1
|
Sonkar K, Singh A. Metabolic and physiological functions of Patatin-like phospholipase-A in plants. Int J Biol Macromol 2025; 287:138474. [PMID: 39645102 DOI: 10.1016/j.ijbiomac.2024.138474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
Patatin-like phospholipase-A (pPLA) is a class of lipid acyl hydrolase enzymes found in both, the animal and plant kingdoms. Plant pPLAs are related to the potato tuber storage protein patatin in solanaceous plants. Despite extensive investigation of pPLA functions in the animal system, the mechanistic functional details and regulatory roles of pPLA are poorly understood in plants. In recent years, research pertaining to pPLAs has gain some momentum as some of the key members of pPLA family have been characterized functionally. These findings have provided key insights into the structural features, biochemical activities, and functional roles of plant pPLAs. In this review, we are presenting a holistic overview of pPLAs in plants and providing the latest updates on pPLA research. We have highlighted the genomic diversity and structural features of pPLAs in plants. Importantly, we have discussed the role of pPLAs in lipid metabolism, including sphingolipid metabolism, lignin and cellulose accumulation, lipid breakdown and seed oil content enhancement. Moreover, regulatory roles of pPLAs in physiological processes, such as plant stress response, plant-pathogen interactions and plant development have been discussed. This information will be critical in the biotechnological programs for crop improvement.
Collapse
Affiliation(s)
- Kamankshi Sonkar
- National Institute of Plant genome Research, New Delhi 110067, India
| | - Amarjeet Singh
- National Institute of Plant genome Research, New Delhi 110067, India.
| |
Collapse
|
2
|
Zhu J, Zhou H, Zhang M, Hong Y, Zhang Y, Lv C, Guo B, Wang F, Xu R. A novel QTL qRYM-7H for barley yellow mosaic resistance identified by GWAS and linkage analysis. PLANT MOLECULAR BIOLOGY 2024; 114:127. [PMID: 39572425 DOI: 10.1007/s11103-024-01529-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/01/2024] [Indexed: 12/13/2024]
Abstract
Barley (Hordeum vulgare L.) is the fourth largest cereal crop in the world after rice, wheat and maize. Barley yellow mosaic disease (BYMD) is a serious threat to winter barley production. The evolution and mutation of virus strains lead to the breakdown of the resistance of the originally resistant varieties. It is therefore vital to explore new BYMD resistance genes. In this study, a natural population (334 barley varieties or lines) and a double haploid population derived from the cross between Tam407227 and Franklin were used to search for new quantitative trait loci (QTL) for BYMD resistance. Two major QTL on chromosomes 3H and 7H, respectively, were detected from the genome wide association study and validated in the DH population. Among them, The QTL on 3H (qRYM-3H/qTFRYM-3H) was confirmed to be the reported BYMD resistance gene eIF4E by haplotype analysis. And the QTL on 7H (qRYM-7H/qTFRYM-7H) is a novel QTL that has not been reported before. Another QTL on 2H was identified from the DH population. This QTL is more likely the Rmy16Hb reported previously. These three QTL showed an additive effect on improving BYMD resistance with the average disease scores from 2.45 (all sensitive alleles for these three QTL) to 0.62 (all tolerant alleles for these three QTL). The candidate genes for the novel QTL qRYM-7H/qTFRYM-7H were predicted based on transcriptome sequencing and qPCR analysis.
