives (INRAP); France
| | - Gabriel Billon
- Université de Lille 1, Sciences & Technologies, LASIR (UMR CNRS 8516); Villeneuve d'Ascq France
| | | |
Collapse
|
12
|
Bolotin A, Gillis A, Sanchis V, Nielsen-LeRoux C, Mahillon J, Lereclus D, Sorokin A. Comparative genomics of extrachromosomal elements in Bacillus thuringiensis subsp. israelensis. Res Microbiol 2016; 168:331-344. [PMID: 27810477 DOI: 10.1016/j.resmic.2016.10.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 06/15/2016] [Accepted: 10/21/2016] [Indexed: 02/04/2023]
Abstract
Bacillus thuringiensis subsp. israelensis is one of the most important microorganisms used against mosquitoes. It was intensively studied following its discovery and became a model bacterium of the B. thuringiensis species. Those studies focused on toxin genes, aggregation-associated conjugation, linear genome phages, etc. Recent announcements of genomic sequences of different strains have not been explicitly related to the biological properties studied. We report data on plasmid content analysis of four strains using ultra-high-throughput sequencing. The strains were commercial product isolates, with their putative ancestor and type B. thuringiensis subsp. israelensis strain sequenced earlier. The assembled contigs corresponding to published and novel data were assigned to plasmids described earlier in B. thuringiensis subsp. israelensis and other B. thuringiensis strains. A new 360 kb plasmid was identified, encoding multiple transporters, also found in most of the earlier sequenced strains. Our genomic data show the presence of two toxin-coding plasmids of 128 and 100 kb instead of the reported 225 kb plasmid, a co-integrate of the former two. In two of the sequenced strains, only a 100 kb plasmid was present. Some heterogeneity exists in the small plasmid content and structure between strains. These data support the perception of active plasmid exchange among B. thuringiensis subsp. israelensis strains in nature.
Collapse
Affiliation(s)
- Alexandre Bolotin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCL, Croix du, Sud, 2-L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| | - Vincent Sanchis
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | | | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCL, Croix du, Sud, 2-L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| | - Didier Lereclus
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| | - Alexei Sorokin
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France.
| |
Collapse
|
13
|
Gillis A, Guo S, Bolotin A, Makart L, Sorokin A, Mahillon J. Detection of the cryptic prophage-like molecule pBtic235 in Bacillus thuringiensis subsp. israelensis. Res Microbiol 2016; 168:319-330. [PMID: 27793675 DOI: 10.1016/j.resmic.2016.10.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 06/18/2016] [Accepted: 10/17/2016] [Indexed: 11/28/2022]
Abstract
Bacillus thuringiensis has long been recognized to carry numerous extrachromosomal molecules. Of particular interest are the strains belonging to the B. thuringiensis subsp. israelensis lineage, as they can harbor at least seven extrachromosomal molecules. One of these elements seems to be a cryptic molecule that may have been disregarded in strains considered plasmid-less. Therefore, this work focused on this cryptic molecule, named pBtic235. Using different approaches that included transposition-tagging, large plasmid gel electrophoresis and Southern blotting, conjugation and phage-induction experiments, in combination with bioinformatics analyses, it was found that pBtic235 is a hybrid molecule of 235,425 bp whose genome displays potential plasmid- and phage-like modules. The sequence of pBtic235 has been identified in all sequenced genomes of B. thuringiensis subsp. israelensis strains. Here, the pBtic235 sequence was considered identical to that of plasmid pBTHD789-2 from strain HD-789. Despite the fact that the pBtic235 genome possesses 240 putative CDSs, many of them have no homologs in the databases. However, CDSs coding for potential proteins involved in replication, genome packaging and virion structure, cell lysis, regulation of lytic-lysogenic cycles, metabolite transporters, stress and metal resistance, were identified. The candidate plasmidial prophage pBtic235 exemplifies the notable diversity of the extrachromosomal realm found in B. thuringiensis.
Collapse
Affiliation(s)
- Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCL, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| | - Suxia Guo
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCL, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| | - Alexandre Bolotin
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France.
| | - Lionel Makart
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCL, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| | - Alexei Sorokin
- INRA, UMR1319 Micalis, F-78350 Jouy-en-Josas, France; AgroParisTech, UMR1319 Micalis, F-78350 Jouy-en-Josas, France.
