1
|
de Souza MA, de França Silva RC, da Silva Ponciano C, da Silva JYP, Alves MEF, Viera VB, de Menezes Santos Bertozzo CC, Guerra GC, de Souza Araújo DF, da Conceição MM, Barbosa MQ, de Castro Querino Dias C, Soares JKB. Macaiba palm pulp (Acrocomia intumescens Drude) improves memory and induces anxiolytic-like behavior in dyslipidemic rats. Metab Brain Dis 2024; 40:63. [PMID: 39671112 DOI: 10.1007/s11011-024-01496-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
Macaiba pulp is a source of bioactive compounds. This study aimed to evaluate the effects of macaiba pulp on anxiety behavior, memory and brain oxidative stress in dyslipidemic rats. The animals were divided into four groups (n = 10): Control (CG), Macaíba (MG), Dyslipidemic (DG) and Dyslipidemic Macaiba (DMG). Animals from the DG and DMG were induced to dyslipidemia consuming a high fatty emulsion for 14 days before treatment with macaiba pulp. During treatment the MG and DMG received the macaiba pulp (1 g/kg body weight) for 28 days. The rats were evaluated with the open field (OFT) and elevated plus maze (EPM) tests to measure anxiety-like behavior; memory was evaluated using the object recognition test (ORT). After euthanasia, the fatty acid profile of the animals' brain tissue was measured and the levels of malondialdehyde (MDA) and total glutathione (GSH) were quantified. The data were evaluated using one-way ANOVA followed by the Tukey (p < 0.05) test. Both groups (MG and DMG) that consumed the macaiba pulp showed anxiolytic-like behavior for parameters of grooming, rearing and ambulation in the OFT test and time in the center and time and entries in the open arms in the EMP test; The MG and DMG groups increased exploration rate in the ORT. The DMG showed a reduction in MDA levels (p < 0.05); however, MG and DMG had decreased in GSH (p < 0.05). The results showed that macaiba pulp consumption induces anxiolytic-like behavior and reduces brain oxidative damage in dyslipidemic animals, and improves memory in healthy and dyslipidemic rats.
Collapse
|
2
|
Chaudron Y, Boyer C, Marmonier C, Plourde M, Vachon A, Delplanque B, Taouis M, Pifferi F. A vegetable fat-based diet delays psychomotor and cognitive development compared with maternal dairy fat intake in infant gray mouse lemurs. Commun Biol 2024; 7:609. [PMID: 38769408 PMCID: PMC11106064 DOI: 10.1038/s42003-024-06255-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/26/2024] [Indexed: 05/22/2024] Open
Abstract
Dairy fat has a unique lipid profile; it is rich in short- and medium-chain saturated fatty acids that induce ketone production and has a balanced ω6/ω3 ratio that promotes cognitive development in early life. Moreover, the high consumption of vegetable oils in pregnant and lactating women raises concerns regarding the quality of lipids provided to offspring. Here, we investigate maternal dairy fat intake during gestation and lactation in a highly valuable primate model for infant nutritional studies, the gray mouse lemur (Microcebus murinus). Two experimental diets are provided to gestant mouse lemurs: a dairy fat-based (DF) or vegetable fat-based diet (VF). The psychomotor performance of neonates is tested during their first 30 days. Across all tasks, we observe more successful neonates born to mothers fed a DF diet. A greater rate of falls is observed in 8-day-old VF neonates, which is associated with delayed psychomotor development. Our findings suggest the potential benefits of lipids originating from a lactovegetarian diet compared with those originating from a vegan diet for the psychomotor development of neonates.
Collapse
Affiliation(s)
- Yohann Chaudron
- UMR CNRS MNHN 7179, 1 avenue du Petit Château, 91800, Brunoy, France.
| | - Constance Boyer
- Centre national interprofessionnel de l'économie laitière, 42 rue de Châteaudun, 75314, Paris cedex 09, France
| | - Corinne Marmonier
- Centre national interprofessionnel de l'économie laitière, 42 rue de Châteaudun, 75314, Paris cedex 09, France
| | - Mélanie Plourde
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie - CHUS, 1036 Belvédère sud, Sherbrooke, J1H 4C4, Canada
- Département de Médecine, Université de Sherbrooke, Sherbrooke, Canada
| | - Annick Vachon
- Centre de Recherche sur le Vieillissement, CIUSSS de l'Estrie - CHUS, 1036 Belvédère sud, Sherbrooke, J1H 4C4, Canada
| | - Bernadette Delplanque
- UMR 9197, Paris-Saclay Institute of Neurosciences (NeuroPSI), University of Paris-Saclay, CNRS, 151 route de la Rotonde, F-91400, Saclay, France
| | - Mohammed Taouis
- UMR 9197, Paris-Saclay Institute of Neurosciences (NeuroPSI), University of Paris-Saclay, CNRS, 151 route de la Rotonde, F-91400, Saclay, France
| | - Fabien Pifferi
- UMR CNRS MNHN 7179, 1 avenue du Petit Château, 91800, Brunoy, France.