Collapse
Affiliation(s)
- Juan Zhu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Hui Zhou
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Mengna Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yi Hong
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Yuhang Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Chao Lv
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Baojian Guo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Feifei Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Rugen Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
3
|
Singh S, Prakash G, Nanjundappa S, Malipatil R, Kalita P, Satyavathi TC, Thirunavukkarasu N. Novel SNPs Linked to Blast Resistance Genes Identified in Pearl Millet Through Genome-Wide Association Models. Int J Mol Sci 2024; 25:12048. [PMID: 39596115 PMCID: PMC11593765 DOI: 10.3390/ijms252212048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Foliar blast, caused by Pyricularia grisea, poses a major challenge to pearl millet (Pennisetum glaucum (L.) R. Br) production, leading to severe yield losses, particularly in rainfed ecologies. This study aimed to elucidate the genetic basis of blast resistance through a genome-wide association study (GWAS) involving 281 diverse pearl millet inbreds. GWAS panel was phenotyped for blast resistance against three distinct isolates of P. grisea collected from Delhi, Gujarat, and Rajasthan locations, revealing a significant variability with 16.7% of the inbreds showing high resistance. Bayesian information and linkage disequilibrium iteratively nested keyway (BLINK) and Multi-Locus Mixed Model (MLMM) models using transformed means identified 68 significant SNPs linked to resistance, with hotspots for resistance-related genes on chromosomes 1, 2, and 6. These regions harbor genes involved in defense mechanisms, including immune response, stress tolerance, signal transduction, transcription regulation, and pathogen defense. Genes, namely 14-3-3-like proteins RGA2, RGA4, hypersensitive-induced response proteins, NHL3, NBS-LRR, LRR-RLK, LRRNT_2, and various transcription factors such as AP2/ERF and WRKY, played a crucial role in the stress-responsive pathways. Analyses of transporter proteins, redox processes, and structural proteins revealed additional mechanisms contributing to blast resistance. This study offers valuable insights into the complex genetic architecture of blast resistance in pearl millet, offering a solid foundation for marker-assisted breeding programs and gene-editing experiments.
Collapse
Affiliation(s)
- Swati Singh
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Ganesan Prakash
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India;
| | - Sandeep Nanjundappa
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Renuka Malipatil
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Prerana Kalita
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Tara C. Satyavathi
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| | - Nepolean Thirunavukkarasu
- Genomics and Molecular Breeding Lab, Global Centre of Excellence on Millets (Shree Anna), ICAR-Indian Institute of Millets Research, Hyderabad 500030, India; (S.S.); (S.N.); (R.M.); (P.K.); (T.C.S.)
| |
Collapse
|
4
|
Ma L, Song N, Duan Q, Du W, Li X, Jia W, Cui G, Wang J, Wu J. Jasmonate/ethylene- and NaWRKY6/3-regulated Alternaria resistance depends on ethylene response factor 1B-like in Nicotiana attenuata. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6593-6608. [PMID: 39046351 DOI: 10.1093/jxb/erae320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Abstract
Biosynthesis of the phytoalexins scopoletin and scopolin in Nicotiana species is regulated by upstream signals including jasmonate (JA), ethylene (ET), and NaWRKY3 in response to the necrotrophic fungus Alternaria alternata, which causes brown spot disease. However, how these signals are coordinated to regulate these phytoalexins remains unknown. By analyzing RNA sequencing data and RNAi, we identified NaERF1B-like (NaERF1B-L) as a key player in Nicotiana attenuata during A. alternata infection by regulating the transcripts of Feruloyl-CoA 6'-hydroxylase 1 (NaF6'H1), encoding a key enzyme for scopoletin biosynthesis, and NaVS1-like (NaVS1-L), a putative biosynthetic gene of the phytoalexin solavetivone. We further demonstrated that the synergistic induction of these two genes by JA and ET signaling is mediated by NaERF1B-L. Additionally, we found that the two closely related proteins, NaWRKY6 and NaWRKY3, physically interact to enhance NaERF1B-L expression by directly binding to and activating the NaERF1B-L promoter. Collectively, our current results demonstrate that NaERF1B-L plays a positive role in resistance to A. alternata by modulating phytoalexin biosynthesis through the integration of JA/ET and NaWRKY6/3 signaling. Our findings reveal a fine-tuned transcriptional regulatory hierarchy mediated by NaERF1B-L for brown spot disease resistance in wild tobacco.
