1
|
Hrabak M, Ahmed R, Soriano MG, Powell A, Thanos PK, Steiner H. Vilazodone, a Novel SSRI Antidepressant with 5-HT1A Partial Agonist Properties: Diminished Potentiation of Chronic Oral Methylphenidate-Induced Dynorphin Expression in the Striatum in Adolescent Male Rats. Mol Neurobiol 2025; 62:4520-4532. [PMID: 39466575 DOI: 10.1007/s12035-024-04569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Selective serotonin reuptake inhibitor (SSRI) antidepressants such as fluoxetine are used in combination with the medical psychostimulant methylphenidate (Ritalin) in a variety of treatments in children and adults. Unintended co-exposure to these psychotropic medications also occurs in patients on SSRIs who abuse methylphenidate as a "cognitive enhancer" or recreational drug. Preclinical research shows that SSRIs such as fluoxetine when given in conjunction with methylphenidate potentiate addiction-related gene regulation by methylphenidate in the striatum, consistent with the known facilitatory role for serotonin in psychostimulant-induced neuronal and behavioral changes. Moreover, fluoxetine combined with methylphenidate also facilitated subsequent acquisition of cocaine self-administration in adolescent rats, suggesting an increased addiction liability for methylphenidate. In the present study, we investigated the impact of a novel SSRI, vilazodone, on methylphenidate-induced gene regulation in adolescent male rats. In contrast to prototypical SSRIs such as fluoxetine, vilazodone also acts as a partial 5-HT1A serotonin receptor agonist and is thus proposed to temper serotonin input to the striatum. We compared the effects of chronic treatment (4 weeks) with vilazodone (10 mg/kg, twice daily) with those of fluoxetine (5 mg/kg, twice daily) on striatal dynorphin expression induced by oral methylphenidate treatment (30/60 mg/kg/day in drinking water, 8 h access daily). Our results demonstrate that, in contrast to fluoxetine, vilazodone had minimal or no potentiating effects on methylphenidate-induced dynorphin expression. This diminished impact on gene regulation was seen throughout the striatum, including the nucleus accumbens, where increased dynorphin expression has previously been associated with various aspects of addiction. Our findings suggest that vilazodone may serve as a better adjunct SSRI with reduced addiction-facilitating properties.
Collapse
Affiliation(s)
- Michael Hrabak
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Rania Ahmed
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Michelle G Soriano
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Aidan Powell
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Heinz Steiner
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
2
|
Tully JL, Bridge O, Rennie J, Krecké J, Stevens T. The rising use of cognitive enhancement drugs and predictors of use during COVID-19: findings from a cross-sectional survey of students and university staff in the UK. Front Psychol 2024; 15:1356496. [PMID: 39077204 PMCID: PMC11284161 DOI: 10.3389/fpsyg.2024.1356496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/25/2024] [Indexed: 07/31/2024] Open
Abstract
Background The use of psychoactive substances to increase cognitive performance while studying has been termed 'pharmacological cognitive enhancement' (PCE). In previous years, several large-scale national surveys have focused on their use by students at university, including drug types, prevalence rates, and predictive factors. The recent coronavirus pandemic brought about widespread structural changes for UK universities, as students were forced to adapt to home-based learning and in many cases reduced academic support. No study has yet focused primarily on the impact of pandemic social restrictions on PCE in students and academic staff, and whether personality and demographic factors reveal user profiles that predict use during the pandemic period. Method A convenience sample of 736 UK students and staff aged 18-54 (M = 22.2, SD = 5.2) completed a cross-sectional survey assessing PCE prevalence rates, polydrug use, perceived effects, academic self-efficacy and personality during the first year of social restrictions (March 2020 - February 2021) compared with the previous year (March 2019 - February 2020). Results There was a significant self-reported rise in the use of all drug types (all ps < 0.001) during social restrictions, particularly with Modafinil (+42%), nutraceuticals (+30.2%) and microdose LSD (+22.2%). Respondents also indicated stronger PCE effects for all substances, except alcohol, in comparison to the previous year. Polydrug use with modafinil and other prescription stimulants increased the most during social restrictions. Personality factors and gender identity reliably predicted PCE use and lower agreeableness was often the strongest predictor, followed by identifying as male and lower conscientiousness. Academic self-efficacy and student/academic staff status were not consistent predictors. Conclusion This is the first survey of UK students to investigate PCE during coronavirus social restrictions and to assess predictive factors. Findings reveal a rise in PCE use and polydrug use which we suggest is because of increased pressures on students created by the lockdown and reduced access to university resources.