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, UCL, Croix du Sud 2, L7.05.12, B-1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
14
|
Ricker N, Shen SY, Goordial J, Jin S, Fulthorpe RR. PacBio SMRT assembly of a complex multi-replicon genome reveals chlorocatechol degradative operon in a region of genome plasticity. Gene 2016; 586:239-47. [PMID: 27063562 DOI: 10.1016/j.gene.2016.04.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/14/2016] [Accepted: 04/05/2016] [Indexed: 01/03/2023]
Abstract
We have sequenced a Burkholderia genome that contains multiple replicons and large repetitive elements that would make it inherently difficult to assemble by short read sequencing technologies. We illustrate how the integrated long read correction algorithms implemented through the PacBio Single Molecule Real-Time (SMRT) sequencing technology successfully provided a de novo assembly that is a reasonable estimate of both the gene content and genome organization without making any further modifications. This assembly is comparable to related organisms assembled by more labour intensive methods. Our assembled genome revealed regions of genome plasticity for further investigation, one of which harbours a chlorocatechol degradative operon highly homologous to those previously identified on globally ubiquitous plasmids. In an ideal world, this assembly would still require experimental validation to confirm gene order and copy number of repeated elements. However, we submit that particularly in instances where a polished genome is not the primary goal of the sequencing project, PacBio SMRT sequencing provides a financially viable option for generating a biologically relevant genome estimate that can be utilized by other researchers for comparative studies.
Collapse
Affiliation(s)
- N Ricker
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1095 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - S Y Shen
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1095 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - J Goordial
- Department of Natural Resource Sciences, McGill University, Macdonald Campus, 21111 Lakeshore Rd., Sainte Anne de Bellevue, Quebec H9X 3V9, Canada
| | - S Jin
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1095 Military Trail, Scarborough, Ontario M1C 1A4, Canada
| | - R R Fulthorpe
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1095 Military Trail, Scarborough, Ontario M1C 1A4, Canada.
| |
Collapse
|
15
|
Influence of lysogeny of Tectiviruses GIL01 and GIL16 on Bacillus thuringiensis growth, biofilm formation, and swarming motility. Appl Environ Microbiol 2014; 80:7620-30. [PMID: 25261525 DOI: 10.1128/aem.01869-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus thuringiensis is an entomopathogenic bacterium that has been used as an efficient biopesticide worldwide. Despite the fact that this bacterium is usually described as an insect pathogen, its life cycle in the environment is still largely unknown. B. thuringiensis belongs to the Bacillus cereus group of bacteria, which has been associated with many mobile genetic elements, such as species-specific temperate or virulent bacteriophages (phages). Temperate (lysogenic) phages are able to establish a long-term relationship with their host, providing, in some cases, novel ecological traits to the bacterial lysogens. Therefore, this work focuses on evaluating the potential influence of temperate tectiviruses GIL01 and GIL16 on the development of different life traits of B. thuringiensis. For this purpose, a B. thuringiensis serovar israelensis plasmid-cured (nonlysogenic) strain was used to establish bacterial lysogens for phages GIL01 and GIL16, and, subsequently, the following life traits were compared among the strains: kinetics of growth, metabolic profiles, antibiotics susceptibility, biofilm formation, swarming motility, and sporulation. The results revealed that GIL01 and GIL16 lysogeny has a significant influence on the bacterial growth, sporulation rate, biofilm formation, and swarming motility of B. thuringiensis. No changes in metabolic profiles or antibiotic susceptibilities were detected. These findings provide evidence that tectiviruses have a putative role in the B. thuringiensis life cycle as adapters of life traits with ecological advantages.
