1
|
Virgolici B, Dobre MZ, Stefan DCA. Bridging the Gap: Supplements Strategies from Experimental Research to Clinical Applications in Sarcopenic Obesity. Curr Issues Mol Biol 2024; 46:13418-13430. [PMID: 39727928 PMCID: PMC11726983 DOI: 10.3390/cimb46120800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/17/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Obesity causes fat accumulation, and sarcopenia causes loss of muscle mass and strength; together, they worsen insulin resistance and accelerate muscle decline, creating a harmful cycle. Some supplements, along with physical exercise, could be remedies for sarcopenic obesity (SO). In this review, we aim to draw a comparison between supplements studied in experimental research and those evaluated in clinical studies for SO. In experimental studies, Sea Buckthorn-in forms such as oil, freeze-dried powder or pomace-has been shown to enhance muscle cell growth, improve gut microbiota, provide hypoglycemic benefits and increase muscle mass by promoting protein synthesis. Increased consumption of Omega-3 fatty acids may play a protective role against SO in women. Melatonin may positively impact obesity and SO by reducing oxidative stress. Elevated irisin levels, such as those observed with vitamin D supplementation, could prevent muscle wasting and fat gain in SO by improving insulin sensitivity and reducing inflammation. There have been many studies highlighting the potential of vitamin D in preventing age related sarcopenia; however, the effect of vitamin D supplementation in SO is under-researched and appears less promising. Future clinical trials using natural supplements hold promise, as these provide multiple beneficial components that may work synergistically to treat SO.
Collapse
Affiliation(s)
| | - Maria-Zinaida Dobre
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (B.V.); (D.C.A.S.)
| | | |
Collapse
|
2
|
Heileson JL, Macartney MJ, Watson NL, Sergi TE, Jagim AR, Anthony R, Peoples GE. Nutritional Optimization for Brain Health in Contact Sports: A Systematic Review and Meta-Analysis on Long-Chain ω-3 Fatty Acids and Neurofilament Light. Curr Dev Nutr 2024; 8:104454. [PMID: 39429508 PMCID: PMC11489149 DOI: 10.1016/j.cdnut.2024.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 10/22/2024] Open
Abstract
Background Accumulating evidence has highlighted the acute and chronic impact of repetitive subconcussive head impacts (rSHIs) in contact sports. Neurofilament-light (Nf-L), a brain-derived biomarker of neuroaxonal injury, elevates in concert with rSHI. Recently, long-chain ω-3 polyunsaturated fatty acids (LC ω-3 PUFAs) supplementation has been suggested to mitigate brain injury from rSHI as reflected by attenuation of Nf-L concentrations within contact sport athletes. Objective Using a systematic review with a meta-analysis, we aimed to determine the effect of LC ω-3 PUFA supplementation on Nf-L concentrations in athletes routinely exposed to rSHI. Methods Electronic databases (PubMed and CINAHL) were searched from inception through January 2024. One-stage meta-analysis of individual participant-level data was used to detect changes in Nf-L concentrations between LC ω-3 PUFA and control/placebo (PL) groups from baseline to midseason (MS) and postseason (PS). Least square means (±SE) for Nf-L change from baseline were compared by treatment group for MS/PS using contrast t tests. Significance was set a priori at adjusted P ≤ 0.05. Results Of 460 records identified, 3 studies in collegiate American football players (n = 179; LC ω-3 PUFA = 105, PL = 71) were included in the meta-analysis. Compared with PL, the change in Nf-L concentrations was statistically similar at MS [mean difference (MD) = -1.66 ± 0.82 pg·mL-1, adjusted P = 0.09] and significantly lower at PS (MD = -2.23 ± 0.83 pg·mL-1, adjusted P = 0.02) in athletes following LC ω-3 PUFA supplementation. Conclusions Our findings demonstrate preliminary support for the prophylactic administration of LC ω-3 PUFA in contact sport athletes exposed to rSHI; however, further research is required to determine the effective dosage required.This trial was registered at OSF (DOI: https://doi.org/10.17605/OSF.IO/EY5QW).