Collapse
Affiliation(s)
- Jamie L. Tully
- Department of Psychology, University of Exeter, Exeter, United Kingdom
| | - Oliver Bridge
- School of Education, University of Exeter, Exeter, United Kingdom
| | - Joseph Rennie
- Department of Psychology, University of Exeter, Exeter, United Kingdom
| | - Joy Krecké
- Department of Psychology, University of Exeter, Exeter, United Kingdom
| | - Tobias Stevens
- Department of Psychology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
3
|
Hrabak M, Moon C, Bolaños-Guzmán CA, Steiner H. Vilazodone, a Selective Serotonin Reuptake Inhibitor with Diminished Impact on Methylphenidate-Induced Gene Regulation in the Striatum: Role of 5-HT1A Receptor. Mol Neurobiol 2024; 61:1907-1919. [PMID: 37807008 PMCID: PMC10978284 DOI: 10.1007/s12035-023-03688-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/01/2023] [Indexed: 10/10/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs), including fluoxetine, are frequently combined with medical psychostimulants such as methylphenidate (Ritalin), for example, in the treatment of attention-deficit hyperactivity disorder/depression comorbidity. Co-exposure to these medications also occurs with misuse of methylphenidate as a recreational drug by patients on SSRIs. Methylphenidate, a dopamine reuptake blocker, produces moderate addiction-related gene regulation. Findings show that SSRIs such as fluoxetine given in conjunction with methylphenidate potentiate methylphenidate-induced gene regulation in the striatum in rats, consistent with a facilitatory action of serotonin on addiction-related processes. These SSRIs may thus increase methylphenidate's addiction liability. Here, we investigated the effects of a novel SSRI, vilazodone, on methylphenidate-induced gene regulation. Vilazodone differs from prototypical SSRIs in that, in addition to blocking serotonin reuptake, it acts as a partial agonist at the 5-HT1A serotonin receptor subtype. Studies showed that stimulation of the 5-HT1A receptor tempers serotonin input to the striatum. We compared the effects of acute treatment with vilazodone (10-20 mg/kg) with those of fluoxetine (5 mg/kg) on striatal gene regulation (zif268, substance P, enkephalin) induced by methylphenidate (5 mg/kg), by in situ hybridization histochemistry combined with autoradiography. We also assessed the impact of blocking 5-HT1A receptors by the selective antagonist WAY-100635 (0.5 mg/kg) on these responses. Behavioral effects of these drug treatments were examined in parallel in an open-field test. Our results show that, in contrast to fluoxetine, vilazodone did not potentiate gene regulation induced by methylphenidate in the striatum, while vilazodone enhanced methylphenidate-induced locomotor activity. However, blocking 5-HT1A receptors by WAY-100635 unmasked a potentiating effect of vilazodone on methylphenidate-induced gene regulation, thus confirming an inhibitory role for 5-HT1A receptors. Our findings suggest that vilazodone may serve as an adjunct SSRI with diminished addiction facilitating properties and identify the 5-HT1A receptor as a potential therapeutic target to treat addiction.
Collapse
Affiliation(s)
- Michael Hrabak
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Connor Moon
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences, Institute for Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Heinz Steiner
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA.
