1
|
Erez İ, Serbester U. Fish oil supplementation as an omega-3 fatty acid source during gestation: effects on the performance of weaned male goat kids. Trop Anim Health Prod 2023; 55:268. [PMID: 37442852 DOI: 10.1007/s11250-023-03681-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 06/27/2023] [Indexed: 07/15/2023]
Abstract
The aim of this study was to evaluate the effects of fish oil supplementation, as an omega-3 fatty acids source, to ration of does in the different periods of pregnancy on the fattening performance of kids after weaning. Eighty German Fawn × Hair crossbred does were randomly divided into two groups; half were given fish oil in the first half of pregnancy (FO group), while the other half were given saturated fat (PF (control) group). Then, the goats in the FO and PF groups were randomly divided into two subgroups, and half of the goats were fed fish oil during the second half of pregnancy (FO-FO and FO-PF groups), while the other half was fed saturated fat (PF-FO and PF-PF groups). Thus, study groups of kids were formed according to the nutrition program of the does described above. Forty-seven male kids (84.6 ± 2.44 days old; 14.5 ± 3.09 kg live weight, mean ± standard deviation) were fed for 56 days after weaning, and their weight, feed consumption, serum biochemical parameters, carcass performance, and meat quality characteristics were evaluated. Maternal nutrition significantly affected live weight gain and serum AST, glucose, total protein, and globulin concentrations (P ≤ 0.050). The live weight gain of kids in the PF-PF and PF-FO groups was higher than that in the FO-FO and FO-PF groups. Maternal nutrition tended to affect the hot and cold carcass weights of male kids (P = 0.078 and P = 0.084, respectively). In conclusion, fish oil supplementation during gestation could negatively affect the fattening performance of kids after weaning, especially the daily live weight gain, although it tended to positively affect hot and cold carcass weights.
Collapse
Affiliation(s)
- İbrahim Erez
- Department of Animal Science, Faculty of Agriculture, Cukurova University, Adana, Turkey.
| | - Ugur Serbester
- Department of Animal Science, Faculty of Agriculture, Cukurova University, Adana, Turkey
| |
Collapse
|
2
|
Amusquivar E, Sánchez-Blanco C, Herrera E. Reduction of litter size during lactation in rats greatly influences fatty acid profiles in dams. J Physiol Biochem 2021; 77:531-538. [PMID: 33909240 DOI: 10.1007/s13105-021-00809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/22/2021] [Indexed: 11/29/2022]
Abstract
This study aimed to determine in lactating rats how fatty acid profiles are affected by litter size. On day 2 after parturition, litters of lactating rats were adjusted to a normal litter size of 9 pups/dam (NL) or to a small litter of 4 pups/dam (SL), and dams were studied at day 21 of lactation. Plasma glucose, insulin, and docosahexaenoic acid (DHA) concentrations were higher in SL than in NL dams, whereas the concentrations of most other fatty acids, triacylglycerols (TAG), and non-esterified fatty acids were lower in the SL dams. In the liver, the concentration of TAG was lower in SL than in NL dams as was the concentration of most fatty acids, with the exception of stearic acid (STA), arachidonic acid (ARA), and DHA concentrations that were higher in SL. Both plasma and liver Δ9 desaturase indices were lower in SL than in NL dams, whereas both Δ5 and Δ6 desaturase indices were higher in SL dams. In the liver, the expression of acetyl CoA carboxylase was lower in SL than in NL dams, and among the different adipose tissue depots, only mesenteric adipose tissue showed a higher concentration of most fatty acids in SL than in NL dams. It is proposed that reduction of litter size during lactation decreases liver lipogenesis de novo, although the synthesis of long-chain polyunsaturated fatty acids from their corresponding precursors increases, and lipolytic activity in mesenteric adipose tissue decreases probably as result of increased insulin responsiveness.