Collapse
|
16
|
Mei X, Xu K, Yang L, Yuan Z, Mahillon J, Hu X. The genetic diversity of cereulide biosynthesis gene cluster indicates a composite transposon Tnces in emetic Bacillus weihenstephanensis. BMC Microbiol 2014; 14:149. [PMID: 24906385 PMCID: PMC4057527 DOI: 10.1186/1471-2180-14-149] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Accepted: 05/30/2014] [Indexed: 11/10/2022] Open
Abstract
Background Cereulide is a cyclic dodecadepsipeptide ionophore, produced via non-ribosomal peptide synthetases (NRPS), which in rare cases can lead to human death. Early studies had shown that emetic toxin formation belongs to a homogeneous group of Bacillus cereus sensu stricto and the genetic determinants of cereulide (a 24-kb gene cluster of cesHPTABCD) are located on a 270-kb plasmid related to the Bacillus anthracis virulence plasmid pXO1. Results The whole genome sequences from seven emetic isolates, including two B. cereus sensu stricto and five Bacillus weihenstephanensis strains, were compared, and their inside and adjacent DNA sequences of the cereulide biosynthesis gene clusters were analyzed. The sequence diversity was observed, which classified the seven emetic isolates into three clades. Different genomic locations of the cereulide biosynthesis gene clusters, plasmid-borne and chromosome-borne, were also found. Potential mobile genetic elements (MGEs) were identified in the flanking sequences of the ces gene cluster in all three types. The most striking observation was the identification of a putative composite transposon, Tnces, consisting of two copies of ISces element (belonging to IS6 family) in opposite orientations flanking the ces gene cluster in emetic B. weihenstephanensis. The mobility of this element was tested by replacing the ces gene cluster by a KmR gene marker and performing mating-out transposition assays in Escherichia coli. The results showed that Tnces::km transposes efficiently (1.04 × 10-3 T/R) and produces 8-bp direct repeat (DR) at the insertion sites. Conclusions Cereulide biosynthesis gene clusters display sequence diversity, different genomic locations and association with MGEs, in which the transposition capacity of a resistant derivative of the composite transposon Tnces in E. coli was demonstrated. Further study is needed to look for appropriate genetic tools to analysis the transposition of Tnces in Bacillus spp. and the dynamics of other MGEs flanking the ces gene clusters.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaomin Hu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| |
Collapse
|
17
|
Wang Y, Peng D, Dong Z, Zhu L, Guo S, Sun M. Cloning and analysis of a large plasmid pBMB165 from Bacillus thuringiensis revealed a novel plasmid organization. PLoS One 2013; 8:e81746. [PMID: 24312580 PMCID: PMC3847046 DOI: 10.1371/journal.pone.0081746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 10/16/2013] [Indexed: 11/18/2022] Open
Abstract
In this study, we report a rapid cloning strategy for large native plasmids via a contig linkage map by BAC libraries. Using this method, we cloned a large plasmid pBMB165 from Bacillus thuringiensis serovar tenebrionis strain YBT-1765. Complete sequencing showed that pBMB165 is 77,627 bp long with a GC-content of 35.36%, and contains 103 open reading frames (ORFs). Sequence analysis and comparison reveals that pBMB165 represents a novel plasmid organization: it mainly consists of a pXO2-like replicon and mobile genetic elements (an inducible prophage BMBTP3 and a set of transposable elements). This is the first description of this plasmid organization pattern, which may result from recombination events among the plasmid replicon, prophage and transposable elements. This plasmid organization reveals that the prophage BMBTP3 may use the plasmid replicon to maintain its genetic stability. Our results provide a new approach to understanding co-evolution between bacterial plasmids and bacteriophage.