| |
Collapse
|
4
|
Geng P, Fan N, Ling R, Guo H, Lu Q, Chen X. The perception of Mandarin speech conveying communicative functions in Chinese heroin addicts. PLoS One 2024; 19:e0299331. [PMID: 38394164 PMCID: PMC10889662 DOI: 10.1371/journal.pone.0299331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Drug addiction can cause severe damage to the human brain, leading to significant problems in cognitive processing, such as irritability, speech distortions, and exaggeration of negative stimuli. Speech plays a fundamental role in social interaction, including both the production and perception. The ability to perceive communicative functions conveyed through speech is crucial for successful interpersonal communication and the maintaining good social relationships. However, due to the limited number of previous studies, it remains unclear whether the cognitive disorder caused by drug addiction affects the perception of communicative function conveyed in Mandarin speech. To address this question, we conducted a perception experiment involving sixty male participants, including 25 heroin addicts and 35 healthy controls. The experiment aimed to examine the perception of three communicative functions (i.e., statement, interrogative, and imperative) under three background noise conditions (i.e., no noise, SNR [Signal to Noise Ratio] = 10, and SNR = 0). Eight target sentences were first recorded by two native Mandarin speakers for each of the three communicative functions. Each half was then combined with Gaussian White Noise under two background noise conditions (i.e., SNR = 10 and SNR = 0). Finally, 48 speech stimuli were included in the experiment with four options provided for perceptual judgment. The results showed that, under the three noise conditions, the average perceptual accuracies of the three communicative functions were 80.66% and 38% for the control group and the heroin addicts, respectively. Significant differences were found in the perception of the three communicative functions between the control group and the heroin addicts under the three noise conditions, except for the recognition of imperative under strong noise condition (i.e., SNR = 0). Moreover, heroin addicts showed good accuracy (around 50%) in recognizing imperative and poor accuracy (i.e., lower than the chance level) in recognizing interrogative. This paper not only fills the research gap in the perception of communicative functions in Mandarin speech among drug addicts but also enhances the understanding of the effects of drugs on speech perception and provides a foundation for the speech rehabilitation of drug addicts.
Collapse
Affiliation(s)
- Puyang Geng
- Academy of Forensic Science, Shanghai, China
- Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China
| | - Ningxue Fan
- Information Security and Social Management Innovation Lab, Shanghai Open University, Shanghai, China
| | - Rong Ling
- Academy of Forensic Science, Shanghai, China
- Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China
| | - Hong Guo
- Academy of Forensic Science, Shanghai, China
- Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China
| | - Qimeng Lu
- Academy of Forensic Science, Shanghai, China
- Shanghai Forensic Service Platform, Key Laboratory of Forensic Science, Ministry of Justice, Shanghai, China
| | - Xingwen Chen
- Network Security Team, Public Security Department of Guangxi Province, Nanning, Guangxi, China
| |
Collapse
|
5
|
Olenik Shemesh D, Heiman T, Wright MF. Problematic Use of the Internet and Well-Being among Youth from a Global Perspective: A Mediated-Moderated Model of Socio-Emotional Factors. J Genet Psychol 2024; 185:91-113. [PMID: 37933515 DOI: 10.1080/00221325.2023.2277319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Problematic Use of the Internet (PUI) is characterized as the inability to control one's internet use or as an excessive use of the internet that may result in social, psychological, and emotional difficulties (Fernandes et al., 2019). It is regarded nowadays as an increasingly worrisome public heath issue, especially among youth. This study explored the contexts in which youth PUI occurs and its associations with socio-emotional functioning that may lead to a decrease in one's sense of well-being. We conducted this exploration among 783 middle school students from the US (425 students; 54.27%) and Israel (358 students; 45.73%). The overall age of both samples ranged between 12 and 16 (M = 13.94, SD = 1.59). In the Israeli sample, 49.1% of the students were girls and 50.9% were boys, whereas in the US sample, 48.8% were girls and 51.2% were boys. The study examined the role of depressive mood, loneliness, resilience, self-control, and school engagement in mediating the relationship between PUI and well-being, and how country of origin might moderate these relationships. Results indicate PUI was related to lower well-being only for the US sample. Yet, for both samples, higher loneliness was related to lower well-being, and higher school engagement was related to higher well-being. A moderated mediation analysis revealed the socio-emotional variables were all mediators in these associations, but differently for each country sample. The study results are discussed according to key factors required for developing intervention programs for coping with youth PUI behaviors.