Collapse
Affiliation(s)
| | - Clara Sánchez-Blanco
- Department of Chemistry and Biochemistry, Universidad San Pablo CEU, Madrid, Spain
| | - Emilio Herrera
- Department of Chemistry and Biochemistry, Universidad San Pablo CEU, Madrid, Spain.
| |
Collapse
|
3
|
Bordeleau M, Fernández de Cossío L, Chakravarty MM, Tremblay MÈ. From Maternal Diet to Neurodevelopmental Disorders: A Story of Neuroinflammation. Front Cell Neurosci 2021; 14:612705. [PMID: 33536875 PMCID: PMC7849357 DOI: 10.3389/fncel.2020.612705] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Providing the appropriate quantity and quality of food needed for both the mother's well-being and the healthy development of the offspring is crucial during pregnancy. However, the macro- and micronutrient intake also impacts the body's regulatory supersystems of the mother, such as the immune, endocrine, and nervous systems, which ultimately influence the overall development of the offspring. Of particular importance is the association between unhealthy maternal diet and neurodevelopmental disorders in the offspring. Epidemiological studies have linked neurodevelopmental disorders like autism spectrum disorders, attention-deficit-hyperactivity disorder, and schizophrenia, to maternal immune activation (MIA) during gestation. While the deleterious consequences of diet-induced MIA on offspring neurodevelopment are increasingly revealed, neuroinflammation is emerging as a key underlying mechanism. In this review, we compile the evidence available on how the mother and offspring are both impacted by maternal dietary imbalance. We specifically explore the various inflammatory and anti-inflammatory effects of dietary components and discuss how changes in inflammatory status can prime the offspring brain development toward neurodevelopmental disorders. Lastly, we discuss research evidence on the mechanisms that sustain the relationship between maternal dietary imbalance and offspring brain development, involving altered neuroinflammatory status in the offspring, as well as genetic to cellular programming notably of microglia, and the evidence that the gut microbiome may act as a key mediator.
Collapse
Affiliation(s)
- Maude Bordeleau
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
| | | | - M. Mallar Chakravarty
- Integrated Program in Neuroscience, McGill University, Montréal, QC, Canada
- Cerebral Imaging Centre, Douglas Mental Health University, McGill University, Montréal, QC, Canada
- Department of Psychiatry, McGill University, Montréal, QC, Canada
- Department of Biological and Biomedical Engineering, McGill University, Montréal, QC, Canada
| | - Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Québec, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Khaire A, Wadhwani N, Madiwale S, Joshi S. Maternal fats and pregnancy complications: Implications for long-term health. Prostaglandins Leukot Essent Fatty Acids 2020; 157:102098. [PMID: 32380367 DOI: 10.1016/j.plefa.2020.102098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 12/19/2022]
Abstract
Pregnancy imposes increased nutritional requirements for the well being of the mother and fetus. Maternal lipid metabolism is critical for fetal development and long-term health of the offspring as it plays a key role in energy storage, tissue growth and cell signaling. Maternal fat composition is considered as a modifiable risk for abnormal lipid metabolism and glucose tolerance during pregnancy. Data derived from observational studies demonstrate that higher intake of saturated fats during pregnancy is associated with pregnancy complications (preeclampsia, gestational diabetes mellitus and preterm delivery) and poor birth outcomes (intra uterine growth retardation and large for gestational age babies). On the other hand, prenatal long chain polyunsaturated fatty acids status is shown to improve birth outome. In this article, we discuss the role of maternal lipids during pregnancy on fetal growth and development and its consequences on the health of the offspring.
Collapse
Affiliation(s)
- Amrita Khaire
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune Satara Road, Pune, 411043, India
| | - Nisha Wadhwani
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune Satara Road, Pune, 411043, India
| | - Shweta Madiwale
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune Satara Road, Pune, 411043, India
| | - Sadhana Joshi
- Mother and Child Health, Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth (Deemed to be) University, Pune Satara Road, Pune, 411043, India.
| |
Collapse
|
5
|
Preparation of DHA-Rich Medium- and Long-Chain Triacylglycerols by Lipase-Catalyzed Acidolysis of Microbial Oil from Schizochytrium sp.with Medium-Chain Fatty Acids. Appl Biochem Biotechnol 2020; 191:1294-1314. [PMID: 32096059 DOI: 10.1007/s12010-020-03261-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
DHA-rich medium- and long-chain triacylglycerols (MLCT) were produced by lipase-catalyzed acidolysis of microbial oil from Schizochytrium sp. with medium-chain fatty acids (MCFA). Four commercial lipases, i.e., NS40086, Novozym 435, Lipozyme RM IM, and Lipozyme TL IM were screened based on their activity and fatty acid specificity. The selected conditions for MLCT synthesis were Lipozyme RM IM as catalyst, reaction time 6 h, lipase load 8 wt%, substrate molar ratio (MCFA/microbial oil) 3:1, and temperature 55 °C. Under the selected conditions, the lipase could be reused successively for 17 cycles without significant loss of lipase activity. The obtained product contained 27.53% MCFA, 95.29% at sn-1,3 positions, and 44.70% DHA, 69.77% at sn-2 position. Fifty-nine types of triacylglycerols (TAG) were identified, in which 35 types of TAG contained MCFA, the content accounting for 55.35%. This product enriched with DHA at sn-2 position and MCFA at sn-1,3 positions can improve its digestion and absorption under an infant's digestive system, and thus has potential to be used in infant formula to increase the bioavailability of DHA.