| |
Collapse
|
3
|
Schipper L, Bartke N, Marintcheva-Petrova M, Schoen S, Vandenplas Y, Hokken-Koelega ACS. Infant formula containing large, milk phospholipid-coated lipid droplets and dairy lipids affects cognitive performance at school age. Front Nutr 2023; 10:1215199. [PMID: 37731397 PMCID: PMC10508340 DOI: 10.3389/fnut.2023.1215199] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
Background Breastfeeding has been positively associated with infant and child neurocognitive development and function. Contributing to this effect may be differences between human milk and infant formula in the milk lipid composition and milk fat globule structure. Objective To evaluate the effects of an infant formula mimicking human milk lipid composition and milk fat globule structure on childhood cognitive performance. Methods In a randomized, controlled trial, healthy term infants received until 4 months of age either a Standard infant formula (n = 108) or a Concept infant formula (n = 115) with large, milk phospholipid coated lipid droplets and containing dairy lipids. A breastfed reference group (n = 88) was included. Erythrocyte fatty acid composition was determined at 3 months of age. Neurocognitive function was assessed as exploratory follow-up outcome at 3, 4, and 5 years of age using the Flanker test, Dimensional Change Card Sort (DCCS) test and Picture Sequence Memory test from the National Institutes of Health Toolbox Cognition Battery. Mann-Whitney U test and Fisher exact test were used to compare groups. Results Erythrocyte omega-6 to -3 long-chain polyunsaturated fatty acid ratio appeared to be lower in the Concept compared to the Standard group (P = 0.025). At age 5, only the Concept group was comparable to the Breastfed group in the highest reached levels on the Flanker test, and the DCCS computed score was higher in the Concept compared to the Standard group (P = 0.021). Conclusion These outcomes suggest that exposure to an infant formula mimicking human milk lipid composition and milk fat globule structure positively affects child neurocognitive development. Underlying mechanisms may include a different omega-3 fatty acid status during the first months of life. Clinical trial registration https://onderzoekmetmensen.nl/en/trial/28614, identifier NTR3683 and NTR5538.
Collapse
Affiliation(s)
| | - Nana Bartke
- Danone Nutricia Research, Utrecht, Netherlands
| | | | | | | | | |
Collapse
|
4
|
de Melo MFFT, de Souza MA, de Cássia Ramos do Egypto Queiroga R, Soares JKB. Functionality of bioactive lipids in cognitive function. BIOACTIVE LIPIDS 2023:169-190. [DOI: 10.1016/b978-0-12-824043-4.00010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Zambrano E, Rodríguez-González GL, Reyes-Castro LA, Bautista CJ, Castro-Rodríguez DC, Juárez-Pilares G, Ibáñez CA, Hernández-Rojas A, Nathanielsz PW, Montaño S, Arredondo A, Huang F, Bolaños-Jiménez F. DHA Supplementation of Obese Rats throughout Pregnancy and Lactation Modifies Milk Composition and Anxiety Behavior of Offspring. Nutrients 2021; 13:nu13124243. [PMID: 34959795 PMCID: PMC8706754 DOI: 10.3390/nu13124243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 01/07/2023] Open
Abstract
We investigated if supplementing obese mothers (MO) with docosahexaenoic acid (DHA) improves milk long-chain polyunsaturated fatty acid (LCPUFA) composition and offspring anxiety behavior. From weaning throughout pregnancy and lactation, female Wistar rats ate chow (C) or a high-fat diet (MO). One month before mating and through lactation, half the mothers received 400 mg DHA kg−1 d−1 orally (C+DHA or MO+DHA). Offspring ate C after weaning. Maternal weight, total body fat, milk hormones, and milk nutrient composition were determined. Pups’ milk nutrient intake was evaluated, and behavioral anxiety tests were conducted. MO exhibited increased weight and total fat, and higher milk corticosterone, leptin, linoleic, and arachidonic acid (AA) concentrations, and less DHA content. MO male and female offspring had higher ω-6/ ω-3 milk consumption ratios. In the elevated plus maze, female but not male MO offspring exhibited more anxiety. MO+DHA mothers exhibited lower weight, total fat, milk leptin, and AA concentrations, and enhanced milk DHA. MO+DHA offspring had a lower ω-6/ω-3 milk intake ratio and reduced anxiety vs. MO. DHA content was greater in C+DHA milk vs. C. Supplementing MO mothers with DHA improves milk composition, especially LCPUFA content and ω-6/ω-3 ratio reducing offspring anxiety in a sex-dependent manner.