Collapse
Affiliation(s)
| | - Tali Heiman
- Psychology and Education, The Open University of Israael, Raanana, Israel
| | - Michelle F Wright
- Child Study Center Department of Psychology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
6
|
Lamoureux L, Beverley JA, Marinelli M, Steiner H. Fluoxetine potentiates methylphenidate-induced behavioral responses: Enhanced locomotion or stereotypies and facilitated acquisition of cocaine self-administration. ADDICTION NEUROSCIENCE 2023; 9:100131. [PMID: 38222942 PMCID: PMC10785378 DOI: 10.1016/j.addicn.2023.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The medical psychostimulant methylphenidate (MP) is used to treat attention-deficit hyperactivity disorder and recreationally as a "cognitive enhancer". MP is a dopamine reuptake inhibitor, but does not affect serotonin. Serotonin contributes to addiction-related gene regulation and behavior. Previously, we showed that enhancing serotonin action by adding a selective serotonin reuptake inhibitor, fluoxetine (FLX), to MP potentiates MP-induced gene regulation in striatum and nucleus accumbens, mimicking cocaine effects. Here, we investigated the behavioral consequences of MP+FLX treatment. Young adult male rats received MP (5 mg/kg, i.p.) or MP+FLX (5 mg/kg each) daily for 6-8 days. Behavioral effects were assessed in an open-field test during the repeated treatment. Two weeks later the motor response to a cocaine challenge (25 mg/kg) and the rate of acquisition of cocaine self-administration behavior were determined. Our results demonstrate that FLX potentiates effects of MP on open-field behavior. However, we found differential behavioral responses to MP+FLX treatment, as approximately half of the rats developed high rates of focal stereotypies (termed "MP+FLX/high reactivity" group), whereas the other half did not, and only showed increased locomotion ("MP+FLX/low reactivity" group). Two weeks later, cocaine-induced locomotion and stereotypies were positively correlated with MP+FLX-induced behavior seen at the end of the repeated MP+FLX treatment. Moreover, the MP+FLX/high reactivity group, but not the low reactivity group, showed facilitated acquisition of cocaine self-administration. These results demonstrate that repeated MP+FLX treatment can facilitate subsequent cocaine taking behavior in a subpopulation of rats. These findings suggest that MP+FLX exposure in some individuals may increase the risk for psychostimulant use later in life.
Collapse
Affiliation(s)
- Lorissa Lamoureux
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Present address: Biologic Resources Laboratory, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Joel A. Beverley
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Michela Marinelli
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Present address: Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA
| | - Heinz Steiner
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
7
|
Senior D, McCarthy M, Ahmed R, Klein S, Lee WX, Hadjiargyrou M, Komatsu D, Steiner H, Thanos PK. Chronic oral methylphenidate plus fluoxetine treatment in adolescent rats increases cocaine self-administration. ADDICTION NEUROSCIENCE 2023; 8:100127. [PMID: 38274857 PMCID: PMC10809890 DOI: 10.1016/j.addicn.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Background Depression and attention deficit hyperactivity disorder are known to be comorbid. Treatment of these commonly coexisting diseases typically involves the combined prescription of methylphenidate (MP), a psychostimulant, and fluoxetine (FLX), a selective serotonin reuptake inhibitor (SSRI). MP and cocaine have similar mechanisms of action and this study examined the effects of chronic treatment of MP combined with FLX on cocaine consumption in rats. Methods Four groups of rats received access to drinking solutions of water (control), MP (30/60 mg/kg/day), FLX (20 mg/kg/day), or the combination of MP (30/60 mg/kg/day) plus FLX (20 mg/kg/day), during 8 h per day for one month. Following these drug treatments, rats were allowed to self-administer cocaine for 14 days. Results Our results showed that, during the first week of cocaine self-administration, the MP-treated rats had significantly greater numbers of active lever presses (plus 127%) and increased consumption of cocaine compared to the control rats. In contrast, during week two of cocaine self-administration, the rats treated with the MP + FLX combination showed significantly more lever presses (plus 198%) and significantly greater cocaine consumption (plus 84%) compared to the water controls. Conclusion Chronic oral treatment during adolescence with the combination of MP plus FLX resulted in increased cocaine use after 2 weeks of cocaine self-administration in rats. These novel findings suggest that the combined exposure to these two drugs chronically, during adolescence, may produce increased vulnerability towards cocaine abuse during young adulthood.