Collapse
Affiliation(s)
- Lan Ma
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Flower Breeding, National Engineering Research Center for Ornamental Horticulture, Yunnan Seed Laboratory, Kunming, 650205, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qing Duan
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Flower Breeding, National Engineering Research Center for Ornamental Horticulture, Yunnan Seed Laboratory, Kunming, 650205, China
| | - Wenwen Du
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Flower Breeding, National Engineering Research Center for Ornamental Horticulture, Yunnan Seed Laboratory, Kunming, 650205, China
| | - Xiang Li
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Flower Breeding, National Engineering Research Center for Ornamental Horticulture, Yunnan Seed Laboratory, Kunming, 650205, China
| | - Wenjie Jia
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Flower Breeding, National Engineering Research Center for Ornamental Horticulture, Yunnan Seed Laboratory, Kunming, 650205, China
| | - Guangfen Cui
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Flower Breeding, National Engineering Research Center for Ornamental Horticulture, Yunnan Seed Laboratory, Kunming, 650205, China
| | - Jihua Wang
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Yunnan Provincial Key Laboratory of Flower Breeding, National Engineering Research Center for Ornamental Horticulture, Yunnan Seed Laboratory, Kunming, 650205, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
5
|
Gu S, Xie L, Guan Q, Sheng X, Fang Y, Wang X. Effect of ethylene production by four pathogenic fungi on the postharvest diseases of green pepper (Capsicum annuum L.). Int J Food Microbiol 2024; 418:110729. [PMID: 38696986 DOI: 10.1016/j.ijfoodmicro.2024.110729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/04/2024]
Abstract
Ethylene produced by plants generally induces ripening and promotes decay, whereas the effect of ethylene produced by pathogens on plant diseases remains unclear. In this study, four ethylene-producing fungi including Alternaria alternata (A. alternata, Aa), Fusarium verticilliodes (F. verticillioides, Fv), Fusarium fujikuroi 1 (F. fujikuroi 1, Ff-1) and Fusarium fujikuroi 2 (F. fujikuroi 2, Ff-2) were severally inoculated in potato dextrose broth (PDB) media and postharvest green peppers, the ethylene production rates, disease indexes and chlorophyll fluorescence parameters were determined. The results showed that Ff-2 and Fv in the PDB media had the highest and almost the same ethylene production rates. After inoculation with green peppers, Ff-2 treated group still exhibited the highest ethylene production rate, whereas Aa treated group had a weak promotion effect on ethylene production. Moreover, the ethylene production rate of green peppers with mechanical injury was twice that without mechanical injury, and the ethylene production rates of green peppers treated with Aa, Ff-1, Ff-2 and Fv were 1.2, 2.6, 3.8 and 2.8 folds than those of green peppers without treatment, respectively. These results indicated that pathogen infection stimulated the synthesis of ethylene in green peppers. Correlation analysis indicated that the degreening of Fusarium-infected green pepper was significantly positively correlated with the ethylene production rate of green pepper, whereas the disease spot of Aa-infected green pepper had a significant positive correlations with the ethylene production rate of green peppers. Chlorophyll fluorescence results showed that the green peppers already suffered from severe disease after being infected with fungi for 4 days, and Fusarium infection caused early and serious stress, while the harm caused by A. alternata was relatively mild at the early stage. Our results clearly showed that α-keto-γ-methylthiobutyric acid (KMBA)-mediated ethylene synthesis was the major ethylene synthesis pathway in the four postharvest pathogenic fungi. All the results obtained suggested that ethylene might be the main infection factor of Fusarium spp. in green peppers. For pathogenic fungi, stimulating green peppers to produce high level of ethylene played a key role in the degreening of green peppers.