Collapse
Affiliation(s)
- Jeffery L Heileson
- Walter Reed National Medical Center, Bethesda, MD, United States
- Department of Health, Human Performance, and Recreation, Baylor University, Waco, TX, United States
| | - Michael J Macartney
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Nora L Watson
- Walter Reed National Medical Center, Bethesda, MD, United States
| | - Tina E Sergi
- Walter Reed National Medical Center, Bethesda, MD, United States
| | - Andrew R Jagim
- Department of Exercise and Sport Science, University of Wisconsin-La Crosse, La Crosse, WI, United States
- Department of Sports Medicine, Mayo Clinic Health System, La Crosse, WI, United States
| | - Ryan Anthony
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Gregory E Peoples
- Graduate School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
3
|
Anthony R, Jaffrey N, Byron C, Peoples GE, Macartney MJ. Omega-3 Status Evaluation in Australian Female Rugby League Athletes: Ad Libitum Fish Oil Provision Results in a Varied Omega-3 Index. Int J Sport Nutr Exerc Metab 2024; 34:218-222. [PMID: 38648883 DOI: 10.1123/ijsnem.2023-0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/25/2024]
Abstract
Optimal omega-3 status, influenced by increased intake of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), is vital for physiological health. This study investigated the impact of ad libitum fish oil supplementation on the omega-3 status of female athletes in a professional rugby league team during a competitive season. Twenty-four (n = 24) athletes participated, and their omega-3 status was assessed using the Omega-3 Index (O3I) and arachidonic acid (AA) to EPA ratio through finger-prick blood samples taken at the start and end of the season. They were given access to a fish oil supplement (PILLAR Performance, Australia) with a recommended daily dose of four capsules per day (2,160 mg EPA and 1,440 mg docosahexaenoic acid). At the beginning of the season, the group mean O3I was 4.77% (95% confidence interval [CI: 4.50, 5.04]) and the AA to EPA ratio was 14.89 (95% CI [13.22, 16.55]). None of the athletes had an O3I exceeding 8%. By the season's end, the O3I was a significantly increased to 7.28% (95% CI [6.64, 7.93], p < .0001) and AA to EPA ratio significantly decreased to a mean of 6.67 (95% CI [5.02, 8.31], p < .0001), driven primarily by the significant increase in EPA of +1.14% (95% CI [0.77, 1.51], p < .0001). However, these changes were varied between the athletes and most likely due to compliance. This study has demonstrated that using the objective O3I feedback scale is possible with elite female rugby athletes, but individual strategies will be required to achieve daily intake targets of EPA + DHA.
Collapse
Affiliation(s)
- Ryan Anthony
- Faculty of Science Medicine and Health, Graduate School of Medicine, University of Wollongong, NSW, Australia
| | - Nicola Jaffrey
- Sports Dietitian, St. George Illawarra Dragons, Wollongong, NSW, Australia
| | - Caitlin Byron
- Sports Dietitian, St. George Illawarra Dragons, Wollongong, NSW, Australia
| | - Gregory E Peoples
- Faculty of Science Medicine and Health, Graduate School of Medicine, University of Wollongong, NSW, Australia
| | - Michael J Macartney
- Faculty of Science Medicine and Health, Graduate School of Medicine, University of Wollongong, NSW, Australia
| |
Collapse
|
4
|
Anthony R, Macartney MJ, Heileson JL, McLennan PL, Peoples GE. A review and evaluation of study design considerations for omega-3 fatty acid supplementation trials in physically trained participants. Nutr Res Rev 2024; 37:1-13. [PMID: 36620998 DOI: 10.1017/s095442242300001x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Long-chain omega-3 polyunsaturated fatty acid (LC n-3 PUFA) supplements, rich in eicosapentaenoic acid and/or docosahexaenoic acid, are increasingly being recommended within athletic institutions. However, the wide range of doses, durations and study designs implemented across trials makes it difficult to provide clear recommendations. The importance of study design characteristics in LC n-3 PUFA trials has been detailed in cardiovascular disease research, and these considerations may guide LC n-3 PUFA study design in healthy cohorts. This systematic review examined the quality of studies and study design considerations used in evaluating the evidence for LC n-3 PUFA improving performance in physically trained adults. SCOPUS, PubMed and Web of Science electronic databases were searched to identify studies that supplemented LC n-3 PUFA in physically trained participants. Forty-six (n = 46) studies met inclusion. Most studies used a randomised control design. Risk of bias, assessed using the design-appropriate Cochrane Collaboration tool, revealed that studies had a predominant judgment of 'some concerns', 'high risk' or 'moderate risk' in randomised controlled, randomised crossover or non-randomised studies, respectively. A custom five-point quality assessment scale demonstrated that no study satisfied all recommendations for LC n-3 PUFA study design. This review has highlighted that the disparate range of study designs is likely contributing to the inconclusive state of outcomes pertaining to LC n-3 PUFA as a potential ergogenic aid. Further research must adequately account for the specific LC n-3 PUFA study design considerations, underpinned by a clear hypothesis, to achieve evidence-based dose, duration and composition recommendations for physically trained individuals.