Collapse
Affiliation(s)
- Elena Zambrano
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
- Correspondence: ; Tel.: +52-55-5487-0900 (ext. 2417)
| | - Guadalupe L. Rodríguez-González
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Luis A. Reyes-Castro
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Claudia J. Bautista
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Diana C. Castro-Rodríguez
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
- CONACyT-Cátedras, Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Gimena Juárez-Pilares
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Carlos A. Ibáñez
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | - Alejandra Hernández-Rojas
- Reproductive Biology Department, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (G.L.R.-G.); (L.A.R.-C.); (C.J.B.); (D.C.C.-R.); (G.J.-P.); (C.A.I.); (A.H.-R.)
| | | | - Sara Montaño
- Department of Animal Nutrition, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Armando Arredondo
- Center for Health Systems Research, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Fengyang Huang
- Laboratory of Pharmacology and Toxicology, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico;
| | - Francisco Bolaños-Jiménez
- INRAE, UMR1280 Physiologie des Adaptations Nutritionnelles, Université de Nantes, Nantes Atlantique Université, 44096 Nantes, France;
| |
Collapse
|
6
|
Zhang W, Huo T, Li A, Wu X, Feng C, Liu J, Jiang H. Identification of neurotoxicity markers induced by realgar exposure in the mouse cerebral cortex using lipidomics. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121567. [PMID: 32061421 DOI: 10.1016/j.jhazmat.2019.121567] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Realgar is a traditional Chinese medicine containing arsenic and has neurotoxicity. This study used realgar exposure mice model, neurobehavioral tests, analytical chemistry, molecular biology and nontargeted lipidomics to explore the mechanism of realgar damages the nervous system. The arsenic contained in realgar passed through the BBB and accumulated in the brain. Neurons, synapses and myelin showed abnormal changes in the cerebral cortex. The number of autophagosomes were incresed as well as levels of MDA, Lp-PLA2, and cPLA2 but the CAT level was significant reduced. Finally, the cognition and memory of mice were decreased. Nontargeted lipidomics detected 34 lipid subclasses including 1603 lipid molecules. The levels of the LPC and LPE were significantly increased. Under the condition of variable importance for the projection (VIP)>1 and P < 0.05, only 28 lipid molecules satisfied the criteria. The lipid molecular markers SM (d36:2), PE (18:2/22:6) and PE (36:3) which were filtered by receiver operating characteristic (ROC) curve (AUC>0.8 or AUC<0.2) were used to identify the neurotoxicity induced by realgar. Therefore, realgar induces neurotoxicity through exacerbating oxidative damage and lipid dysfunction. Providing research basis for the clinical diagnosis and treatment of realgar-induced neurotoxicity.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Taoguang Huo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Aihong Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Xinyu Wu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Cong Feng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Jieyu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China
| | - Hong Jiang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, No. 77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning, 110122, People's Republic of China.
| |
Collapse
|
7
|
Perinatal Nutrition and Programmed Risk for Neuropsychiatric Disorders: A Focus on Animal Models. Biol Psychiatry 2019; 85:122-134. [PMID: 30293647 PMCID: PMC6309477 DOI: 10.1016/j.biopsych.2018.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 01/02/2023]
Abstract
Maternal nutrition is critically important for fetal development. Recent human studies demonstrate a strong connection between diet during pregnancy and offspring risk for neuropsychiatric disorders including depression, anxiety, and attention-deficit/hyperactivity disorder. Animal models have emerged as a crucial tool for understanding maternal nutrition's contribution to prenatal programming and the later development of neuropsychiatric disorders. This review highlights preclinical studies examining how maternal consumption of the three macronutrients (protein, fats, and carbohydrates) influence offspring negative-valence behaviors relevant to neuropsychiatric disorders. We highlight the translational aspects of animal models and so examine exposure periods that mirror the neurodevelopmental stages of human gestation. Because of our emphasis on programmed changes in neurobehavioral development, studies that continue diet exposure until assessment in adulthood are not discussed. The presented research provides a strong foundation of preclinical evidence of nutritional programming of neurobehavioral impairments. Alterations in risk assessment and response were observed alongside neurodevelopmental impairments related to neurogenesis, synaptogenesis, and synaptic plasticity. To date, the large majority of studies utilized rodent models, and the field could benefit from additional study of large-animal models. Additional future directions are discussed, including the need for further studies examining how sex as a biological variable affects the contribution of maternal nutrition to prenatal programming.