Collapse
Affiliation(s)
- Shuang Gu
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China; Key Laboratory for Food Microbial Technology of Zhejiang Province, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Lin Xie
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Qiuyue Guan
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Xuerong Sheng
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Yonggang Fang
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China
| | - Xiangyang Wang
- Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| |
Collapse
|
6
|
Li X, Xu M, Zhou K, Hao S, Li L, Wang L, Zhou W, Kai G. SmEIL1 transcription factor inhibits tanshinone accumulation in response to ethylene signaling in Salvia miltiorrhiza. FRONTIERS IN PLANT SCIENCE 2024; 15:1356922. [PMID: 38628367 PMCID: PMC11018959 DOI: 10.3389/fpls.2024.1356922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
Among the bioactive compounds, lipid-soluble tanshinone is present in Salvia miltiorrhiza, a medicinal plant species. While it is known that ethephon has the ability to inhibit the tanshinones biosynthesis in the S. miltiorrhiza hairy root, however the underlying regulatory mechanism remains obscure. In this study, using the transcriptome dataset of the S. miltiorrhiza hairy root induced by ethephon, an ethylene-responsive transcriptional factor EIN3-like 1 (SmEIL1) was identified. The SmEIL1 protein was found to be localized in the nuclei, and confirmed by the transient transformation observed in tobacco leaves. The overexpression of SmEIL1 was able to inhibit the tanshinones accumulation to a large degree, as well as down-regulate tanshinones biosynthetic genes including SmGGPPS1, SmHMGR1, SmHMGS1, SmCPS1, SmKSL1 and SmCYP76AH1. These are well recognized participants in the tanshinones biosynthesis pathway. Further investigation on the SmEIL1 was observed to inhibit the transcription of the CPS1 gene by the Dual-Luciferase (Dual-LUC) and yeast one-hybrid (Y1H) assays. The data in this work will be of value regarding the involvement of EILs in regulating the biosynthesis of tanshinones and lay the foundation for the metabolic engineering of bioactive ingredients in S. miltiorrhiza.
Collapse
Affiliation(s)
- Xiujuan Li
- Zhejiang Provincial Traditional Chinese Medicine Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Man Xu
- Zhejiang Provincial Traditional Chinese Medicine Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ke Zhou
- Dermatology department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Siyu Hao
- Zhejiang Provincial Traditional Chinese Medicine Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liqin Li
- Key Laboratory of Traditional Chinese Medicine for the Development and Clinical Transformation of Immunomodulatory Traditional Chinese Medicine in Zhejiang Province, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
| | - Leran Wang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Zhou
- Zhejiang Provincial Traditional Chinese Medicine Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoyin Kai
- Zhejiang Provincial Traditional Chinese Medicine Key Laboratory of Chinese Medicine Resource Innovation and Transformation, Zhejiang Provincial International Science and Technology Cooperation Base for Active Ingredients of Medicinal and Edible Plants and Health, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
7
|
Shu P, Li Y, Sheng J, Shen L. Recent Advances in Dissecting the Function of Ethylene in Interaction between Host and Pathogen. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4552-4563. [PMID: 38379128 DOI: 10.1021/acs.jafc.3c07978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Pathogens influence the growth and development of plants, resulting in detrimental damage to their yields and quality. Ethylene, a gaseous phytohormone, serves a pivotal function in modulating diverse physiological processes in plants, including defense mechanisms against pathogen invasion. Ethylene biosynthesis is involved in both plants and pathogens. Recent empirical research elucidates the intricate interactions and regulatory mechanisms between ethylene and pathogens across various plant species. In this review, we provide a comprehensive overview of the latest findings concerning ethylene's role and its regulatory networks in host-pathogen interactions. Additionally, we explore the crosstalk between ethylene and other phytohormones. Points regarding ethylene emission and its modulation by pathogens are also emphasized. Moreover, we also discuss potential unresolved issues in the field that warrant further investigation.
Collapse
Affiliation(s)
- Pan Shu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Yujing Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | - Jiping Sheng
- School of Agricultural Economics and Rural Development, Renmin University of China, Beijing 100872, P. R. China
| | - Lin Shen
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| |
Collapse
|
8
|
Pazhamala LT, Giri J. Plant phosphate status influences root biotic interactions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2829-2844. [PMID: 36516418 DOI: 10.1093/jxb/erac491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/09/2022] [Indexed: 06/06/2023]
Abstract
Phosphorus (P) deficiency stress in combination with biotic stress(es) severely impacts crop yield. Plant responses to P deficiency overlapping with that of other stresses exhibit a high degree of complexity involving different signaling pathways. On the one hand, plants engage with rhizosphere microbiome/arbuscular mycorrhizal fungi for improved phosphate (Pi) acquisition and plant stress response upon Pi deficiency; on the other hand, this association is gets disturbed under Pi sufficiency. This nutrient-dependent response is highly regulated by the phosphate starvation response (PSR) mediated by the master regulator, PHR1, and its homolog, PHL. It is interesting to note that Pi status (deficiency/sufficiency) has a varying response (positive/negative) to different biotic encounters (beneficial microbes/opportunistic pathogens/insect herbivory) through a coupled PSR-PHR1 immune system. This also involves crosstalk among multiple players including transcription factors, defense hormones, miRNAs, and Pi transporters, among others influencing the plant-biotic-phosphate interactions. We provide a comprehensive view of these key players involved in maintaining a delicate balance between Pi homeostasis and plant immunity. Finally, we propose strategies to utilize this information to improve crop resilience to Pi deficiency in combination with biotic stresses.