Collapse
Affiliation(s)
- Daniela Senior
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
| | - Madison McCarthy
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
| | - Rania Ahmed
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, 14203, USA
| | - Shannon Klein
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
| | - Wen Xuan Lee
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
| | - Michael Hadjiargyrou
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, NY, USA
| | - David Komatsu
- Department of Orthopedics, Stony Brook University, Stony Brook, NY, USA
| | - Heinz Steiner
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory (BNNL), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14051, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, 14203, USA
| |
Collapse
|
8
|
Yan H, Xiao S, Fu S, Gong J, Qi Z, Chen G, Chen P, Tang G, Su T, Yang Z, Wang Y. Functional and structural brain abnormalities in substance use disorder: A multimodal meta-analysis of neuroimaging studies. Acta Psychiatr Scand 2023; 147:345-359. [PMID: 36807120 DOI: 10.1111/acps.13539] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/19/2023] [Accepted: 02/12/2023] [Indexed: 02/23/2023]
Abstract
INTRODUCTION Numerous neuroimaging studies of resting-state functional imaging and voxel-based morphometry (VBM) have revealed that patients with substance use disorder (SUD) may present brain abnormalities, but their results were inconsistent. This multimodal neuroimaging meta-analysis aimed to estimate common and specific alterations in SUD patients by combining information from all available studies of spontaneous functional activity and gray matter volume (GMV). METHODS A whole-brain meta-analysis on resting-state functional imaging and VBM studies was conducted using the Seed-based d Mapping with Permutation of Subject Images (SDM-PSI) software, followed by multimodal overlapping to comprehensively investigate function and structure of the brain in SUD. RESULTS In this meta-analysis, 39 independent studies with 47 datasets related to resting-state functional brain activity (1444 SUD patients; 1446 healthy controls [HCs]) were included, as well as 77 studies with 89 datasets for GMV (3457 SUD patients; 3774 HCs). Patients with SUD showed the decreased resting-state functional brain activity in the bilateral anterior cingulate cortex/medial prefrontal cortex (ACC/mPFC). For the VBM meta-analysis, patients with SUD showed the reduced GMV in the bilateral ACC/mPFC, insula, thalamus extending to striatum, and left sensorimotor cortex. CONCLUSIONS This multimodal meta-analysis exhibited that SUD shows common impairment in both function and structure in the ACC/mPFC, suggesting that the deficits in functional and structural domains could be correlated together. In addition, a few regions exhibited only structural impairment in SUD, including the insula, thalamus, striatum, and sensorimotor areas.
Collapse
Affiliation(s)
- Hong Yan
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Shu Xiao
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Siying Fu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Jiaying Gong
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
- Department of Radiology, Six Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhangzhang Qi
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Guanmao Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Pan Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Guixian Tang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Ting Su
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Zibin Yang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| | - Ying Wang
- Medical Imaging Center, First Affiliated Hospital of Jinan University, Guangzhou, China
- Institute of Molecular and Functional Imaging, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Bonate R, Kurek G, Hrabak M, Patterson S, Padovan-Neto F, West AR, Steiner H. Phosphodiesterase 10A (PDE10A): Regulator of Dopamine Agonist-Induced Gene Expression in the Striatum. Cells 2022; 11:cells11142214. [PMID: 35883657 PMCID: PMC9324899 DOI: 10.3390/cells11142214] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Dopamine and other neurotransmitters have the potential to induce neuroplasticity in the striatum via gene regulation. Dopamine receptor-mediated gene regulation relies on second messenger cascades that involve cyclic nucleotides to relay signaling from the synapse to the nucleus. Phosphodiesterases (PDEs) catalyze cyclic nucleotides and thus potently control cyclic nucleotide signaling. We investigated the role of the most abundant striatal PDE, PDE10A, in striatal gene regulation by assessing the effects of PDE10A inhibition (by a selective PDE10A inhibitor, TP-10) on gene regulation and by comparing the basal expression of PDE10A mRNA throughout the striatum with gene induction by dopamine agonists in the intact or dopamine-depleted striatum. Our findings show that PDE10A expression is most abundant in the sensorimotor striatum, intermediate in the associative striatum and lower in the limbic striatum. The inhibition of PDE10A produced pronounced increases in gene expression that were directly related to levels of local PDE10A expression. Moreover, the gene expression induced by L-DOPA after dopamine depletion (by 6-OHDA), or by psychostimulants (cocaine, methylphenidate) in the intact striatum, was also positively correlated with the levels of local PDE10A expression. This relationship was found for gene markers of both D1 receptor- and D2 receptor-expressing striatal projection neurons. Collectively, these results indicate that PDE10A, a vital part of the dopamine receptor-associated second messenger machinery, is tightly linked to drug-induced gene regulation in the striatum. PDE10A may thus serve as a potential target for modifying drug-induced gene regulation and related neuroplasticity.