Collapse
|
6
|
Quitete FT, de Moura EG, Peixoto TC, Torsoni AS, Torsoni MA, Milanski M, Ignacio-Souza LM, Simino LA, de Oliveira E, Lisboa PC. Alterations of the expression levels of CPT-1, SCD1, TRβ-1 and related microRNAs are involved in lipid metabolism impairment in adult rats caused by maternal coconut oil intake during breastfeeding. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103577] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
7
|
de Oliveira E, Quitete FT, Bernardino DN, Guarda DS, Caramez FAH, Soares PN, Peixoto TC, Rodrigues VST, Trevenzoli IH, Moura EG, Lisboa PC. Maternal coconut oil intake on lactation programs for endocannabinoid system dysfunction in adult offspring. Food Chem Toxicol 2019; 130:12-21. [PMID: 31059745 DOI: 10.1016/j.fct.2019.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 01/29/2023]
Abstract
Maternal exposure to coconut oil metabolically programs adult offspring for overweight, hyperphagia and hyperleptinemia. We studied the neuroendocrine mechanisms by which coconut oil supplementation during breastfeeding as well as continued exposure of this oil throughout life affect the feeding behavior of the progeny. At birth, pups were divided into two groups: Soybean oil (SO) and Coconut oil (CO). Dams received these oils by gavage (0.5 g/kg body mass/day) during lactation. Half of the CO group continued to receive CO in chow throughout life (CO + C). Adult CO and CO + C groups had overweight; the CO group had hyperphagia, higher visceral adiposity, and hyperleptinemia, while the CO + C group had hypophagia only. The CO group showed higher DAGLα (endocannabinoid synthesis) but no alteration of FAAH (endocannabinoid degradation) or CB1R. Leptin signaling and GLP1R were unchanged in the CO group, which did not explain its phenotype. Hyperphagia in these animals can be due to higher DAGLα, increasing the production of 2-AG, an orexigenic mediator. The CO + C group had higher preference for fat and lower hypothalamic GLP1R content. Continuous exposure to coconut oil prevented an increase in DAGLα. The CO + C group, although hypophagic, showed greater voracity when exposed to a hyperlipidemic diet, maybe due to lower GLP1R, since GLP1 inhibits short-term food intake.
Collapse
Affiliation(s)
- Elaine de Oliveira
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Fernanda T Quitete
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Dayse N Bernardino
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Deysla S Guarda
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Fabiele A H Caramez
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Patrícia N Soares
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Thamara C Peixoto
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Vanessa S T Rodrigues
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Isis H Trevenzoli
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Egberto G Moura
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil
| | - Patrícia C Lisboa
- Laboratory of Endocrine Physiology, Department of Physiological Sciences, Roberto Alcantara Gomes Biology Institute, State University of Rio de Janeiro, Rio de Janeiro, RJ, 20551-030, Brazil.