Collapse
Affiliation(s)
- Lekha T Pazhamala
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
9
|
Parveen R, Vaish S, Gupta D, Basantani MK. Bioinformatics characterization of patatin-related phospholipase A (pPLA) gene family in agriculturally important crops viz Vigna radiata, Vigna angularis, and Glycine max. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01026-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Garzón-Martínez GA, García-Arias FL, Enciso-Rodríguez FE, Soto-Suárez M, González C, Bombarely A, Barrero LS, Osorio Guarín JA. Combining transcriptome analysis and GWAS for identification and validation of marker genes in the Physalis peruviana- Fusarium oxysporum pathosystem. PeerJ 2021; 9:e11135. [PMID: 33828924 PMCID: PMC7993016 DOI: 10.7717/peerj.11135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 03/01/2021] [Indexed: 11/20/2022] Open
Abstract
Vascular wilt, caused by the pathogen Fusarium oxysporum f. sp. physali (Foph), is a major disease of cape gooseberry (Physalis peruviana L.) in Andean countries. Despite the economic losses caused by this disease, there are few studies related to molecular mechanisms in the P. peruviana—Foph pathosystem as a useful tool for crop improvement. This study evaluates eight candidate genes associated with this pathosystem, using real-time quantitative PCR (RT-qPCR). The genes were identified and selected from 1,653 differentially expressed genes (DEGs) derived from RNA-Seq analysis and from a previous genome-wide association study (GWAS) of this plant-pathogen interaction. Based on the RT-qPCR analysis, the tubuline (TUB) reference gene was selected for its highly stable expression in cape gooseberry. The RT-qPCR validation of the candidate genes revealed the biological variation in their expression according to their known biological function. Three genes related to the first line of resistance/defense responses were highly expressed earlier during infection in a susceptible genotype, while three others were overexpressed later, mostly in the tolerant genotype. These genes are mainly involved in signaling pathways after pathogen recognition, mediated by hormones such as ethylene and salicylic acid. This study provided the first insight to uncover the molecular mechanism from the P. peruviana—Foph pathosystem. The genes validated here have important implications in the disease progress and allow a better understanding of the defense response in cape gooseberry at the molecular level. Derived molecular markers from these genes could facilitate the identification of tolerant/susceptible genotypes for use in breeding schemes.
Collapse
Affiliation(s)
- Gina A Garzón-Martínez
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria Agrosavia, Mosquera, Cundinamarca, Colombia
| | - Francy L García-Arias
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria Agrosavia, Mosquera, Cundinamarca, Colombia
| | - Felix E Enciso-Rodríguez
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria Agrosavia, Mosquera, Cundinamarca, Colombia
| | - Mauricio Soto-Suárez
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria Agrosavia, Mosquera, Cundinamarca, Colombia
| | - Carolina González
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria Agrosavia, Mosquera, Cundinamarca, Colombia
| | | | - Luz Stella Barrero
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria Agrosavia, Mosquera, Cundinamarca, Colombia
| | - Jaime A Osorio Guarín
- Centro de Investigación Tibaitatá, Corporación Colombiana de Investigación Agropecuaria Agrosavia, Mosquera, Cundinamarca, Colombia
| |
Collapse
|
11
|
Lin HH, Lin KH, Wu KF, Chen YC. Identification of Ipomoea batatas anti-cancer peptide (IbACP)-responsive genes in sweet potato leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 305:110849. [PMID: 33691955 DOI: 10.1016/j.plantsci.2021.110849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/02/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
IbACP, Ipomoea batatas anti-cancer peptide, a sixteen-amino-acid peptide isolated from sweet potato leaves, is capable of mediating a rapid alkalinization of growth media in plant suspension cells. However, the biological roles of IbACP as a defense peptide have not been studied. The objective of this study was to investigate the effect of IbACP on the accumulation of reactive oxygen species (ROS) and the expression of the defense-related genes. IbACP treatment of sweet potato leaves resulted in marked accumulation of both superoxide ion (O2-) and hydrogen peroxide (H2O2). The activity of peroxidase (POD) was significantly enhanced by IbACP treatment, suggesting that high levels of POD antioxidant activity may be used to scavenge the excess H2O2 in sweet potato plants. The IbACP-related genes were identified by suppression subtractive hybridization (SSH), and were then classified and assigned to the following categories: defense, development, metabolism, signaling, gene expression, and abiotic stress. H2O2 acts as a second messenger for gene activation in some of the IbACP-triggered gene expressions. These results demonstrated that IbACP is part of an integrated strategy for genetic regulation in sweet potato. Our work highlights the function of IbACP and its potential use for enhancing stress tolerance in sweet potato, in an effort to improve our understanding of defense-response mechanisms.