Collapse
Affiliation(s)
- Ryan Bonate
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (R.B.); (G.K.); (M.H.); (S.P.)
| | - Gabriela Kurek
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (R.B.); (G.K.); (M.H.); (S.P.)
| | - Michael Hrabak
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (R.B.); (G.K.); (M.H.); (S.P.)
| | - Santanna Patterson
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (R.B.); (G.K.); (M.H.); (S.P.)
| | - Fernando Padovan-Neto
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (F.P.-N.); (A.R.W.)
| | - Anthony R. West
- Discipline of Neuroscience, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (F.P.-N.); (A.R.W.)
- Center for Neurodegenerative Disease & Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Heinz Steiner
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; (R.B.); (G.K.); (M.H.); (S.P.)
- Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
- Correspondence:
| |
Collapse
|
10
|
Qiu T, Xie F, Zeng Q, Shen Z, Du G, Xu X, Wang C, Li X, Luo X, Li K, Huang P, Zhang T, Zhang J, Dai S, Zhang M. Interactions between cigarette smoking and cognitive status on functional connectivity of the cortico-striatal circuits in individuals without dementia: A resting-state functional MRI study. CNS Neurosci Ther 2022; 28:1195-1204. [PMID: 35506354 PMCID: PMC9253779 DOI: 10.1111/cns.13852] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/12/2022] [Accepted: 04/16/2022] [Indexed: 11/27/2022] Open
Abstract
Aims Cigarette smoking is a modifiable risk factor for Alzheimer's disease (AD), and controlling risk factors may curb the progression of AD. However, the underlying neural mechanisms of the effects of smoking on cognition remain largely unclear. Therefore, we aimed to explore the interaction effects of smoking × cognitive status on cortico‐striatal circuits, which play a crucial role in addiction and cognition, in individuals without dementia. Methods We enrolled 304 cognitively normal (CN) non‐smokers, 44 CN smokers, 130 mild cognitive impairment (MCI) non‐smokers, and 33 MCI smokers. The mixed‐effect analysis was performed to explore the interaction effects between smoking and cognitive status (CN vs. MCI) based on functional connectivity (FC) of the striatal subregions (caudate, putamen, and nucleus accumbens [NAc]). Results The significant interaction effects of smoking × cognitive status on FC of the striatal subregions were detected in the left inferior parietal lobule (IPL), bilateral cuneus, and bilateral anterior cingulate cortex (ACC). Specifically, increased FC of right caudate to left IPL was found in CN smokers compared with non‐smokers. The MCI smokers showed decreased FC of right caudate to left IPL and of right putamen to bilateral cuneus and increased FC of bilateral NAc to bilateral ACC compared with CN smokers and MCI non‐smokers. Furthermore, a positive correlation between FC of the NAc to ACC with language and memory was detected in MCI smokers. Conclusions Cigarette smoking could affect the function of cortico‐striatal circuits in patients with MCI. Our findings suggest that quitting smoking in the prodromal stage of AD may have the potential to prevent disease progression.
Collapse
Affiliation(s)
- Tiantian Qiu
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Fei Xie
- Department of Equipment and Medical Engineering, Linyi People's Hospital, Linyi, China
| | - Qingze Zeng
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Zhujing Shen
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Guijin Du
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Xiaopei Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaodong Li
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Xiao Luo
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Kaicheng Li
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyi Zhang
- Department of Neurology, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Jinling Zhang
- Cancer Center, Linyi People's Hospital, Linyi, China
| | - Shouping Dai
- Department of Radiology, Linyi People's Hospital, Linyi, China
| | - Minming Zhang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | | |
Collapse
|
11
|
Transcranial direct current stimulation (tDCS) reduces motivation to drink ethanol and reacquisition of ethanol self-administration in female mice. Sci Rep 2022; 12:198. [PMID: 34997004 PMCID: PMC8741977 DOI: 10.1038/s41598-021-03940-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 11/24/2021] [Indexed: 12/02/2022] Open
Abstract
Transcranial direct current stimulation (tDCS) is an emerging noninvasive brain neuromodulation technique aimed at relieving symptoms associated with psychiatric disorders, including addiction. The goal of the present study was to better identify which phase of alcohol-related behavior (hedonic effect, behavioral sensitization, self-administration, or motivation to obtain the drug) might be modulated by repeated anodal tDCS over the frontal cortex (0.2 mA, 20 min, twice a day for 5 consecutive days), using female mice as a model. Our data showed that tDCS did not modulate the hedonic effects of ethanol as assessed by a conditioned place preference test (CPP) or the expression of ethanol-induced behavioral sensitization. Interestingly, tDCS robustly reduced reacquisition of ethanol consumption (50% decrease) following extinction of self-administration in an operant paradigm. Furthermore, tDCS significantly decreased motivation to drink ethanol on a progressive ratio schedule (30% decrease). Taken together, our results show a dissociation between the effects of tDCS on “liking” (hedonic aspect; no effect in the CPP) and “wanting” (motivation; decreased consumption on a progressive ratio schedule). Our tDCS procedure in rodents will allow us to better understand its mechanisms of action in order to accelerate its use as a complementary and innovative tool to help alcohol-dependent patients maintain abstinence or reduce ethanol intake.