Collapse
|
8
|
Drouin G, Guillocheau E, Catheline D, Baudry C, Le Ruyet P, Rioux V, Legrand P. Impact of n-3 Docosapentaenoic Acid Supplementation on Fatty Acid Composition in Rat Differs Depending upon Tissues and Is Influenced by the Presence of Dairy Lipids in the Diet. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:9976-9988. [PMID: 30056717 DOI: 10.1021/acs.jafc.8b03069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The n-3 docosapentaenoic acid (n-3 DPA) could be a novel source of n-3 long-chain polyunsaturated fatty acids (LCPUFA) with beneficial physiological effects. Following the supplementation of 0.5% purified n-3 DPA for 3 weeks from weaning, the n-3 DPA content increased in one-half of the 18 studied tissues (from +50% to +110%, p < 0.05) and mostly affected the spleen, lung, heart, liver, and bone marrow. The n-3 DPA was slightly converted into DHA (+20% in affected tissues, p < 0.05) and mostly retroconverted into EPA (35-46% of n-3 DPA intake in liver and kidney) showing an increased content of these LCPUFA in specific tissues. The partial incorporation of dairy lipids in the diet for 6 weeks increased overall n-3 PUFA status and brain DHA status. Furthermore, the n-3 DPA supplementation and dairy lipids had an additive effect on the increase of n-3 PUFA tissue contents. Moreover, n-3 DPA supplementation decreased plasma cholesterol.
Collapse
Affiliation(s)
- Gaetan Drouin
- Laboratory of Biochemistry and Human Nutrition , Agrocampus Ouest , Rennes F-35000 , France
| | - Etienne Guillocheau
- Laboratory of Biochemistry and Human Nutrition , Agrocampus Ouest , Rennes F-35000 , France
| | - Daniel Catheline
- Laboratory of Biochemistry and Human Nutrition , Agrocampus Ouest , Rennes F-35000 , France
| | | | | | - Vincent Rioux
- Laboratory of Biochemistry and Human Nutrition , Agrocampus Ouest , Rennes F-35000 , France
| | - Philippe Legrand
- Laboratory of Biochemistry and Human Nutrition , Agrocampus Ouest , Rennes F-35000 , France
| |
Collapse
|
9
|
Jawale S, Joshi S, Kale A. Maternal dairy fat diet does not influence neurotrophin levels and cognitive performance in the rat offspring at adult age. Int J Dev Neurosci 2018; 71:18-29. [PMID: 30110649 DOI: 10.1016/j.ijdevneu.2018.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/10/2018] [Accepted: 08/07/2018] [Indexed: 11/30/2022] Open
Abstract
Cognitive development may be influenced by maternal nutrition especially fats. Indian population is vegetarian and main source of fat is dairy. This study investigates the effect of dairy fat consumption during pregnancy in an animal model on fatty acids, brain neurotrophins (brain derived neurotrophic factor: BDNF; and nerve growth factor: NGF) and cognitive performance in adult offspring. Pregnant Wistar rats were assigned to control (Control C) and four treatment groups: High fat diet (HFD); High fat diet supplemented with omega-3 fatty acids (HFDO); High fat diet deficient in vitamin B12 (HFBD); High fat deficient in vitamin B12 supplemented with omega-3 fatty acids (HFBDO). Half the dams were dissected on d20 of gestation, and the brains of their pups were collected. The remaining dams delivered on d22 of gestation and were assigned to a control diet. The cognitive performance of these adult offspring was assessed at 6 mo of age. Brain fatty acids were comparable to control in the pups at birth and offspring at 6 mo of age. The protein levels of BDNF in the pup brain at birth were lower in both the HFD (p < 0.01) and HFBD (p < 0.05) groups as compared to control. The mRNA levels of TrK B were lower (p < 0.05) in the pup brain at birth in the HFD as compared to control group. In the offspring at 6 mo of age the protein levels of BDNF and NGF in all the treatment groups were similar to that of control. However, the mRNA levels of only BDNF (p < 0.01 for both) were higher in the HFBD group as compared to both control and HFD groups. The cognitive performance of the adult offspring from various dietary groups was similar to control. In conclusion, consumption of a maternal high dairy fat diet although lowered the levels of brain BDNF in the pup at birth it does not affect the cognitive health of the adult offspring.
Collapse
Affiliation(s)
- Shruti Jawale
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune 411043, India
| | - Sadhana Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune 411043, India
| | - Anvita Kale
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth Deemed University, Pune 411043, India.
| |
Collapse
|
10
|
Isoprostanoids in Clinical and Experimental Neurological Disease Models. Antioxidants (Basel) 2018; 7:antiox7070088. [PMID: 29997375 PMCID: PMC6071265 DOI: 10.3390/antiox7070088] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/28/2018] [Accepted: 07/09/2018] [Indexed: 12/13/2022] Open
Abstract
Isoprostanoids are a large family of compounds derived from non-enzymatic oxidation of polyunsaturated fatty acids (PUFAs). Unlike other oxidative stress biomarkers, they provide unique information on the precursor of the targeted PUFA. Although they were discovered about a quarter of century ago, the knowledge on the role of key isoprostanoids in the pathogenesis of experimental and human disease models remains limited. This is mainly due to the limited availability of highly purified molecules to be used as a reference standard in the identification of biological samples. The accurate knowledge on their biological relevance is the critical step that could be translated from some mere technical/industrial advances into a reliable biological disease marker which is helpful in deciphering the oxidative stress puzzle related to neurological disorders. Recent research indicates the value of isoprostanoids in predicting the clinical presentation and evolution of the neurological diseases. This review focuses on the relevance of isoprostanoids as mediators and potential biomarkers in neurological diseases, a heterogeneous family ranging from rare brain diseases to major health conditions that could have worldwide socioeconomic impact in the health sector. The current challenge is to identify the preferential biochemical pathways that actually follow the oxidative reactions in the neurological diseases and the consequence of the specific isoprostanes in the underlying pathogenic mechanisms.
