1
|
Ma YL, Wu ZF, Li Z, Wang Y, Shang YF, Thakur K, Wei ZJ. In vitro digestibility and hepato-protective potential of Lophatherum gracile Brongn. leave extract. Food Chem 2024; 433:137336. [PMID: 37666125 DOI: 10.1016/j.foodchem.2023.137336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/02/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023]
Abstract
Lophatherum gracile Brongn. (L. gracile) is a traditional herb for both medicine and food use, but its digestibility and hepato-protective activity is unknown. Herein we investigated the digestibility and hepato-protective potential of L. gracile leave extract (LGE) using in vitro digestion and alcohol-induced oxidative damage models. Compared to the undigested group, the content of phenolics/flavonoids and the antioxidant activity in LGE generally decreased by 9.30-19.97% in the oral and small intestine phase after digestion, while that increased by 9.96-10.17% in the gastric phase. The main phenolics/flavonoids showed promising stability during digestion and their bio-accessiblity ranged from 67.64% to 84.47%. By reducing cellular reactive oxidative species and malonaldehyde levels, LGE (0.23-0.45 mg/mL) pretreatment significantly ameliorated alcohol-induced oxidative damage in HepG2 cells (P < 0.05), and their survival rate increased from 59.23% to 67.76%. These findings suggested that L. gracile could be used for the development of hepato-protective foods.
Collapse
Affiliation(s)
- Yi-Long Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China.
| | - Zheng-Fang Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Zhi Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Yue Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Ya-Fang Shang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China.
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China.
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; School of Biological Science and Engineering, Collaborative Innovation Center for Food Production and Safety, North Minzu University, Yinchuan 750021, China.
| |
Collapse
|
2
|
Huan C, Zhang R, Xie L, Wang X, Wang X, Wang X, Yao J, Gao S. Plantago asiatica L. polysaccharides: Physiochemical properties, structural characteristics, biological activity and application prospects: A review. Int J Biol Macromol 2024; 258:128990. [PMID: 38158057 DOI: 10.1016/j.ijbiomac.2023.128990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/14/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Plantago asiatica L. (PAL), a traditional herb, has been used in East Asia for thousands of years. In recent years, polysaccharides extracted from PAL have garnered increased attention due to their outstanding pharmacological and biological properties. Previous research has established that PAL-derived polysaccharides exhibit antioxidant, anti-inflammatory, antidiabetic, antitumor, antimicrobial, immune-regulatory, intestinal health-promoting, antiviral, and other effects. Nevertheless, a comprehensive summary of the research related to Plantago asiatica L. polysaccharides (PALP) has not been reported to date. In this paper, we review the methods for isolation and purification, physiochemical properties, structural features, and biological activities of PALP. To provide a foundation for research and application in the fields of medicine and food, this review also outlines the future development prospects of plantain polysaccharides.
Collapse
Affiliation(s)
- Changchao Huan
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Ruizhen Zhang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Li Xie
- Fujian Yixinbao Biopharmaceutical Co., Ltd., Zhangzhou, China
| | - Xingyu Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Xiaotong Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Xiaobing Wang
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Jingting Yao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China
| | - Song Gao
- Institute of Agricultural Science and Technology Development, College of Veterinary Medicine, Yangzhou University, Yangzhou, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China; Key Laboratory of Avian Bioproduct Development, Ministry of Agriculture and Rural Affairs, Yangzhou, China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou, China.