| |
Collapse
|
8
|
Quitete FT, de Moura EG, Atella GC, Lisboa PC, de Oliveira E. Differential effects in male adult rats of lifelong coconut oil exposure versus during early-life only. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.02.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
9
|
Quitete FT, Lisboa PC, de Moura EG, de Oliveira E. Different oils used as supplement during lactation causes endocrine-metabolic dysfunctions in male rats. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.06.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
10
|
Mennitti LV, Oyama LM, Santamarina AB, do Nascimento CMDPO, Pisani LP. Early exposure to distinct sources of lipids affects differently the development and hepatic inflammatory profiles of 21-day-old rat offspring. J Inflamm Res 2018; 11:11-24. [PMID: 29403301 PMCID: PMC5783012 DOI: 10.2147/jir.s152326] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Introduction Maternal diet composition of fatty acids during pregnancy and lactation seems to modify the fetal programming, epigenetic pattern and offspring phenotype. Aim Herein, we investigated the effects of maternal consumption of normal-fat diets with distinct lipid sources during pregnancy and lactation on the somatic development and proinflammatory status of 21-day-old rat offspring. Materials and Methods On the first day of pregnancy, female Wistar rats were divided into four groups as follows: soybean oil (M-SO), lard (M-L), hydrogenated vegetable fat (M-HVF) and fish oil (M-FO). Diets were maintained during pregnancy and lactation. Male offspring constituted the SO, L, HVF and FO groups. Pups were weighed and measured weekly. Lipopolysaccharide serum concentration was determined. Tumor necrosis factor alpha, interleukin (IL)-6 and IL-10 in the liver were evaluated by enzyme-linked immunosorbent assay. Liver gene expressions were determined by real-time polymerase chain reaction. Protein expressions in the liver were analyzed by Western blotting. Results We observed an increase in body weight and adiposity in L and HVF groups. Moreover, HVF group showed an increase in the toll-like receptor 4 mRNA levels, IL10Rα and phosphorylated form of IκB kinase (IKK; p-IKKα+β) protein expression. The FO group presented a decrease in body weight, relative weight of retroperitoneal adipose tissue, ADIPOR2 gene expression, lipopolysaccharide and p-IKKα+β and phosphorylated form of nuclear transcription factor kappa B (NFκB) p50 (p-NFκB p50) protein expression. Conclusion Summarily, whereas maternal intake of normal-fat diets based on L and HVF appear to affect the somatic development negatively, only early exposure to HVF impairs the pups’ proinflammatory status. In contrast, maternal diets based on FO during pregnancy and lactation have been more beneficial to the adiposity and toll-like receptor 4 signaling pathway of the 21-day-old rat offspring, particularly when compared to L or HVF diets.
Collapse
Affiliation(s)
- Laís Vales Mennitti
- PhD Program 'Interdisciplinar in Health Sciences', Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | - Lila Missae Oyama
- Department of Physiology, Discipline of Nutrition Physiology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Aline Boveto Santamarina
- PhD Program 'Interdisciplinar in Health Sciences', Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| | | | - Luciana Pellegrini Pisani
- Department of Biosciences, Institute of Health and Society, Federal University of São Paulo (UNIFESP), Santos, SP, Brazil
| |
Collapse
|
11
|
Mani I, Dwarkanath P, Thomas T, Thomas A, Kurpad AV. Maternal fat and fatty acid intake and birth outcomes in a South Indian population. Int J Epidemiol 2016; 45:523-31. [DOI: 10.1093/ije/dyw010] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2016] [Indexed: 12/13/2022] Open
|
12
|
Toro-Ramos T, Sichieri R, Hoffman DJ. Maternal fat mass at mid-pregnancy and birth weight in Brazilian women. Ann Hum Biol 2015; 43:212-8. [PMID: 26392036 DOI: 10.3109/03014460.2015.1032348] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND The relationship between maternal body composition and foetal development is unclear. AIM To determine the relationship between maternal body composition [fat mass (FM) and fat-free mass (FFM)] and foetal growth and birth weight, independent of potential confounding factors. SUBJECTS AND METHODS This study consisted of 92 women, normal and overweight/obese, recruited from the Instituto Fernandes Figueira in Rio de Janeiro, Brazil. Body composition (FM and FFM) was estimated using bioelectrical impedance. Foetal growth was assessed using serial ultrasound measurements at the second and third trimester and infant's weight and length were measured at birth. Multiple linear regression analyses were used to determine the association between maternal FM and FFM and birth weight adjusted for gestational age (BWt) and change in estimated foetal weight (ΔEFW), controlling for infant gender, maternal serum glucose, energy intake, parity, height and income. RESULTS Maternal FM, but not FFM, was positively associated with BWt (p = 0.02) and borderline with ΔEFW (p = 0.05). FM expressed as a percentage of body weight (%FM) showed a significant positive association with BWt (p < 0.001) and ΔEFW (p < 0.01). Using backward linear regression analysis, FM was a significant predictor of BWt (p < 0.001) and ΔEFW (p = 0.03), but not change in femur length. CONCLUSION In this small sample of normal and overweight/obese women, maternal FM at mid-pregnancy is associated with neonatal BW and foetal growth.