Collapse
Affiliation(s)
- Yueying Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Zhaoxia Dong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Lei Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Suxia Guo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, People’s Republic of China
- * E-mail:
| |
Collapse
|
18
|
Zhao H, Chen C, Xiong Y, Xu X, Lan R, Wang H, Yao X, Bai X, Liu X, Meng Q, Zhang X, Sun H, Zhao A, Bai X, Cheng Y, Chen Q, Ye C, Xu J. Global transcriptional and phenotypic analyses of Escherichia coli O157:H7 strain Xuzhou21 and its pO157_Sal cured mutant. PLoS One 2013; 8:e65466. [PMID: 23738017 PMCID: PMC3667801 DOI: 10.1371/journal.pone.0065466] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 04/26/2013] [Indexed: 12/05/2022] Open
Abstract
Escherichia coli O157:H7 is an important food-borne pathogen that can cause hemorrhagic colitis and hemolytic-uremic syndrome in humans. pO157_Sal, a novel conjugative plasmid is present in a Chinese O157:H7 outbreak strain Xuzhou21. Here we investigated the phenotypic and transcriptional differences between the wild type strain Xuzhou21 and the pO157_Sal cured mutant strain Xuzhou21m. RNA-Seq analysis found that all 52 ORFs encoded on pO157_Sal were transcribed. One hundred and sixty eight chromosomal and pO157 genes were differentially expressed (≥2 fold difference) between Xuzhou21 and Xuzhou21m. Sixty-seven and 101 genes were up-regulated and down-regulated respectively by pO157_Sal including genes related to stress response, adaption and virulence. The plasmid-cured mutant Xuzhou21m grew slower than wild type Xuzhou21 and pO157_Sal plasmid complemented strain Xuzhou21c in M9 medium under the condition of high NaCl or presence of sodium deoxycholate (NaDC), corroborating with the RNA-Seq data. Seven differentially expressed genes are associated with NaDC resistance, including the adenine-specific DNA-methyltransferase gene (dam), multidrug efflux system subunit gene mdtA, hyperosmotically inducible periplasmic protein gene osmY and oxidation-reduction related genes while two differentially expressed genes (osmY and pspD) are likely to be related to resistance to osmotic pressure. A number of differentially expressed genes were virulence associated including four genes encoding T3SS effectors from the chromosome and ehxD from pO157. Through complementation of Xuzhou21m with a plasmid construct carrying the pO157_Sal hha homolog we further showed that the pO157_Sal hha represses the expression of T3SS effectors. These findings demonstrated that the plasmid pO157_Sal affects the transcription of the chromosomal and pO157 plasmid genes and contributes to the enhanced ability to resist stress. We conclude that pO157_Sal plays an important role in regulating global gene expression and affects the virulence and adaptation of E. coli O157:H7.
Collapse
Affiliation(s)
- Hongqing Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
| | - Chen Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
| | - Yanwen Xiong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
| | - Xuefang Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Haiyin Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
| | - Xinyue Yao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
| | - Xiangning Bai
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
| | - Xuetong Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
| | - Qiong Meng
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
| | - Xiaoai Zhang
- Beijing Center for Disease Prevention and Control, Beijing, China
| | - Hui Sun
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
| | - Ailan Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
| | - Xuemei Bai
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
| | - Yuli Cheng
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
| | - Qiang Chen
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
| | - Changyun Ye
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, National Institute for Communicable Disease Control and Prevention, Changping, Beijing, China
- * E-mail:
| |
Collapse
|
19
|
Mijnendonckx K, Provoost A, Ott CM, Venkateswaran K, Mahillon J, Leys N, Van Houdt R. Characterization of the survival ability of Cupriavidus metallidurans and Ralstonia pickettii from space-related environments. MICROBIAL ECOLOGY 2013; 65:347-60. [PMID: 23212653 DOI: 10.1007/s00248-012-0139-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/16/2012] [Indexed: 05/04/2023]
Abstract
Four Cupriavidus metallidurans and eight Ralstonia pickettii isolates from the space industry and the International Space Station (ISS) were characterized in detail. Nine of the 12 isolates were able to form a biofilm on plastics and all were resistant to several antibiotics. R. pickettii isolates from the surface of the Mars Orbiter prior to flight were 2.5 times more resistant to UV-C(254nm) radiation compared to the R. pickettii type strain. All isolates showed moderate to high tolerance against at least seven different metal ions. They were tolerant to medium to high silver concentrations (0.5-4 μM), which are higher than the ionic silver disinfectant concentrations measured regularly in the drinking water aboard the ISS. Furthermore, all isolates survived a 23-month exposure to 2 μM AgNO(3) in drinking water. These resistance properties are putatively encoded by their endogenous megaplasmids. This study demonstrated that extreme resistance is not required to withstand the disinfection and sterilization procedures implemented in the ISS and space industry. All isolates acquired moderate to high tolerance against several stressors and can grow in oligotrophic conditions, enabling them to persist in these environments.