Collapse
Affiliation(s)
- Ryan Anthony
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia
- Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Michael J Macartney
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia
- Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Jeffery L Heileson
- Department of Health, Human Performance and Recreation, Robbins College of Health and Human Sciences, Baylor University, Texas, USA
| | - Peter L McLennan
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia
- Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Gregory E Peoples
- Graduate School of Medicine, University of Wollongong, Wollongong, Australia
- Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| |
Collapse
|
5
|
Heileson JL, Harris DR, Tomek S, Ritz PP, Rockwell MS, Barringer ND, Forsse JS, Funderburk LK. Long-Chain Omega-3 Fatty Acid Supplementation and Exercise-Induced Muscle Damage: EPA or DHA? Med Sci Sports Exerc 2024; 56:476-485. [PMID: 38051142 DOI: 10.1249/mss.0000000000003332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
PURPOSE Long-chain omega-3 polyunsaturated fatty acids, eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA) may enhance recovery from exercise-induced muscle damage (EIMD). However, it is unclear if the effects are due to EPA, DHA, or both. The purpose of this investigation was to examine the effect of EPA + DHA, EPA, and DHA compared with placebo (PL) on muscular recovery. METHODS Thirty males were randomized to 4 g·d -1 EPA + DHA ( n = 8), EPA ( n = 8), DHA ( n = 7), or PL ( n = 7). After 7-wk supplementation, a downhill running (20 min, 70% V̇O 2max , -16% gradient) plus jumping lunges (5 × 20 reps, 2-min rest intervals) muscle damage protocol was performed. Indices of muscle damage, soreness, muscle function, and inflammation were measured at baseline and throughout recovery. The omega-3 index (O3i; %EPA + %DHA in erythrocytes) was used to track tissue EPA and DHA status. RESULTS After supplementation, the O3i was significantly higher than PL in all experimental groups ( P < 0.001). Leg press performance was lower in the PL group at 24 h compared with EPA ( P = 0 .019) and at 72 h for EPA ( P = 0.004) and DHA ( P = 0 .046). Compared with PL, muscle soreness was lower in the DHA ( P = 0.015) and EPA ( P = 0.027) groups at 48 h. Albeit nonsignificant, EPA + DHA tended to attenuate muscle soreness ( d = 1.37) and leg strength decrements ( d = 0.75) compared with PL. Jump performance and power metrics improved more rapidly in the EPA and DHA groups (time effects: P < 0.001). Measures of inflammation, range of motion, and muscle swelling were similar between groups ( P > 0.05). CONCLUSIONS Compared with PL, 4 g·d -1 of EPA or DHA for 52 d improves certain aspects of recovery from EIMD. EPA + DHA did not clearly enhance recovery. Equivalent dosing of EPA + DHA may blunt the performance effects observed in EPA or DHA alone.
Collapse
Affiliation(s)
| | - Dillon R Harris
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX
| | - Sara Tomek
- Educational Psychology, Baylor University, Waco, TX
| | - Peter P Ritz
- Student Health Services-Athletics, Northwestern Medicine Group, Evanston, IL
| | | | - Nicholas D Barringer
- Department of Nutrition, U.S. Military-Baylor University Graduate Program in Nutrition, Fort Sam Houston, TX
| | - Jeffrey S Forsse
- Department of Health, Human Performance and Recreation, Baylor University, Waco, TX
| | | |
Collapse
|
6
|
Miyoshi M, Usami M, Nishiyama Y, Kai M, Suzuki A, Maeshige N, Yamaguchi A, Ma X, Shinohara M. Soleus muscle contains a higher concentration of lipid metabolites than extensor digitorum longus in rats with lipopolysaccharide-induced acute muscle atrophy. Clin Nutr ESPEN 2023; 57:48-57. [PMID: 37739695 DOI: 10.1016/j.clnesp.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 09/24/2023]
Abstract
BACKGROUND & AIMS Muscle atrophy is one of the most important and frequent problems for critically ill patients. The purpose of this study was to evaluate the effect of lipid mediators on acute muscle atrophy. Skeletal muscle fiber-specific analysis of lipid mediators in endotoxemic rats was therefore performed. METHODS Male Wistar rats were intraperitoneally injected with lipopolysaccharide (LPS). Slow-twitch soleus muscle and fast-twitch extensor digitorum longus (EDL) muscle were harvested 0, 6, and 24 h after LPS injection. Lipid mediators were profiled using liquid chromatography-tandem mass spectrometry, and free fatty acid (FFA) concentrations were measured using gas chromatography-mass spectrometry. Muscles were weighed and their cross-sectional areas were evaluated. Expression levels of mRNAs encoding inflammatory cytokines, autophagy-related transcription factors, and members