Collapse
Affiliation(s)
- Tatiana Toro-Ramos
- a Department of Nutritional Sciences , Rutgers, The State University of New Jersey , New Brunswick , NJ , USA .,b New York Obesity Nutrition Research Center, St. Luke's-Roosevelt Hospital Center/Columbia University , New York , NY , USA , and
| | - Rosely Sichieri
- c Institute of Social Medicine, State University of Rio de Janeiro , Maracanã , Rio de Janeiro , Brazil
| | - Daniel J Hoffman
- a Department of Nutritional Sciences , Rutgers, The State University of New Jersey , New Brunswick , NJ , USA
| |
Collapse
|
13
|
High Fat Diet Exposure during Fetal Life Enhances Plasma and Hepatic Omega-6 Fatty Acid Profiles in Fetal Wistar Rats. Nutrients 2015; 7:7231-41. [PMID: 26343716 PMCID: PMC4586532 DOI: 10.3390/nu7095337] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 12/16/2022] Open
Abstract
Pregnant rats were fed a high fat diet (HFD) for the first (HF1), second (HF2), third (HF3) or all three weeks (HFG) of gestation. Maintenance on a HFD during specific periods of gestation was hypothesized to alter fetal glycemia, insulinemia, induce insulin resistance; and alter fetal plasma and hepatic fatty acid (FA) profiles. At day 20 of gestation, fetal plasma and hepatic FA profiles were determined by gas chromatography; body weight, fasting glycemia, insulinemia and the Homeostasis Model Assessment (HOMA-insulin resistance) were also determined. HF3 fetuses were heaviest concomitant with elevated glycemia and insulin resistance (p < 0.05). HFG fetuses had elevated plasma linoleic (18:2 n-6) and arachidonic (20:4 n-6) acid proportions (p < 0.05). In the liver, HF3 fetuses displayed elevated linoleic, eicosatrienoic (20:3 n-6) and arachidonic acid proportions (p < 0.05). HFG fetuses had reduced hepatic docosatrienoic acid (22:5 n-3) proportions (p < 0.05). High fat maintenance during the final week of fetal life enhances hepatic omega-6 FA profiles in fetuses concomitant with hyperglycemia and insulin resistance thereby presenting a metabolically compromised phenotype.
Collapse
|
14
|
Kabaran S, Besler HT. Do fatty acids affect fetal programming? JOURNAL OF HEALTH, POPULATION, AND NUTRITION 2015; 33:14. [PMID: 26825664 PMCID: PMC5025983 DOI: 10.1186/s41043-015-0018-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/26/2015] [Indexed: 05/29/2023]
Abstract
BACKGROUND In this study discussed the primary and regulatory roles of fatty acids, and investigated the affects of fatty acids on metabolic programming. METHODS Review of the literature was carried out on three electronic databases to assess the roles of fatty acids in metabolic programming. All abstracts and full-text articles were examined, and the most relevant articles were selected for screening and inclusion in this review. RESULTS The mother's nutritional environment during fetal period has important effects on long term health. Fatty acids play a primary role in growth and development. Alterations in fatty acid intake in the fetal period may increase the risk of obesity and metabolic disorders in later life. Maternal fatty acid intakes during pregnancy and lactation are passed to the fetus and the newborn via the placenta and breast milk, respectively. Imbalances in fatty acid intake during the fetal period change the fatty acid composition of membrane phospholipids, which can cause structural and functional problems in cells. Additionally, the metabolic and neuroendocrine environments of the fetus and the newborn play key roles in the regulation of energy balance. CONCLUSIONS Imbalances in fatty acid intake during pregnancy and lactation may result in permanent changes in appetite control, neuroendocrine function and energy metabolism in the fetus, leading to metabolic programming. Further studies are needed to determine the role of fatty acid intake in metabolic programming.
Collapse
Affiliation(s)
- Seray Kabaran
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Eastern Mediterranean University, Famagusta, T.R. North Cyprus via Mersin 10, Turkey.
| | - H Tanju Besler
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Hacettepe University, Samanpazarı/Ankara, Turkey
| |
Collapse
|
15
|
Khaire AA, Kale AA, Joshi SR. Maternal omega-3 fatty acids and micronutrients modulate fetal lipid metabolism: A review. Prostaglandins Leukot Essent Fatty Acids 2015; 98:49-55. [PMID: 25958298 DOI: 10.1016/j.plefa.2015.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 12/16/2022]
Abstract
It is well established that alterations in the mother's diet or metabolism during pregnancy has long-term adverse effects on the lipid metabolism in the offspring. There is growing interest in the role of specific nutrients especially omega-3 fatty acids in the pathophysiology of lipid disorders. A series of studies carried out in humans and rodents in our department have consistently suggested a link between omega-3 fatty acids especially docosahexaenoic acid and micronutrients (vitamin B12 and folic acid) in the one carbon metabolic cycle and its effect on the fatty acid metabolism, hepatic transcription factors and DNA methylation patterns. However the association of maternal intake or metabolism of these nutrients with fetal lipid metabolism is relatively less explored. In this review, we provide insights into the role of maternal omega-3 fatty acids and vitamin B12 and their influence on fetal lipid metabolism through various mechanisms which influence phosphatidylethanolamine-N-methyltransferase activity, peroxisome proliferator activated receptor, adiponectin signaling pathway and epigenetic process like chromatin methylation. This will help understand the possible mechanisms involved in fetal lipid metabolism and may provide important clues for the prevention of lipid disorders in the offspring.