Collapse
|
11
|
Rey C, Nadjar A, Joffre F, Amadieu C, Aubert A, Vaysse C, Pallet V, Layé S, Joffre C. Maternal n-3 polyunsaturated fatty acid dietary supply modulates microglia lipid content in the offspring. Prostaglandins Leukot Essent Fatty Acids 2018; 133:1-7. [PMID: 29789127 DOI: 10.1016/j.plefa.2018.04.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 12/12/2022]
Abstract
The brain is highly enriched in long chain polyunsaturated fatty acids (LC-PUFAs) that are esterified into phospholipids, the major components of cell membranes. They accumulate during the perinatal period when the brain is rapidly developing. Hence, the levels of LC-PUFAs in the brains of the offspring greatly depend on maternal dietary intake. Perinatal n-3 PUFA consumption has been suggested to modulate the activity of microglial cells, the brain's innate immune cells which contribute to the shaping of neuronal network during development. However, the impact of maternal n-3 PUFA intake on microglial lipid composition in the offspring has never been studied. To investigate the impact of maternal dietary n-3 PUFA supply on microglia lipid composition, pregnant mice were fed with n-3 PUFA deficient, n-3 PUFA balanced or n-3 PUFA supplemented diets during gestation and lactation. At weaning, microglia were isolated from the pup's brains to analyze their fatty acid composition and phospholipid class levels. We here report that post-natal microglial cells displayed a distinctive lipid profile as they contained high levels of eicosapentaenoic acid (EPA), more EPA than docosahexaenoic acid (DHA) and large amount of phosphatidylinositol (PI) / phosphatidylserine (PS). Maternal n-3 PUFA supply increased DHA levels and decreased n-6 docosapentaenoic acid (DPA) levels whereas the PI/PS membrane content was inversely correlated to the quantity of PUFAs in the diet. These results raise the possibility of modulating microglial lipid profile and their subsequent activity in the developing brain.
Collapse
Affiliation(s)
- Charlotte Rey
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; ITERG, Institut des corps gras, Canéjan 33610, France
| | - Agnès Nadjar
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France
| | | | - Camille Amadieu
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France
| | - Agnès Aubert
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France
| | - Carole Vaysse
- ITERG, Institut des corps gras, Canéjan 33610, France
| | - Véronique Pallet
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France
| | - Sophie Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France
| | - Corinne Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France; Bordeaux University, Nutrition et Neurobiologie Intégrée, UMR 1286, Bordeaux 33076, France.
| |
Collapse
|
12
|
Drouin G, Catheline D, Sinquin A, Baudry C, Le Ruyet P, Rioux V, Legrand P. Incorporation of Dairy Lipids in the Diet Increased Long-Chain Omega-3 Fatty Acids Status in Post-weaning Rats. Front Nutr 2018; 5:42. [PMID: 29876354 PMCID: PMC5974923 DOI: 10.3389/fnut.2018.00042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 04/30/2018] [Indexed: 12/15/2022] Open
Abstract
In human nutrition, optimized the status of n-3 long-chain polyunsaturated fatty acids (LCPUFA) and especially docosahexaenoic acid (DHA) during growth appears to be one of the most important goal. We investigated the potential impact of a partial incorporation of dairy lipids (DL) in the diet to increase the n-3 LCPUFA content in tissues, compared to a mixture of vegetable oils. Rats were fed with vegetable oil diet or DL diet, supplemented or not supplemented with DHA, from weaning for 6 weeks. All diets provided the same quantity of 2.3% of total fatty acids of precursor α-linolenic acid. LCPUFA levels in brain, retina, liver, heart, red blood cells and epididymal adipose tissue, Δ-6 desaturase activity and mRNA expression in liver, and plasma cholesterol were measured. Rats fed a DL diet increased their DHA content in brain and retina compared with rats fed a vegetable oil diet and reached the same level than rats directly supplemented with DHA. The status of n-3 docosapentaenoic acid increased with DL diet in heart, red blood cells and liver. The n-3 docosapentaenoic acid specifically discriminated DL diets in the heart. DL diet increased α-linolenic acid content in liver and epididymal adipose tissue, provided specific fatty acids as short- and medium-chain fatty acids and myristic acid, and increased plasma cholesterol. We hypothesized that dairy lipids may increase the n-3 LCPUFA enrichment in tissues by preserving precursor α-linolenic acid from β-mitochondrial oxidation, associated with the presence of short- and medium-chain fatty acids in DL diets. In conclusion, a partial incorporation of dairy lipids in the diet with an adequate α-linolenic acid content improved the n-3 LCPUFA status, especially DHA in brain and retina.