of the ubiquitin-proteasome system were measured using real-time PCR. RESULTS Before LPS injection, the concentrations of all FFAs, including arachidonic acid, eicosapentaenoic acid, and docosahexaenoic acid, and all measured lipid mediators were higher in soleus muscle than in EDL muscle, especially those of pro-inflammatory prostaglandin E2 (PGE2) and leukotriene B4. LPS injection, increased PGE2 and D2 and decreased FFAs in soleus muscle but did not change in EDL muscle. The concentrations of specialized pro-resolving mediators E-series hydroxy-eicosapentaenoic acid and D-series hydroxy-docosahexaenoic acid were higher in soleus muscle. Muscle cross-sectional area decreased and the expression level of atrogin-1 was upregulated in EDL muscle, but both were unchanged in soleus muscle. After LPS injection, a discrepancy involving an increased PGE2 concentration and decreased muscle atrophy was identified in this acute muscle atrophy model of critical illness. CONCLUSION Concentrations of FFAs and lipid mediators were higher in soleus muscle than in EDL muscle, and LPS injection rapidly increased concentrations of pro-inflammatory lipid mediators. However, muscle atrophy with upregulation of autophagy-related transcription factors was observed in EDL muscle but not in soleus muscle.
Collapse
Affiliation(s)
- Makoto Miyoshi
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan.
| | - Makoto Usami
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan; Faculty of Clinical Nutrition and Dietetics, Konan Women's University, Kobe, Japan
| | - Yuya Nishiyama
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Motoki Kai
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Ayumi Suzuki
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Noriaki Maeshige
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Atomu Yamaguchi
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Xiaoqi Ma
- Division of Nutrition and Metabolism, Kobe University Graduate School of Health Sciences, Kobe, Japan
| | - Masakazu Shinohara
- The Integrated Center for Mass Spectrometry, Kobe University Graduate School of Medicine, Kobe, Japan; Division of Epidemiology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
7
|
Budd JM, Hucik B, Wang C, King AN, Sarr O, Nakamura MT, Harasim-Symbor E, Chabowski A, Dyck DJ, Mutch DM. A reduction of skeletal muscle DHA content does not result in impaired whole body glucose tolerance or skeletal muscle basal insulin signaling in otherwise healthy mice. Am J Physiol Endocrinol Metab 2023; 324:E241-E250. [PMID: 36696599 DOI: 10.1152/ajpendo.00308.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Delta-6 desaturase (D6D), encoded by the Fads2 gene, catalyzes the first step in the conversion of α-linolenic acid to eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The ablation of D6D in whole body Fads2-/- knockout (KO) mice results in an inability to endogenously produce EPA and DHA. Evidence supports a beneficial role for EPA and DHA on insulin-stimulated glucose disposal in skeletal muscle in the context of a metabolic challenge; however, it is unknown how low EPA and DHA levels impact skeletal muscle fatty acid composition and insulin signaling in a healthy context. The objective of this study was to examine the impact of ablating the endogenous production of EPA and DHA on skeletal muscle fatty acid composition, whole body glucose and insulin tolerance, and a key marker of skeletal muscle insulin signaling (pAkt). Male C57BL/6J wild-type (WT), Fads2+/- heterozygous, and Fads2-/- KO mice were fed a low-fat diet (16% kcal from fat) modified to contain either 7% w/w lard or 7% w/w flaxseed for 21 wk. No differences in total phospholipid (PL), triacylglycerol, or reactive lipid content were observed between genotypes. As expected, KO mice on both diets had significantly less DHA content in skeletal muscle PL. Despite this, KO mice did not have significantly different glucose or insulin tolerance compared with WT mice on either diet. Basal pAktSer473 was not significantly different between the genotypes within each diet. Ultimately, this study shows for the first time, to our knowledge, that the reduction of DHA in skeletal muscle is not necessarily detrimental to glucose homeostasis in otherwise healthy animals.NEW & NOTEWORTHY Skeletal muscle is the primary location of insulin-stimulated glucose uptake. EPA and DHA supplementation has been observed to improve skeletal muscle insulin-stimulated glucose uptake in models of metabolic dysfunction. Fads2-/- knockout mice cannot endogenously produce long-chain n-3 polyunsaturated fatty acids. Our results show that the absence of DHA in skeletal muscle is not detrimental to whole body glucose homeostasis in healthy mice.