Collapse
Affiliation(s)
- Amrita A Khaire
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Anvita A Kale
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India
| | - Sadhana R Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune Satara Road, Pune 411043, India.
| |
Collapse
|
16
|
Mucci DDB, Fernandes FS, Souza ADS, Sardinha FLDC, Soares-Mota M, Tavares do Carmo MDG. Flaxseed mitigates brain mass loss, improving motor hyperactivity and spatial memory, in a rodent model of neonatal hypoxic-ischemic encephalopathy. Prostaglandins Leukot Essent Fatty Acids 2015; 97:13-9. [PMID: 25865679 DOI: 10.1016/j.plefa.2015.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/15/2015] [Accepted: 03/20/2015] [Indexed: 11/17/2022]
Abstract
Neonatal hypoxic-ischemic (HI) encephalopathy is a major cause of perinatal morbimortality. There is growing evidence that n-3 polyunsaturated fatty acids, especially docosahexaenoic acid (DHA), attenuate brain injury. This study aimed to investigate the possible neuroprotective effect of maternal intake of flaxseed, rich in DHA׳s precursor α-linolenic acid, in the young male offspring subjected to perinatal HI. Wistar rats were divided in six groups, according to maternal diet and offspring treatment at day 7: Control HI (CHI) and Flaxseed HI (FHI); Control Sham and Flaxseed Sham; Control Control and Flaxseed Control. Flaxseed diet increased offspring׳s hippocampal DHA content and lowered depressive behavior. CHI pups presented brain mass loss, motor hyperactivity and poor spatial memory, which were improved in FHI rats. Maternal flaxseed intake may prevent depressive symptoms in the offspring and promote neuroprotective effects, in the context of perinatal HI, improving brain injury and its cognitive and behavioral impairments.
Collapse
Affiliation(s)
- Daniela de Barros Mucci
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro. Rio de Janeiro , RJ, Brazil
| | - Flávia Spreafico Fernandes
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro. Rio de Janeiro , RJ, Brazil
| | - Amanda Dos Santos Souza
- Laboratório de Farmacologia da Neuroplasticidade e do Comportamento, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro. Rio de Janeiro, RJ, Brazil
| | - Fátima Lúcia de Carvalho Sardinha
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro. Rio de Janeiro , RJ, Brazil
| | - Márcia Soares-Mota
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro. Rio de Janeiro , RJ, Brazil
| | - Maria das Graças Tavares do Carmo
- Laboratório de Bioquímica Nutricional, Instituto de Nutrição Josué de Castro, Universidade Federal do Rio de Janeiro. Rio de Janeiro , RJ, Brazil.
| |
Collapse
|
17
|
Consumption of distinct dietary lipids during early pregnancy differentially modulates the expression of microRNAs in mothers and offspring. PLoS One 2015; 10:e0117858. [PMID: 25671565 PMCID: PMC4324823 DOI: 10.1371/journal.pone.0117858] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/03/2015] [Indexed: 12/04/2022] Open
Abstract
Diet during pregnancy and lactation influences the offspring’s health in the long-term. Indeed, human epidemiological studies and animal experiments suggest that different type of fatty acids consumption during pregnancy affect offspring development and susceptibility to metabolic disorders. Epigenetic changes are thought to be elicited by dietary factors during critical timing of development. microRNAs (miRNAs) are versatile regulators of gene expression. Thus, we aimed to determine the influence of different fatty acids on miRNA expression in offspring when given during early pregnancy. We fed pregnant either soybean (SO), olive (OO), fish (FO), linseed (LO), or palm-oil (PO) diets from conception to day 12 of gestation; and standard diet thereafter. miRNA expression was assessed in liver an adipose tissue of pregnant rats and their virgin counterparts. While liver concentrations of fatty acids in pregnant or virgin rats replicated those of the diets consumed during early pregnancy, their pups’ liver tissue marginally reflected those of the respective experimental feeds. By contrast, the liver fatty acid profile of adult offsprings was similar, regardless of the diet fed during gestation. Different parental miRNAs were modulated by the different type of fatty acid: in adult offspring, miR-215, miR-10b, miR-26, miR-377-3p, miR-21, and miR-192 among others, were differentially modulated by the different fatty acids fed during early pregnancy. Overall, our results show that maternal consumption of different types of fatty acids during early pregnancy influences miRNA expression in both maternal and offspring tissues, which may epigenetically explain the long-term phenotypic changes of the offspring.