Collapse
Affiliation(s)
- Gaetan Drouin
- Laboratory of Biochemistry and Human Nutrition, Agrocampus Ouest - INRA USC1378, Rennes, France
| | - Daniel Catheline
- Laboratory of Biochemistry and Human Nutrition, Agrocampus Ouest - INRA USC1378, Rennes, France
| | - Annaëlle Sinquin
- Laboratory of Biochemistry and Human Nutrition, Agrocampus Ouest - INRA USC1378, Rennes, France
| | | | | | - Vincent Rioux
- Laboratory of Biochemistry and Human Nutrition, Agrocampus Ouest - INRA USC1378, Rennes, France
| | - Philippe Legrand
- Laboratory of Biochemistry and Human Nutrition, Agrocampus Ouest - INRA USC1378, Rennes, France
| |
Collapse
|
13
|
Howsmon DP, Adams JB, Kruger U, Geis E, Gehn E, Hahn J. Erythrocyte fatty acid profiles in children are not predictive of autism spectrum disorder status: a case control study. Biomark Res 2018; 6:12. [PMID: 29568526 PMCID: PMC5853097 DOI: 10.1186/s40364-018-0125-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 02/27/2018] [Indexed: 01/27/2023] Open
Abstract
Biomarkers promise biomolecular explanations as well as reliable diagnostics, stratification, and treatment strategies that have the potential to help mitigate the effects of disorders. While no reliable biomarker has yet been found for autism spectrum disorder (ASD), fatty acids have been investigated as potential biomarkers because of their association with brain development and neural functions. However, the ability of fatty acids to classify individuals with ASD from age/gender-matched neurotypical (NEU) peers has largely been ignored in favor of investigating population-level differences. Contrary to existing work, this classification task between ASD and NEU cohorts is the main focus of this work. The data presented herein suggest that fatty acids do not allow for classification at the individual level.
Collapse
Affiliation(s)
- Daniel P Howsmon
- 1Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, 12180 NY USA.,2Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, 12180 NY USA.,5Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, 78712 TX USA
| | - James B Adams
- 3School for Engineering of Matter, Transport, and Energy, Arizona State University, PO Box: 876106, Tempe, 85281 AZ USA
| | - Uwe Kruger
- 4Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, 12180 NY USA
| | - Elizabeth Geis
- 3School for Engineering of Matter, Transport, and Energy, Arizona State University, PO Box: 876106, Tempe, 85281 AZ USA
| | - Eva Gehn
- 3School for Engineering of Matter, Transport, and Energy, Arizona State University, PO Box: 876106, Tempe, 85281 AZ USA
| | - Juergen Hahn
- 1Department of Chemical & Biological Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, 12180 NY USA.,2Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, 12180 NY USA.,4Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, 12180 NY USA
| |
Collapse
|
14
|
Gianni ML, Roggero P, Baudry C, Fressange-Mazda C, Galli C, Agostoni C, le Ruyet P, Mosca F. An infant formula containing dairy lipids increased red blood cell membrane Omega 3 fatty acids in 4 month-old healthy newborns: a randomized controlled trial. BMC Pediatr 2018; 18:53. [PMID: 29433457 PMCID: PMC5810037 DOI: 10.1186/s12887-018-1047-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 02/05/2018] [Indexed: 11/17/2022] Open
Abstract
Background When breastfeeding is not possible, infants are fed formulas (IF) in which lipids are usually of plant origin. However, the use of dairy fat in combination with plant oils enables a lipid profile closer to breast milk in terms of fatty acid (FA) composition, triglyceride structure, polar lipids and cholesterol contents. The objective of this study was to determine the effect of an IF containing a mix of dairy fat and plant oils on Omega-3 FA content in red blood cells (RBC). Methods This study was a monocentric, double-blind, controlled, randomized trial. Healthy term infants were fed formulas containing a mix of dairy fat and plant oils (D), plant oils (P) or plant oils supplemented with ARA and DHA (PDHA). Breastfed infants were enrolled as a reference group (BF). FA in RBC phosphatidylethanolamine was evaluated after 4 months and FA in whole blood were evaluated at enrollment and after 4 months by gas chromatography. Differences between groups were assessed using an analysis of covariance with sex and gestational age as covariates. Results Seventy IF-fed and nineteen BF infants completed the protocol. At 4 months, RBC total Omega-3 FA levels in infants fed formula D were significantly higher than in group P and similar to those in groups PDHA and BF. RBC DHA levels in group D were also higher than in group P but lower than in groups PDHA and BF. RBC n-3 DPA levels in group D were higher than in groups P, PDHA and BF. A decrease in proportions of Omega-3 FA in whole blood was observed in all groups. Conclusions A formula containing a mix of dairy lipids and plant oils increased the endogenous conversion of Omega-3 long-chain FA from precursor, leading to higher total Omega-3, DPA and DHA status in RBC than a plant oil-based formula. Modifying lipid quality in IF by adding dairy lipids should be considered as an interesting method to improve Omega-3 FA status. Trial registration Identifier NCT01611649, retrospectively registered on May 25, 2012.