Collapse
Affiliation(s)
- Joshua M Budd
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Barbora Hucik
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Chenxuan Wang
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Alexa N King
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Ousseynou Sarr
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Manabu T Nakamura
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States
| | - Ewa Harasim-Symbor
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - David J Dyck
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
8
|
TOMCZYK MAJA, JOST ZBIGNIEW, CHROBOCZEK MACIEJ, URBAŃSKI ROBERT, CALDER PHILIPC, FISK HELENAL, SPRENGEL MATEUSZ, ANTOSIEWICZ JĘDRZEJ. Effects of 12 Wk of Omega-3 Fatty Acid Supplementation in Long-Distance Runners. Med Sci Sports Exerc 2023; 55:216-224. [PMID: 36161864 PMCID: PMC9815816 DOI: 10.1249/mss.0000000000003038] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
PURPOSE This study aimed to investigate the effects of 12 wk of omega-3 fatty acid supplementation during endurance training on omega-3 index (O3I) and indicators of running performance in amateur long-distance runners. METHODS Twenty-six amateur male long-distance runners ≥29 yr old supplemented omega-3 fatty acid capsules (OMEGA group, n = 14; 2234 mg of eicosapentaenoic acid and 916 mg of docosahexaenoic acid daily) or medium-chain triglycerides capsules as placebo (medium-chain triglyceride [MCT] group, n = 12; 4000 mg of MCT daily) during 12 wk of endurance training. Before and after intervention, blood samples were collected for O3I assessment, and an incremental test to exhaustion and a 1500-m run trial were performed. RESULTS O3I was significantly increased in the OMEGA group (from 5.8% to 11.6%, P < 0.0001). A significant increase in V̇O 2peak was observed in the OMEGA group (from 53.6 ± 4.4 to 56.0 ± 3.7 mL·kg -1 ⋅min -1 , P = 0.0219) without such change in MCT group (from 54.7 ± 6.8 to 56.4 ± 5.9 mL·kg -1 ⋅min -1 , P = 0.1308). A positive correlation between the change in O3I and the change in running economy was observed when data of participants from both groups were combined (-0.1808 ± 1.917, P = 0.0020), without such an effect in OMEGA group alone ( P = 0.1741). No effect of omega-3 supplementation on 1500-m run results was observed. CONCLUSIONS Twelve weeks of omega-3 fatty acid supplementation at a dose of 2234 mg of eicosapentaenoic acid and 916 mg of docosahexaenoic acid daily during endurance training resulted in the improvement of O3I and running economy and increased V̇O 2peak without improvement in the 1500-m run trial time in amateur runners.
Collapse
Affiliation(s)
- MAJA TOMCZYK
- Department of Biochemistry, Gdansk University of Physical Education and Sport, Gdansk, POLAND
| | - ZBIGNIEW JOST
- Department of Biochemistry, Gdansk University of Physical Education and Sport, Gdansk, POLAND
| | - MACIEJ CHROBOCZEK
- Department of Physiology, Gdansk University of Physical Education and Sport, Gdansk, POLAND
| | - ROBERT URBAŃSKI
- Department of Biomechanics and Sports Engineering, Gdansk University of Physical Education and Sport, Gdansk, POLAND
| | - PHILIP C. CALDER
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UNITED KINGDOM,NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust and University of Southampton, Southampton, UNITED KINGDOM
| | - HELENA L. FISK
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UNITED KINGDOM
| | - MATEUSZ SPRENGEL
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdansk, Gdansk, POLAND,Institute of Dietetics, University of Business and Health Sciences, Łódź, POLAND
| | - JĘDRZEJ ANTOSIEWICZ
- Department of Bioenergetics and Exercise Physiology, Medical University of Gdansk, Gdansk, POLAND
| |
Collapse
|
9
|
Craddock JC, Neale EP, Peoples GE, Probst YC. Examining dietary behaviours, diet quality, motives and supplementation use in physically active individuals following vegetarian-based eating patterns. NUTR BULL 2022; 47:473-487. [PMID: 36352440 PMCID: PMC10098725 DOI: 10.1111/nbu.12592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022]
Abstract