Collapse
|
18
|
González RS, Rodriguez-Cruz M, Maldonado J, Saavedra FJ. Role of maternal tissue in the synthesis of polyunsaturated fatty acids in response to a lipid-deficient diet during pregnancy and lactation in rats. Gene 2014; 549:7-23. [PMID: 25046614 DOI: 10.1016/j.gene.2014.06.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 10/25/2022]
Abstract
During pregnancy and lactation, metabolic adaptations involve changes in expression of desaturases and elongases (Elovl2 and Elovl5) in the mammary gland and liver for the synthesis of long-chain polyunsaturated fatty acids (LC-PUFAs) such as arachidonic acid (AA) required for fetal and postnatal growth. Adipose tissue is a pool of LC-PUFAs. The response of adipose tissue for the synthesis of these fatty acids in a lipid-deficient diet of dams is unknown. The aim of this study was to explore the role of maternal tissue in the synthesis of LC-PUFAs in rats fed a low-lipid diet during pregnancy and lactation. Fatty acid composition (indicative of enzymatic activity) and gene expression of encoding enzymes for fatty acid synthesis were measured in liver, mammary gland and adipose tissue in rats fed a low-lipid diet. Gene expression of desaturases, elongases, fatty acid synthase (Fasn) and their regulator Srebf-1c was increased in the mammary gland, liver and adipose tissue of rats fed a low-lipid diet compared with rats from the adequate-lipid diet group throughout pregnancy and lactation. Genes with the highest (P<0.05) expression in the mammary gland, liver and adipose tissue were Elovl5 (1333%), Fads2 (490%) and Fasn (6608%), respectively, in a low-lipid diet than in adequate-lipid diet. The percentage of AA in the mammary gland was similar between the low-lipid diet and adequate-lipid diet groups during the second stage of pregnancy and during lactation. The percentage of monounsaturated and saturated fatty acids was significantly (P<0.05) increased throughout pregnancy and lactation in all tissues in rats fed a low-lipid diet than in rats fed an adequate-lipid diet. Results suggest that maternal metabolic adaptations used to compensate for lipid-deficient diet during pregnancy and lactation include increased expression of genes involved in LC-PUFAs synthesis in a stage- and tissue-specific manner and elevated lipogenic activity (saturated and monounsaturated fatty acid synthesis) of maternal tissues including adipose tissue.
Collapse
Affiliation(s)
- Raúl Sánchez González
- Laboratorio de Biología Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, México City, Mexico.
| | - Maricela Rodriguez-Cruz
- Laboratorio de Biología Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, México City, Mexico.
| | - Jorge Maldonado
- Laboratorio de Biología Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, México City, Mexico.