| |
Collapse
|
3
|
Ibrahim SRM, Mohamed SGA, Abdallah HM, Mohamed GA. Ethnomedicinal uses, phytochemistry, and pharmacological relevance of Justicia procumbens (Oriental Water Willow) - A promising traditional plant. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116819. [PMID: 37385576 DOI: 10.1016/j.jep.2023.116819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/15/2023] [Accepted: 06/18/2023] [Indexed: 07/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Justicia procumbens L. (JP) (Oriental Water Willow, Shrimp plant, Acanthaceae) is a herbaceous plant that is commonly found in India, Taiwan, Australia, Southern China, Vietnam, and Korea. The plant has been primarily used to treat fever, asthma, edema, cough, jaundice, urinary tract infection, and sore throat, as well as for snake bites and as a fish-killer. In the present review, the reported phyto-chemical, ethno-pharmacological, biological, and toxicological studies on J. procumbens were summarized. Special focus had been given to its reported lignans, regarding their isolation, characterization, quantitative estimation, and biosynthesis. MATERIALS AND METHODS A survey of the literature was done using assorted databases and publishers; Scopus, Sci-Finder, Web of Science, PubMed, GoogleScholar, ScienceDirect, Wiley, Taylors&Francis, Bentham, Thieme, and Springer. RESULTS Currently, 95 metabolites have been separated fromJ. procumbens. Lignans and their glycosides were reported as main phyto-constituents of J. procumbens. Various methods are mentioned for quantitative estimation of these lignans. These phyto-constituents possessed wide pharmacological effectiveness, such as antiplatelet aggregation, antimicrobial, antitumor, and antiviral. CONCLUSIONS Many of the stated effects are harmonious with the reported traditional uses of this plant. This data could further support J. procumbens's utilization as a herbal remedy and drug lead. However, further study of J. procumbens toxicity, as well as preclinical and clinical investigation is required to ensure the safe usage of J. procumbens.
Collapse
Affiliation(s)
- Sabrin R M Ibrahim
- Department of Chemistry, Preparatory Year Program, Batterjee Medical College, Jeddah, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| | - Shaimaa G A Mohamed
- Faculty of Dentistry, British University, El Sherouk City, Suez Desert Road, Cairo, 11837, Egypt
| | - Hossam M Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Anti-inflammatory and antiviral activities of flavone C-glycosides of Lophatherum gracile for COVID-19. J Funct Foods 2023; 101:105407. [PMID: 36627926 PMCID: PMC9812844 DOI: 10.1016/j.jff.2023.105407] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Lophatherum gracile (L. gracile) has long been used as a functional food and herbal medicine. Previous studies have demonstrated that extracts of L. gracile attenuate inflammatory response and inhibit SARS-CoV-2 replication; however, the underlying active constituents have yet to be identified. This study investigated the bioactive components of L. gracile. Flavone C-glycosides of L. gracile were found to dominate both anti-inflammatory and antiviral effects. A simple chromatography-based method was developed to obtain flavone C-glycoside-enriched extract (FlavoLG) from L. gracile. FlavoLG and its major flavone C-glycoside isoorientin were shown to restrict respiratory bursts and the formation of neutrophil extracellular traps in activated human neutrophils. FlavoLG and isoorientin were also shown to inhibit SARS-CoV-2 pseudovirus infection by interfering with the binding of the SARS-CoV-2 spike on ACE2. These results provide scientific evidence indicating the efficacy of L. gracile as a potential supplement for treating neutrophil-associated COVID-19.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme 2
- CB, cytochalasin B
- COVID-19
- COVID-19, coronavirus disease 2019
- DMSO, dimethyl sulfoxide
- Flavone C-glycosides
- HBSS, Hank’s balanced salt solution
- HPLC, high-performance liquid chromatography
- IC50, half-maximal inhibitory concentration
- LDH, lactate dehydrogenase
- LG, Lophatherum gracile
- Lophatherum gracile
- MRM, multiple reaction monitoring
- NETs, neutrophil extracellular traps
- Neutrophils
- O2•−, superoxide
- RBD, receptor-binding domain
- ROS, reactive oxygen species
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- UPLC, ultra-performance liquid chromatography
- fMLF, N-formyl-methionyl-leucyl-phenylalanine
Collapse
|
5
|