The adoption of vegetarian-based dietary patterns among athletes has been gaining popularity. However, limited research examines the dietary behaviours within this group. Therefore, the aim of this study was to examine self-reported dietary behaviours in a cohort of physically active individuals following vegetarian-based dietary patterns, recruited via social media. A 52-item online survey was created with questions related to demographics, physical activity, eating patterns and supplementation use. An external link to the Australian Automated Self-Administered 24-h (ASA24-AU) recall was included to examine nutrient intakes. Dietary quality was assessed using the Alternate Healthy Eating Index-2010 (AHEI-2010) and the Dietary Phytochemical Index (DPI) tools. A total of 781 (84.8%) respondents completed the survey in 2018. Principal motives for adhering to a vegetarian-based dietary pattern included animal rights (86.5%), environmental concerns (75.4%), health reasons (69.6%) and improving physical performance (24.1%). Vitamin B12 was the most commonly reported supplement (58.1%) followed by protein powder (36.3%) and vitamin D (35.9%). A total of 133 respondents completed the ASA24-AU dietary recall with generally adequate nutrient intakes and a high-quality diet as assessed by the AHEI-2010 and DPI. A significant minority of physically active individuals following vegetarian-based diets do so with the aspiration of improving their exercise performance. Dietary quality was considered high in this group for recreational physical activity, although intakes of vitamin B12 and LC n-3 PUFA were low.
Collapse
Affiliation(s)
- Joel C Craddock
- School of Medical, Indigenous and Health Sciences, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| | - Elizabeth P Neale
- School of Medical, Indigenous and Health Sciences, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Gregory E Peoples
- Graduate School of Medicine, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia
| | - Yasmine C Probst
- School of Medical, Indigenous and Health Sciences, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia.,Illawarra Health and Medical Research Institute, Wollongong, New South Wales, Australia
| |
Collapse
|
10
|
Macartney MJ, Peoples GE, McLennan PL. Cardiac contractile dysfunction, during and following ischaemia, is attenuated by low-dose dietary fish oil in rats. Eur J Nutr 2021; 60:4495-4503. [PMID: 34120245 DOI: 10.1007/s00394-021-02608-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/02/2021] [Indexed: 12/31/2022]
Abstract
AIMS Supplementing animal diets with high-dose fish oil, rich in long chain omega-3 (ω-3) docosahexaenoic acid (DHA), enhances cardiac contractile efficiency and attenuates dysfunction, attributable to ischaemia. However, it remains unclear whether smaller doses, equivalent to what is achievable via regular fish consumption in the human diet, offer similar protection. METHODS Male Sprague-Dawley (12-15w) rats were fed isoenergetic diets (ad libitum) containing 10% fat by weight (22% energy) for 4-5w. Control diet (CON) contained 5.5% beef tallow; 2.5% ω-6 sunflower seed oil; 2% olive oil. Fish oil diets included high-DHA tuna oil exchanged for olive oil to provide 0.32% (FO1; human equivalent EPA + DHA 570 mg/d) or 1.25% (FO2; equivalent EPA + DHA 2.3 g/d) wt/wt dose of fish oil. Anaesthetised rats (pentobarbital: 60 mg/kg i.p.) were subjected to 45 min coronary artery occlusion then reperfusion in vivo as a whole animal model of regional myocardial ischaemia, with left ventricular haemodynamic function measured by conductance catheter. RESULTS Ischaemia-induced reductions in rate pressure product recovered faster in the FO2 group and post-ischaemic left ventricular pressure-volume loop integrity (shifted downwards and right in CON) was partially protected in both fish oil groups. CONCLUSION Ischaemia-induced contractile dysfunction in rats is limited from fish oil doses equivalent to regular consumption of fish in the human diet. These observations highlight plausible and clinically relevant physiological changes that rationalise nutritional conditioning of the heart with DHA for on-going cardioprotection.