Collapse
Affiliation(s)
- Hsin-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114, Taiwan
| | - Kuan-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114, Taiwan
| | - Kuan-Fu Wu
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, 700, Taiwan
| | - Yu-Chi Chen
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, 700, Taiwan.
| |
Collapse
|
12
|
Gao G, Zhang X, Zhao K, Zhao K, Cao D, Ma Q, Zhu S, Qu C, Ma Y, Gong F, Li Z, Ren R, Ma X, Yin D. Genome wide identification and expression analysis of patatin-like protein family members in peanut (Arachis hypogaea L.). REPRODUCTION AND BREEDING 2021. [DOI: 10.1016/j.repbre.2021.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
13
|
Billah M, Li F, Yang Z. Regulatory Network of Cotton Genes in Response to Salt, Drought and Wilt Diseases ( Verticillium and Fusarium): Progress and Perspective. FRONTIERS IN PLANT SCIENCE 2021; 12:759245. [PMID: 34912357 PMCID: PMC8666531 DOI: 10.3389/fpls.2021.759245] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/13/2021] [Indexed: 05/11/2023]
Abstract
In environmental conditions, crop plants are extremely affected by multiple abiotic stresses including salinity, drought, heat, and cold, as well as several biotic stresses such as pests and pathogens. However, salinity, drought, and wilt diseases (e.g., Fusarium and Verticillium) are considered the most destructive environmental stresses to cotton plants. These cause severe growth interruption and yield loss of cotton. Since cotton crops are central contributors to total worldwide fiber production, and also important for oilseed crops, it is essential to improve stress tolerant cultivars to secure future sustainable crop production under adverse environments. Plants have evolved complex mechanisms to respond and acclimate to adverse stress conditions at both physiological and molecular levels. Recent progresses in molecular genetics have delivered new insights into the regulatory network system of plant genes, which generally includes defense of cell membranes and proteins, signaling cascades and transcriptional control, and ion uptake and transport and their relevant biochemical pathways and signal factors. In this review, we mainly summarize recent progress concerning several resistance-related genes of cotton plants in response to abiotic (salt and drought) and biotic (Fusarium and Verticillium wilt) stresses and classify them according to their molecular functions to better understand the genetic network. Moreover, this review proposes that studies of stress related genes will advance the security of cotton yield and production under a changing climate and that these genes should be incorporated in the development of cotton tolerant to salt, drought, and fungal wilt diseases (Verticillium and Fusarium).