Chen J, Zhou Y, Gu T, Guo X, Zhuang X, Zhang K. Natural occurrence of broad bean wilt virus 2 on Mirabilis jalapa in China. PLANT DISEASE 2022; 107:1957. [PMID: 36366835 DOI: 10.1094/pdis-06-22-1310-pdn] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mirabilis jalapa Libosch. is an annual ornamental herbaceous plant. Its leaves and roots are used as a traditional folk medicine that function in clearing heat and detoxifying, promoting blood circulation, regulating menstruation, and nourishing kidney (Annapoorani et al. 2014; Liu et al. 2020; Wang et al. 2018). Broad bean wilt virus 2 (BBWV-2), which belongs to the family Secoviridae, is transmitted by aphid in a non-persistent manner in the nature (Kondo et al. 2005) and mainly damages Vicia faba, pepper, yam and spinach (He et al. 2021). The leaves of M. jalapa on the campus showed shrinking (Supplementary Fig. 1A), yellowing (Supplementary Fig. 1B), mosaic (Supplementary Fig. 1D & 1E), and the whole plant had stunted and rough (Supplementary Fig. 1A & 1C) symptoms in the autumn of 2021. Eight plants (S21-S28) with these symptoms were harvested for total RNA extraction, siRNA mixture purification, and siRNA library made (NEBNext® Ultra™ II RNA Library Prep Kit for Illumina®, NEB, UK). The high-throughput siRNA sequencing with pair-end method was performed on Illumina Hiseq 2000 platform (Sangon, Shanghai, China). The raw sequencing data was treated with the Illumina's CASAVA pipeline (version 1.8). The adaptor was removed and the reads were mostly distributed in 21-24 nt length area (Supplementary Fig. 2A). The contigs (∼12,500, Length > 350 bp) were obtained by de novo assembling with the Velvet Software 0.7.31 (k = 17), then the BLASTN was preformed against GenBank database. Surprisingly, 237 contigs showed significant nucleotide sequence similarities to the genome of BBWV-2. To determine the incidence of BBWV-2 to M. jalapa in campus garden, twenty-eight leaf samples were randomly collected from the garden. Leave extract and total RNA of the sample were tested for BBWV-2 by ELISA (Agdia, USA, SRA46202/0096) and RT-PCR assay, respectively. Twenty-two samples were infected compared with the positive control, and their readings of ELISA were above or parallel to the positive control (Supplementary Fig. 2B∼2D). The coding sequence (1,395 bp) of BBWV-2 movement protein (MP) was amplified by a specific pair of primers (Supplementary Table S1) according to the contigs, the results indicated that the 22 out of 28 samples (78.6%) tested positive for BBWV-2 by both ELISA and RT-PCR (Supplementary Fig. 2E). The MP fragment of BBWV-2 obtained from one of the sample was purified by TIANgel Midi Purification Kit (Tiangen, Beijing, China) and then cloned into pMD19-T (TaKaRa, Dalian, China) vector. Ten separate clones were selected and sequenced (Sangon, Shanghai, China) after PCR verification. The obtained sequences (GenBank accession No. OM416039) were analyzed by BLASTN and bioEdit software (version 7.2.3). According to the phylogenetic tree constructed by BBWV-2 MP sequences (Supplementary Fig. 3), the obtained MP sequences (OM416039, ON677747, and ON677748) were most related to the BBWV-2 MP sequences that from pepper (GenBank accession No. JX183228.1), they share the nucleotide identity of 84.87%. To determine the occurrence and distribution of BBWV-2 in other areas, another twenty-two samples were randomly collected for RT-PCR in different regions of Jiangsu Province, China (Supplementary Table S2). The BBWV-2 infection rate was 76.0% in the M. jalapa. In sum, this is the first report of BBWV-2 naturally infecting M. Jalapa in China.
Collapse
Affiliation(s)
- Jiahuan Chen
- Yangzhou University, 38043, Department of the Pharmacy, Affiliated Hospital of Yangzhou University, No.368, Hanjiang Middle Road, Hanjing Region, Yangzhou, Jiangsu, China, 225009;
| | - Yuchen Zhou
- Yangzhou University, 38043, Department of the Pharmacy, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China;
| | - Tianxiao Gu
- Yangzhou University, 38043, Plant pathology, Yangzhou, China;
| | - Xiao Guo
- Yangzhou University, 38043, Plant pathology, Yangzhou, China;
| | - Xinjian Zhuang
- Yangzhou University, 38043, Plant pathology, Yangzhou, China;
| | - Kun Zhang
- Yangzhou University, 38043, Plant pathology, No. 88 of University South Road, Yangzhou, China, 225009;
| |
Collapse
|
6
|
Pei S. Vital roles for ethnobotany in conservation and sustainable development. PLANT DIVERSITY 2020; 42:399-400. [PMID: 33733007 PMCID: PMC7936095 DOI: 10.1016/j.pld.2020.12.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Affiliation(s)
- Shengji Pei
- Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, Yunnan, China
| |
Collapse
|