Collapse
Affiliation(s)
- Michael J Macartney
- Graduate Medicine, School of Medicine, University of Wollongong, Wollongong, Australia. .,Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Gregory E Peoples
- Graduate Medicine, School of Medicine, University of Wollongong, Wollongong, Australia.,Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Peter L McLennan
- Graduate Medicine, School of Medicine, University of Wollongong, Wollongong, Australia.,Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, 2522, Australia
| |
Collapse
|
11
|
Anthony R, Brown MA, Walton KL, McLennan PL, Peoples GE. A daily dose of fish oil increased the omega‐3 index in older adults and reduced their heart rate during a walking activity: A pilot study. NUTR BULL 2021. [DOI: 10.1111/nbu.12497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ryan Anthony
- Centre for Medical and Exercise Physiology School of Medicine University of Wollongong Wollongong NSW Australia
| | - Marc A. Brown
- Centre for Medical and Exercise Physiology School of Medicine University of Wollongong Wollongong NSW Australia
| | - Karen L. Walton
- Discipline of Nutrition and Dietetics School of Medicine University of Wollongong Wollongong NSW Australia
- Illawarra Health and Medical Research Institute University of Wollongong Wollongong NSW Australia
| | - Peter L. McLennan
- Centre for Medical and Exercise Physiology School of Medicine University of Wollongong Wollongong NSW Australia
| | - Gregory E. Peoples
- Centre for Medical and Exercise Physiology School of Medicine University of Wollongong Wollongong NSW Australia
| |
Collapse
|
12
|
Craddock JC, Probst YC, Neale EP, Peoples GE. A Cross-Sectional Comparison of the Whole Blood Fatty Acid Profile and Omega-3 Index of Male Vegan and Omnivorous Endurance Athletes. J Am Coll Nutr 2021; 41:333-341. [PMID: 34032562 DOI: 10.1080/07315724.2021.1886196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Background: Evaluation of the dietary fat consumption in athletes following vegan diets is scarce. The aim of this study was to explore the intakes, availability, and uptake of physiologically relevant fatty acids into whole blood, and consequently the Omega-3 Index (O3I) of endurance athletes following vegan and omnivorous dietary patterns.Materials: Males aged 18 to 55 years, engaging in ≥ four hours of training/week and following a vegan (>6 months) or omnivorous dietary pattern were eligible to participate. A 7-day food and training diary was collected and an incremental ramp running protocol used to determine peak aerobic capacity. A finger prick blood sample was collected to determine the whole blood fatty acid profile and O3I. Participants were grouped as following a vegan or omnivorous diet matched for age, training volume and peak aerobic capacity.Results: The vegan group (n = 12) consumed significantly less dietary total fat (122.2 g/day vs 84.1 g/day p = 0.007), saturated fat (43.74 g/day vs 18.42 g/day p < 0.0001), monounsaturated fat (49.6 g/day vs 35.64 g/day p = 0.039) and long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) compared to the omnivorous group (n = 8). Between group differences in whole blood fatty acid concentrations were observed including; linoleic, eicosapentaenoic, docosahexaenoic, n-6:n-3 and AA:EPA ratios. O3I in both groups were suboptimal (vegan: 4.13%, omnivorous: 5.40%) in terms of cardiac risk.Conclusion: Male endurance athletes should ensure their dietary LC n-3 PUFA intakes, particularly EPA and DHA fatty acids are sufficient to optimize their O3I.
Collapse
Affiliation(s)
- Joel C Craddock
- School of Medicine, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,Sydney School of Education and Social Work, The University of Sydney, Sydney, NSW, Australia
| | - Yasmine C Probst
- School of Medicine, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, Australia.,Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
| | - Elizabeth P Neale
- School of Medicine, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| | - Gregory E Peoples
- School of Medicine, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, NSW, Australia
| |
Collapse
|
13
|
The Influence of Long-Chain Omega-3 Fatty Acids on Eccentric Exercise-Induced Delayed Muscle Soreness: Reported Outcomes Are Compromised by Study Design Issues. Int J Sport Nutr Exerc Metab 2021; 31:143-153. [PMID: 33477110 DOI: 10.1123/ijsnem.2020-0238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 11/18/2022]
Abstract
Delayed onset muscle soreness (DOMS) following eccentric exercise is associated with increased inflammation which can be debilitating. Incorporation of long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA), eicosapentaenoic acid, and docosahexaenoic acid into membrane phospholipids provides anti-inflammatory, proresolving, and analgesic effects. This systematic review aims to examine both the quality of studies and the evidence for LC n-3 PUFA in the attenuation of DOMS and inflammation following eccentric exercise, both which of course are empirically linked. The Scopus, Embase, and Web of Science electronic databases were searched to identify studies that supplemented fish oil for a duration of ≥7 days, which included DOMS outcomes following an eccentric exercise protocol. Fifteen (n = 15) studies met inclusion criteria. Eccentric exercise protocols varied from single to multijoint activities. Risk of bias, assessed using either the Cochrane Collaboration tool or the Risk of Bias in Nonrandomized Studies of Interventions tool, was judged as "unclear" or "medium," respectively, for the majority of outcomes. Furthermore, a custom 5-point quality assessment scale demonstrated that only one (n = 1) study satisfied current recommendations for investigating LC n-3 PUFA. In combination, this highlights widespread inappropriate design protocols among studies investigating the role of LC n-3 PUFA in eccentric exercise. Notwithstanding these issues, LC n-3 PUFA supplementation appears to have favorable effects on eccentric exercise-induced DOMS and inflammatory markers. However, the optimal LC n-3 PUFA supplemental dose, duration, and fatty acid composition will only become clear when study design issues are rectified and underpinned by appropriate hypotheses.