Collapse
Affiliation(s)
- Maria Lorella Gianni
- Neonatal Intensive Care Unit (NICU), Department of Clinical Science and Community Health, Fondazione IRCCS "Ca' Granda" Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Paola Roggero
- Neonatal Intensive Care Unit (NICU), Department of Clinical Science and Community Health, Fondazione IRCCS "Ca' Granda" Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | | | | | - Carlo Agostoni
- Pediatric Intermediate Care Unit, Department of Clinical Science and Community Health, Fondazione IRCCS "Ca' Granda" Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | | | - Fabio Mosca
- Neonatal Intensive Care Unit (NICU), Department of Clinical Science and Community Health, Fondazione IRCCS "Ca' Granda" Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| |
Collapse
|
15
|
Neutral Sphingomyelinase Behaviour in Hippocampus Neuroinflammation of MPTP-Induced Mouse Model of Parkinson's Disease and in Embryonic Hippocampal Cells. Mediators Inflamm 2017; 2017:2470950. [PMID: 29343884 PMCID: PMC5733979 DOI: 10.1155/2017/2470950] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 09/16/2017] [Accepted: 09/26/2017] [Indexed: 01/31/2023] Open
Abstract
Neutral sphingomyelinase is known to be implicated in growth arrest, differentiation, proliferation, and apoptosis. Although previous studies have reported the involvement of neutral sphingomyelinase in hippocampus physiopathology, its behavior in the hippocampus during Parkinson's disease remains undetected. In this study, we show an upregulation of inducible nitric oxide synthase and a downregulation of neutral sphingomyelinase in the hippocampus of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP-) induced mouse model of Parkinson's disease. Moreover, the stimulation of neutral sphingomyelinase activity with vitamin 1,25-dihydroxyvitamin D3 reduces specifically saturated fatty acid sphingomyelin by making sphingomyelin a less rigid molecule that might influence neurite plasticity. The possible biological relevance of the increase of neutral sphingomyelinase in Parkinson's disease is discussed.
Collapse
|
16
|
Cai M, Zhang W, Weng Z, Stetler RA, Jiang X, Shi Y, Gao Y, Chen J. Promoting Neurovascular Recovery in Aged Mice after Ischemic Stroke - Prophylactic Effect of Omega-3 Polyunsaturated Fatty Acids. Aging Dis 2017; 8:531-545. [PMID: 28966799 PMCID: PMC5614319 DOI: 10.14336/ad.2017.0520] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 05/20/2017] [Indexed: 12/17/2022] Open
Abstract
The aged population is among the highest at risk for ischemic stroke, yet most stroke patients of advanced ages (>80 years) are excluded from access to thrombolytic treatment by tissue plasminogen activator, the only FDA approved pharmacological therapy for stroke victims. Omega-3 polyunsaturated fatty acids (n-3 PUFAs) robustly alleviate ischemic brain injury in young adult rodents, but have not yet been studied in aged animals. This study investigated whether chronic dietary supplementation of n-3 PUFAs protects aging brain against cerebral ischemia and improves long-term neurological outcomes. Aged (18-month-old) mice were administered n-3 PUFA-enriched fish oil in daily chow for 3 months before and up to 8 weeks after 45 minutes of transient middle cerebral artery occlusion (tMCAO). Sensorimotor outcomes were assessed by cylinder test and corner test up to 35 days and brain repair dynamics evaluated immunohistologically up to 56 days after tMCAO. Mice receiving dietary supplementation of n-3 PUFAs for 3 months showed significant increases in brain ratio of n-3/n-6 PUFA contents, and markedly reduced long-term sensorimotor deficits and chronic ischemic brain tissue loss after tMCAO. Mechanistically, n-3 PUFAs robustly promoted post-ischemic angiogenesis and neurogenesis, and enhanced white matter integrity after tMCAO. The Pearson linear regression analysis revealed that the enhancement of neurogenesis and white matter integrity both correlated positively with improved sensorimotor activities after tMCAO. This study demonstrates that prophylactic dietary supplementation of n-3 PUFAs effectively improves long-term stroke outcomes in aged mice, perhaps by promoting post-stroke brain repair processes such as angiogenesis, neurogenesis, and white matter restoration.