Collapse
Affiliation(s)
- K Mijnendonckx
- Unit of Microbiology, Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | | | | | | | | | | | | |
Collapse
|
20
|
Identification of five novel tectiviruses in Bacillus strains: analysis of a highly variable region generating genetic diversity. Res Microbiol 2012; 164:118-26. [PMID: 23103336 DOI: 10.1016/j.resmic.2012.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 10/09/2012] [Indexed: 11/21/2022]
Abstract
Our biosphere is abundant with unique and small genes for which no homologs are known. These genes, often referred to as orphans or ORFans, are commonly found in bacteriophage genomes but their origins remain unclear. We discovered five novel tectivirus-like genetic elements by screening more than five-hundred Bacillus strains. A highly variable region (HVR) of these viruses was shown to harbor ORFans in most of these otherwise well-conserved bacteriophages. Previous studies demonstrated that mutations close to this region dramatically alter bacteriophage gene regulation, suggesting that the acquisition of those ORFans may provide a source of genetic diversity that is then subject to genetic selection during bacteriophage evolution.
Collapse
|
21
|
Van Houdt R, Monsieurs P, Mijnendonckx K, Provoost A, Janssen A, Mergeay M, Leys N. Variation in genomic islands contribute to genome plasticity in Cupriavidus metallidurans. BMC Genomics 2012; 13:111. [PMID: 22443515 PMCID: PMC3384475 DOI: 10.1186/1471-2164-13-111] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 03/23/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Different Cupriavidus metallidurans strains isolated from metal-contaminated and other anthropogenic environments were genotypically and phenotypically compared with C. metallidurans type strain CH34. The latter is well-studied for its resistance to a wide range of metals, which is carried for a substantial part by its two megaplasmids pMOL28 and pMOL30. RESULTS Comparative genomic hybridization (CGH) indicated that the extensive arsenal of determinants involved in metal resistance was well conserved among the different C. metallidurans strains. Contrary, the mobile genetic elements identified in type strain CH34 were not present in all strains but clearly showed a pattern, although, not directly related to a particular biotope nor location (geographical). One group of strains carried almost all mobile genetic elements, while these were much less abundant in the second group. This occurrence was also reflected in their ability to degrade toluene and grow autotrophically on hydrogen gas and carbon dioxide, which are two traits linked to separate genomic islands of the Tn4371-family. In addition, the clear pattern of genomic islands distribution allowed to identify new putative genomic islands on chromosome 1 and 2 of C. metallidurans CH34. CONCLUSIONS Metal resistance determinants are shared by all C. metallidurans strains and their occurrence is apparently irrespective of the strain's isolation type and place. Cupriavidus metallidurans strains do display substantial differences in the diversity and size of their mobile gene pool, which may be extensive in some (including the type strain) while marginal in others.
Collapse
Affiliation(s)
- Rob Van Houdt
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
| | - Pieter Monsieurs
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
| | - Kristel Mijnendonckx
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| | - Ann Provoost
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
| | - Ann Janssen
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
| | - Max Mergeay
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
| | - Natalie Leys
- Unit of Microbiology, Belgian Nuclear Research Centre (SCK•CEN), B-2400 Mol, Belgium
| |
Collapse
|
22
|
Timmery S, Hu X, Mahillon J. Characterization of Bacilli isolated from the confined environments of the Antarctic Concordia station and the International Space Station. ASTROBIOLOGY 2011; 11:323-34. [PMID: 21563959 DOI: 10.1089/ast.2010.0573] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bacillus and related genera comprise opportunist and pathogen species that can threaten the health of a crew in confined stations required for long-term missions. In this study, 43 Bacilli from confined environments, that is, the Antarctic Concordia station and the International Space Station, were characterized in terms of virulence and plasmid exchange potentials. No specific virulence feature, such as the production of toxins or unusual antibiotic resistance, was detected. Most of the strains exhibited small or large plasmids, or both, some of which were related to the replicons of the Bacillus anthracis pXO1 and pXO2 virulence elements. One conjugative element, the capacity to mobilize and retromobilize small plasmids, was detected in a Bacillus cereus sensu lato isolate. Six out of 25 tested strains acquired foreign DNA by conjugation. Extremophilic bacteria were identified and exhibited the ability to grow at high pH and salt concentrations or at low temperatures. Finally, the clonal dispersion of an opportunist isolate was demonstrated in the Concordia station. Taken together, these results suggest that the virulence potential of the Bacillus isolates in confined environments tends to be low but genetic transfers could contribute to its capacity to spread.