Collapse
|
14
|
Macartney MJ, Peoples GE, McLennan PL. Cardiac Arrhythmia Prevention in Ischemia and Reperfusion by Low-Dose Dietary Fish Oil Supplementation in Rats. J Nutr 2020; 150:3086-3093. [PMID: 32886112 DOI: 10.1093/jn/nxaa256] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/20/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Supplementing animal diets with fish oil increases myocardial omega-3 polyunsaturated fatty acids [ω-3 (n-3) PUFA], lowers heart rate, and prevents malignant cardiac arrhythmias. In contrast to epidemiological reports, results of some human clinical trials and of unphysiologically high doses employed in animal studies call into question the application of dietary ω-3 PUFA for cardioprotection. OBJECTIVE This study tested the hypothesis that low ω-3 PUFA dietary thresholds for myocardial incorporation in rats, equivalent in dose to what humans derive from eating fish, can reduce heart rate and arrhythmia vulnerability. METHODS Male Sprague-Dawley rats (12-15 wk old) were fed isoenergetic diets containing 10% fat for 4-5 wk. The control diet (CON) contained 5.5% beef tallow, 2.5% sunflower seed oil, and 2% olive oil. Fish oil diets contained high-DHA tuna oil, exchanged for olive oil: 0.31% [fish oil group 1 (FO1)] (human equivalent EPA + DHA 570 mg/d); 1.25% [fish oil group 2 (FO2)] (equivalent EPA + DHA 2.3 g/d). Anaesthetized rats (pentobarbital, 60 mg/kg intraperitoneally) were subjected in vivo to 15-min cardiac ischemia by left coronary artery occlusion and then reperfusion, with arrhythmias detected by electrocardiogram. RESULTS Fish oil dose dependently modulated myocardial membrane fatty acids (DHA mean ± SEM: CON, 5.0 ± 0.2%; FO1, 13.1 ± 0.9%; FO2, 18.3 ± 0.4%; n = 4-5; P-trend < 0.001 ANOVA); resting heart rate (CON, 453 ± 6; FO1, 432 ± 4; FO2, 422 ± 5 bpm; n = 15-18; P-trend < 0.001); reduced ventricular fibrillation (VF) (CON, 89%; FO1, 60%; P = 0.052; FO2, 50%; n = 15-18; P = 0.013 chi square); and total arrhythmia severity (arrhythmia score: CON, 6.1 ± 0.4; FO1, 4.6 ± 0.5; FO2, 3.1 ± 0.7; n = 15-18; P-trend < 0.01) during ischemia and reperfusion (VF: Con, 86%; FO1, 22% P = 0.011; FO2, 8% P = 0.001; n = 7-12); (arrhythmia score: CON, 4.6 ± 0.3; FO1, 3.1 ± 0.3; FO2, 1.3 ± 0.3; n = 7-12; P-trend < 0.001). CONCLUSIONS Ventricular arrhythmias were prevented and heart rate was slowed by lower ω-3 PUFA intake in rats than previously reported, equivalent to human fish consumption and associated with increased myocardial DHA. The efficacy of low-dose fish oil demonstrates biological plausibility for nutritional ω-3 fatty acid-mediated cardioprotection and suggests that effectiveness in human clinical trials may be obscured by failure to exclude fish eaters.
Collapse
Affiliation(s)
- Michael J Macartney
- Graduate Medicine, School of Medicine, University of Wollongong, Wollongong, Australia.,Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Gregory E Peoples
- Graduate Medicine, School of Medicine, University of Wollongong, Wollongong, Australia.,Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| | - Peter L McLennan
- Graduate Medicine, School of Medicine, University of Wollongong, Wollongong, Australia.,Centre for Medical and Exercise Physiology, Faculty of Science Medicine and Health, University of Wollongong, Wollongong, Australia
| |
Collapse
|