| | - Filiberto Jasso Saavedra
- Laboratorio de Biología Molecular, Unidad de Investigación Médica en Nutrición, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, IMSS, México City, Mexico
| |
Collapse
|
19
|
Pedroni SMA, Turban S, Kipari T, Dunbar DR, McInnes K, Saunders PTK, Morton NM, Norman JE. Pregnancy in obese mice protects selectively against visceral adiposity and is associated with increased adipocyte estrogen signalling. PLoS One 2014; 9:e94680. [PMID: 24732937 PMCID: PMC3986097 DOI: 10.1371/journal.pone.0094680] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Accepted: 03/17/2014] [Indexed: 12/26/2022] Open
Abstract
Maternal obesity is linked with increased adverse pregnancy outcomes for both mother and child. The metabolic impact of excessive fat within the context of pregnancy is not fully understood. We used a mouse model of high fat (HF) feeding to induce maternal obesity to identify adipose tissue-mediated mechanisms driving metabolic dysfunction in pregnant and non-pregnant obese mice. As expected, chronic HF-feeding for 12 weeks preceding pregnancy increased peripheral (subcutaneous) and visceral (mesenteric) fat mass. However, unexpectedly at late gestation (E18.5) HF-fed mice exhibited a remarkable normalization of visceral but not peripheral adiposity, with a 53% reduction in non-pregnant visceral fat mass expressed as a proportion of body weight (P<0.001). In contrast, in control animals, pregnancy had no effect on visceral fat mass proportion. Obesity exaggerated glucose intolerance at mid-pregnancy (E14.5). However by E18.5, there were no differences, in glucose tolerance between obese and control mice. Transcriptomic analysis of visceral fat from HF-fed dams at E18.5 revealed reduced expression of genes involved in de novo lipogenesis (diacylglycerol O-acyltransferase 2 - Dgat2) and inflammation (chemokine C-C motif ligand 2 - Ccl2) and upregulation of estrogen receptor α (ERα) compared to HF non pregnant. Attenuation of adipose inflammation was functionally confirmed by a 45% reduction of CD11b+CD11c+ adipose tissue macrophages (expressed as a proportion of all stromal vascular fraction cells) in HF pregnant compared to HF non pregnant animals (P<0.001). An ERα selective agonist suppressed both de novo lipogenesis and expression of lipogenic genes in adipocytes in vitro. These data show that, in a HF model of maternal obesity, late gestation is associated with amelioration of visceral fat hypertrophy, inflammation and glucose intolerance, and suggest that these effects are mediated in part by elevated visceral adipocyte ERα signaling.
Collapse
Affiliation(s)
- Silvia M. A. Pedroni
- Tommy's Centre for Maternal and Fetal Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Sophie Turban
- Endocrinology Unit, University/BHF Centre for Cardiovascular Science, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Tiina Kipari
- Endocrinology Unit, University/BHF Centre for Cardiovascular Science, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Donald R. Dunbar
- Endocrinology Unit, University/BHF Centre for Cardiovascular Science, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Kerry McInnes
- Endocrinology Unit, University/BHF Centre for Cardiovascular Science, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Philippa T. K. Saunders
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Nicholas M. Morton
- Molecular Metabolism Group, University/BHF Centre for Cardiovascular Science, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
| | - Jane E. Norman
- Tommy's Centre for Maternal and Fetal Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
- MRC Centre for Reproductive Health, The University of Edinburgh, Queen's Medical Research Institute, Edinburgh, United Kingdom
- * E-mail:
| |
Collapse
|
20
|
Sardinha FLC, Fernandes FS, Tavares do Carmo MG, Herrera E. Sex-dependent nutritional programming: fish oil intake during early pregnancy in rats reduces age-dependent insulin resistance in male, but not female, offspring. Am J Physiol Regul Integr Comp Physiol 2013; 304:R313-20. [DOI: 10.1152/ajpregu.00392.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Prenatal and early postnatal nutritional status may predispose offspring to impaired glucose tolerance and changes in insulin sensitivity in adult life. The long-term consequences of changes in maternal dietary fatty acid composition were determined in rats. From day 1 until day 12 of pregnancy, rats were given isocaloric diets containing 9% nonvitamin fat based on soybean, olive, fish (FO), linseed, or palm oil. Thereafter, they were maintained on the standard diet; offspring were studied at different ages. Body weight at 4, 8, and 12 mo and lumbar adipose tissue and liver weights at 12 mo did not differ between females on the different diets, whereas in males the corresponding values were all lower in the offspring from the FO group compared with the other dietary groups. Plasma glucose concentrations (both basal and after an oral glucose load) did not change with sex or dietary group, but plasma insulin concentrations were lower in females than in males and, in males, were lowest in the FO group. Similar relations were found with both the homeostasis model assessment of insulin resistance and insulin sensitivity index. In conclusion, the intake of more n–3 fatty acids (FO diet) during early pregnancy reduced both fat accretion and age-related decline in insulin sensitivity in male offspring but not in females. It is proposed that the lower adiposity caused by the increased n–3 fatty acids during the intrauterine life was responsible of the lower insulin resistance in male offspring.
Collapse
Affiliation(s)
- Fatima L. C. Sardinha
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; and
| | - Flavia S. Fernandes
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; and
| | - Maria G. Tavares do Carmo
- Institute of Nutrition Josué de Castro, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; and
| | - Emilio Herrera
- Faculty of Pharmacy, University of San Pablo-CEU, Madrid, Spain
| |
Collapse
|