Collapse
Affiliation(s)
- Sophie Timmery
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | |
Collapse
|
23
|
|
24
|
Hu X, Swiecicka I, Timmery S, Mahillon J. Sympatric soil communities of Bacillus cereus sensu lato: population structure and potential plasmid dynamics of pXO1- and pXO2-like elements. FEMS Microbiol Ecol 2009; 70:344-55. [PMID: 19780824 DOI: 10.1111/j.1574-6941.2009.00771.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Eighty soil-borne Bacillus cereus group isolates were collected from two neighbouring geographical sites in Belgium. Their genetic relationships and population structure were assessed using Multilocus sequence typing analysis of five chromosomal genes, while the contribution of extrachromosomal elements to the population dynamics was gauged by the presence, diversity and transfer capacity of pXO1- and pXO2-like plasmids. Globally, the bacterial population displayed a broad diversity, including an important subpopulation of psychrotolerant isolates related to Bacillus weihenstephanensis. pXO1- and pXO2-like replicons were present in 12% and 21% of the isolates, but no Bacillus anthracis-related toxin genes were found. Furthermore, only one of the isolates containing a pXO2-related plasmid was shown to be able to mobilize small non-self-conjugative plasmids. Interestingly, several B. cereus sensu lato isolates displaying the same sequence type were observed to have different plasmid contents, suggesting the occurrence of horizontal gene exchange. Similarly, a number of pXO2-like replicons with identical sequences were found in distinct bacterial isolates, therefore strongly arguing for lateral transfers among sympatric bacteria.
Collapse
Affiliation(s)
- Xiaomin Hu
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | | | | |
Collapse
|
25
|
Amadio AF, Benintende GB, Zandomeni RO. Complete sequence of three plasmids from Bacillus thuringiensis INTA-FR7-4 environmental isolate and comparison with related plasmids from the Bacillus cereus group. Plasmid 2009; 62:172-82. [PMID: 19654019 DOI: 10.1016/j.plasmid.2009.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 10/20/2022]
Abstract
Bacillus thuringiensis is an insect pathogen used worldwide as a bioinsecticide. It belongs to the Bacillus cereus sensu lato group as well as Bacillus anthracis and B. cereus. Plasmids from this group of organisms have been implicated in pathogenicity as they carry the genes responsible for different types of diseases that affect mammals and insects. Some plasmids, like pAW63 and pBT9727, encode a functional conjugation machinery allowing them to be transferred to a recipient cell. They also share extensive homology with the non-functional conjugation apparatus of pXO2 from B. anthracis. In this study we report the complete sequence of three plasmids from an environmental B. thuringiensis isolate from Argentina, obtained by a shotgun sequencing method. We obtained the complete nucleotide sequence of plasmids pFR12 (12,095bp), pFR12.5 (12,459bp) and pFR55 (55,712bp) from B. thuringiensis INTA-FR7-4. pFR12 and pFR12.5 were classified as cryptic as they do not code for any obvious functions besides replication and mobilization. Both small plasmids were classified as RCR plasmids due to similarities with the replicases they encode. Plasmid pFR55 showed a structural organization similar to that observed for plasmids pAW63, pBT9727 and pXO2. pFR55 also shares a tra region with these plasmids, containing genes related to T4SS and conjugation. A comparison between pFR55 and conjugative plasmids led to the postulation that pFR55 is a conjugative plasmid. Genes related to replication functions in pFR55 are different to those described for plasmids with known complete sequences. pFR55 is the first completely sequenced plasmid with a replication machinery related to that of ori44. The analysis of the complete sequence of plasmids from an environmental isolate of B. thuringiensis permitted the identification of a near complete conjugation apparatus in pFR55, resembling those of plasmids pAW63, pBT9727 and pXO2. The availability of this sequence is a step forward in the study of the molecular basis of the conjugative process in Gram positive bacteria, particularly due to the similarity with known conjugation systems. It is also a contribution to the expansion of the non-pathogenic B. cereus plasmid gene pool.