Collapse
Affiliation(s)
- Mengfei Cai
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China
| | - Wenting Zhang
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China
| | - Zhongfang Weng
- 2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - R Anne Stetler
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China.,2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,3Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Xiaoyan Jiang
- 2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yejie Shi
- 2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,3Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Yanqin Gao
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China.,2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jun Chen
- 1State Key Laboratory of Medical Neurobiology and Institute of Brain Sciences, and Collaborative Innovation Center, Fudan University, Shanghai 200032, China.,2Pittsburgh Institute of Brain Disorders & Recovery and Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,3Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| |
Collapse
|
17
|
Joffre C, Dinel AL, Aubert A, Fressange-Mazda C, Le Ruyet P, Layé S. Impact of Lactobacillus fermentum and dairy lipids in the maternal diet on the fatty acid composition of pups' brain and peripheral tissues. Prostaglandins Leukot Essent Fatty Acids 2016; 115:24-34. [PMID: 27914510 DOI: 10.1016/j.plefa.2016.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/05/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
Abstract
The aim of the study was to determine the effect of maternal diets administered since day 1 of gestation and containing dairy lipids or vegetable oils differing in the supply of n-3 polyunsaturated fatty acids (n-3 PUFAs) (equilibrated or deficient) and of Lactobacillus fermentum (L. fermentum) on the docosahexaenoic acid (DHA) accretion in the pups at postnatal day 14 in the prefrontal cortex (PFC) and hippocampus (HC) for brain structures and in the liver and adipose tissue for peripheral tissues. Maternal milk fatty acid composition was also assessed by analyzing the fatty acid composition of the gastric content of the pups. DHA was higher in mice supplemented with L. fermentum than in mice in the deficient group in HC and PFC and also in liver and adipose tissue. This increase could be linked to the slight but significant increase in C18:3n-3 in the maternal milk. This proportion was comparable in the dairy lipid group for which the brain DHA level was the highest. L. fermentum may have a key role in the protection of the brain during the perinatal period via the neuronal accretion of n-3 PUFAs, especially during n-3 PUFA deficiency.
Collapse
Affiliation(s)
- C Joffre
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France.
| | - A L Dinel
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Nutribrain Research and Technology transfer of Nutrition et Neurobiologie Intégrée, 33076 Bordeaux, France
| | - A Aubert
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| | | | - P Le Ruyet
- Lactalis Recherche et Développement, Retiers, France
| | - S Layé
- INRA, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France; Univ. Bordeaux, Nutrition et Neurobiologie Intégrée, UMR 1286, 33076 Bordeaux, France
| |
Collapse
|
18
|
Dinel AL, Rey C, Baudry C, Fressange-Mazda C, Le Ruyet P, Nadjar A, Pallet P, Joffre C, Layé S. Enriched dairy fat matrix diet prevents early life lipopolysaccharide-induced spatial memory impairment at adulthood. Prostaglandins Leukot Essent Fatty Acids 2016; 113:9-18. [PMID: 27720041 DOI: 10.1016/j.plefa.2016.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) are essential fatty acids, which are critical for brain development and later life cognitive functions. The main brain PUFAs are docosahexaenoic acid (DHA) for the n-3 family and arachidonic acid (ARA) for the n-6 family, which are provided to the post-natal brain by breast milk or infant formula. Recently, the use of dairy lipids (DL) in replacement of vegetable lipids (VL) was revealed to potently promote the accretion of DHA in the developing brain. Brain DHA, in addition to be a key component of brain development, display potent anti-inflammatory activities, which protect the brain from adverse inflammatory events. In this work, we evaluated the protective effect of partial replacement of VL by DL, supplemented or not with DHA and ARA, on post-natal inflammation and its consequence on memory. Mice were fed with diets poor in vegetal n-3 PUFA (Def VL), balanced in vegetal n-3/n-6 PUFA (Bal VL), balanced in dairy lipids (Bal DL) or enriched in DHA and ARA (Supp VL; Supp DL) from the first day of gestation until adulthood. At post-natal day 14 (PND14), pups received a single administration of the endotoxin lipopolysaccharide (LPS) and brain cytokine expression, microglia phenotype and neurogenesis were measured. In a second set of experiments, memory and neurogenesis were measured at adulthood. Overall, our data showed that lipid quality of the diet modulates early life LPS effect on microglia phenotype, brain cytokine expression and neurogenesis at PND14 and memory at adulthood. In particular, Bal DL diet protects from the adverse effect of early life LPS exposure on PND14 neurogenesis and adult spatial memory.
Collapse
Affiliation(s)
- A L Dinel
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux, France; University of Bordeaux, Bordeaux, France.
| | - C Rey
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux, France; University of Bordeaux, Bordeaux, France; ITERG, Institut des Corps Gras, 33600 Pessac, France
| | - C Baudry
- Lactalis, R&D, Retiers F-35240, France
| | | | | | - A Nadjar
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux, France; University of Bordeaux, Bordeaux, France
| | - P Pallet
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux, France; University of Bordeaux, Bordeaux, France
| | - C Joffre
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux, France; University of Bordeaux, Bordeaux, France
| | - S Layé
- Nutrition et Neurobiologie Intégrée, INRA UMR 1286, 33076 Bordeaux, France; University of Bordeaux, Bordeaux, France
| |
Collapse
|