Collapse
Affiliation(s)
- Masum Billah
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- *Correspondence: Fuguang Li,
| | - Zhaoen Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Zhaoen Yang,
| |
Collapse
|
14
|
Comparative Transcriptome Analysis of Two Cucumber Cultivars with Different Sensitivity to Cucumber Mosaic Virus Infection. Pathogens 2020; 9:pathogens9020145. [PMID: 32098056 PMCID: PMC7168641 DOI: 10.3390/pathogens9020145] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/17/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022] Open
Abstract
Cucumber mosaic virus (CMV), with extremely broad host range including both monocots and dicots around the world, belongs to most important viral crop threats. Either natural or genetically constructed sources of resistance are being intensively investigated; for this purpose, exhaustive knowledge of molecular virus-host interaction during compatible and incompatible infection is required. New technologies and computer-based “omics” on various levels contribute markedly to this topic. In this work, two cucumber cultivars with different response to CMV challenge were tested, i.e., sensitive cv. Vanda and resistant cv. Heliana. The transcriptomes were prepared from both cultivars at 18 days after CMV or mock inoculation. Subsequently, four independent comparative analyses of obtained data were performed, viz. mock- and CMV-inoculated samples within each cultivar, samples from mock-inoculated cultivars to each other and samples from virus-inoculated cultivars to each other. A detailed picture of CMV-influenced genes, as well as constitutive differences in cultivar-specific gene expression was obtained. The compatible CMV infection of cv. Vanda caused downregulation of genes involved in photosynthesis, and induction of genes connected with protein production and modification, as well as components of signaling pathways. CMV challenge caused practically no change in the transcription profile of the cv. Heliana. The main differences between constitutive transcription activity of the two cultivars relied in the expression of genes responsible for methylation, phosphorylation, cell wall organization and carbohydrate metabolism (prevailing in cv. Heliana), or chromosome condensation and glucan biosynthesis (prevailing in cv. Vanda). Involvement of several genes in the resistant cucumber phenotype was predicted; this can be after biological confirmation potentially applied in breeding programs for virus-resistant crops.
Collapse
|
15
|
Xu Z, Song N, Ma L, Wu J. IRE1-bZIP60 Pathway Is Required for Nicotiana attenuata Resistance to Fungal Pathogen Alternaria alternata. FRONTIERS IN PLANT SCIENCE 2019; 10:263. [PMID: 30941151 PMCID: PMC6434776 DOI: 10.3389/fpls.2019.00263] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 02/19/2019] [Indexed: 05/21/2023]
Abstract
As an endoplasmic reticulum (ER) stress sensor, inositol-requiring enzyme 1 (IRE1) splices the bZIP60 mRNA, and produces an active bZIP60 transcription factor that regulates genes involved in the unfolded protein response (UPR) during ER stresses. This IRE1-bZIP60 pathway is conserved in plant species and recently implicated in plant-pathogen interaction. However, it is unclear whether this IRE1-bZIP60 pathway is involved in Nicotiana attenuata resistance to necrotic fungal pathogen, Alternaria alternata. In this study, transcriptional levels of chaperone protein genes, including luminal binding protein (BiP), protein disulfide isomerase (PDI), calnexin 1-like (CNX 1-like), and calreticulin (CRT), and genes involved in IRE1-bZIP60 pathway, were all significantly induced in N. attenuata leaves after A. alternata inoculation. Silencing IRE1 or bZIP60 led to N. attenuata plants more susceptible to A. alternata, which were associated with reduced gene expressions of Feruloyl-CoA 6'-hydroxylase 1 (F6'H1), a gene encoding a key enzyme for phytoalexin scopoletin and scopolin biosynthesis. Further, electromobility shift assays (EMSA) indicated that bZIP60 protein of spliced form could directly bind to the promoter region of F6'H1 in vitro. JA signaling pathway is required for N. attenuata resistance to A. alternata. Interestingly, the fungus-elicited transcriptional levels of BiP, PDI, CNX 1-like, CRT, IRE1, and bZIP60(s) were all significantly decreased in JA-deficient or JA-insensitive plants. Meanwhile, those genes were significantly induced by methyl jasmonate (MeJA) when applied exogenously. However, the transcriptional levels of JA-regulated genes allene oxide synthase (AOS) and lipoxygenease 3 (LOX3) were not affected in plants impaired with IRE1-bZIP60 pathway. Thus, it is concluded that IRE1-bZIP60 pathway is required for N. attenuata resistance to A. alternata, and JA signaling pathway plays an important role in the elicitation of chaperone protein genes and IRE1-bZIP60 pathway.
Collapse
Affiliation(s)
- Zhen Xu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lan Ma
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|