Collapse
Affiliation(s)
- Ariel F Amadio
- Instituto de Microbiología y Zoología Agrícola (IMyZA), Instituto Nacional de Tecnología Agropecuaria (INTA), Las Cabañas y de Los Reseros, Buenos Aires, Argentina.
| | | | | |
Collapse
|
26
|
Hoton FM, Fornelos N, N'guessan E, Hu X, Swiecicka I, Dierick K, Jääskeläinen E, Salkinoja-Salonen M, Mahillon J. Family portrait of Bacillus cereus and Bacillus weihenstephanensis cereulide-producing strains. ENVIRONMENTAL MICROBIOLOGY REPORTS 2009; 1:177-83. [PMID: 23765791 DOI: 10.1111/j.1758-2229.2009.00028.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Two thousand Bacillus cereus sensu lato isolates from food and environmental matrices were screened by PCR for the presence of cereulide-producing strains. This survey identified 73 potential emetic strains, most of which originated from non-random food and clinical samplings. None of the 460 Bacillus thuringiensis, Bacillus mycoides and Bacillus pseudomycoides strains were PCR-positive for the cereulide genetic determinants. The chromosomal and extrachromosomal gene pool diversity of a subset of 30 cereulide-producing strains was then assessed using multilocus sequence typing, large plasmid gel electrophoresis and Southern blot hybridization. The strain toxicity on boar sperm and cereulide production were also analysed. The most striking observation was the identification of two distinct clusters of cereulide-producing strains, with members of the second group (cluster II) identified as psychrotolerant B. weihenstephanensis able to grow at 8°C. Moreover, the location of the cereulide genetic determinants was shown to vary depending on the strain, indicating a probable genomic mobility.
Collapse
Affiliation(s)
- Florence M Hoton
- Laboratory of Food and Environmental Microbiology, Université catholique de Louvain, Croix du Sud, 2/12, B-1348 Louvain-la-Neuve, Belgium. Department of Microbiology, University of Bialystok, 20B Swierkowa Street, PL15-950 Bialystok, Poland. Institute of Public Health, Bacteriology, 14 Rue Juliette Wijtsman, B-1050 Brussels, Belgium. Department of Applied Chemistry and Microbiology, University of Helsinki, P.O. Box 56, Viikinkaari 9, 00014 Helsinki, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Hu X, Van der Auwera G, Timmery S, Zhu L, Mahillon J. Distribution, diversity, and potential mobility of extrachromosomal elements related to the Bacillus anthracis pXO1 and pXO2 virulence plasmids. Appl Environ Microbiol 2009; 75:3016-28. [PMID: 19304837 PMCID: PMC2681636 DOI: 10.1128/aem.02709-08] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 03/06/2009] [Indexed: 11/20/2022] Open
Abstract
The presence of a pXO1- and/or pXO2-like plasmid(s) in clinical isolates of Bacillus cereus sensu stricto and in strains of the biopesticide Bacillus thuringiensis has been reported recently, and the pXO2-like plasmid pBT9727 and another pXO2-like plasmid, pAW63, were found to be conjugative. In this study, a total of 1,000 B. cereus group isolates were analyzed for the presence of pXO1- and pXO2-like replicons and for the presence of pXO2-related conjugative modules. pXO1- and pXO2-like replicons were present in ca. 6.6% and 7.7% of random environmental samples, respectively, and ca. 1.54% of the strains were positive for pXO2-like transfer module genes. Only the strains harboring a pXO2-like replicon also contained the corresponding transfer genes. For the strains which contained a pXO1- and/or pXO2-like replicon(s), a large plasmid(s) whose size was similar to that of pXO1-like and/or pXO2-like plasmids was also observed, but none of these isolates were found to carry the Bacillus anthracis toxin or capsule virulence genes. Furthermore, 17 of 22 pXO2-like plasmids containing the transfer modules were able to self-transfer and to mobilize small plasmids. No pXO1- or pXO2-like plasmid lacking the cognate transfer modules has been found to have transfer potential. In the strains possessing the putative pXO2-like conjugative apparatus, variations in the presence of the group II introns B.th.I.1 and B.th.I.2 were observed, suggesting that there is important flexibility in the conjugation modules and their regulation. There was no consistent correlation between a pXO2-like repA dendrogram and the presence of the tra region or between a virB4 dendrogram and transfer ability. Discrepancies between pXO2-like repA and virB4 dendrograms were also observed, indicating that the evolution of pXO2 is an active process.
Collapse
Affiliation(s)
- Xiaomin Hu
- Laboratory of Food and Environmental Microbiology, Université Catholique de Louvain, Croix du Sud 2/12, B-1348 Louvain-la-Neuve, Belgium
| | | | | | | | | |
Collapse
|