Collapse
|
12
|
Smagin DA, Babenko VN, Redina OE, Kovalenko IL, Galyamina AG, Kudryavtseva NN. Reduced Expression of Slc Genes in the VTA and NAcc of Male Mice with Positive Fighting Experience. Genes (Basel) 2021; 12:genes12071099. [PMID: 34356115 PMCID: PMC8306410 DOI: 10.3390/genes12071099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/27/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
A range of several psychiatric medications targeting the activity of solute carrier (SLC) transporters have proved effective for treatment. Therefore, further research is needed to elucidate the expression profiles of the Slc genes, which may serve as markers of altered brain metabolic processes and neurotransmitter activities in psychoneurological disorders. We studied the Slc differentially expressed genes (DEGs) using transcriptomic profiles in the ventral tegmental area (VTA), nucleus accumbens (NAcc), and prefrontal cortex (PFC) of control and aggressive male mice with psychosis-like behavior induced by repeated experience of aggression accompanied with wins in daily agonistic interactions. The majority of the Slc DEGs were shown to have brain region-specific expression profiles. Most of these genes in the VTA and NAcc (12 of 17 and 25 of 26, respectively) were downregulated, which was not the case in the PFC (6 and 5, up- and downregulated, respectively). In the VTA and NAcc, altered expression was observed for the genes encoding the transporters of neurotransmitters as well as inorganic and organic ions, amino acids, metals, glucose, etc. This indicates an alteration in transport functions for many substrates, which can lead to the downregulation or even disruption of cellular and neurotransmitter processes in the VTA and NAcc, which are attributable to chronic stimulation of the reward systems induced by positive fighting experience. There is not a single Slc DEG common to all three brain regions. Our findings show that in male mice with repeated experience of aggression, altered activity of neurotransmitter systems leads to a restructuring of metabolic and neurotransmitter processes in a way specific for each brain region. We assume that the scoring of Slc DEGs by the largest instances of significant expression co-variation with other genes may outline a candidate for new prognostic drug targets. Thus, we propose that the Slc genes set may be treated as a sensitive genes marker scaffold in brain RNA-Seq studies.
Collapse
Affiliation(s)
- Dmitry A. Smagin
- Neuropathology Modeling Laboratory, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (D.A.S.); (V.N.B.); (O.E.R.); (I.L.K.); (A.G.G.)
- Neurogenetics of Social Behavior Sector, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Vladimir N. Babenko
- Neuropathology Modeling Laboratory, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (D.A.S.); (V.N.B.); (O.E.R.); (I.L.K.); (A.G.G.)
| | - Olga E. Redina
- Neuropathology Modeling Laboratory, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (D.A.S.); (V.N.B.); (O.E.R.); (I.L.K.); (A.G.G.)
| | - Irina L. Kovalenko
- Neuropathology Modeling Laboratory, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (D.A.S.); (V.N.B.); (O.E.R.); (I.L.K.); (A.G.G.)
- Neurogenetics of Social Behavior Sector, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Anna G. Galyamina
- Neuropathology Modeling Laboratory, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (D.A.S.); (V.N.B.); (O.E.R.); (I.L.K.); (A.G.G.)
- Neurogenetics of Social Behavior Sector, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
| | - Natalia N. Kudryavtseva
- Neuropathology Modeling Laboratory, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (D.A.S.); (V.N.B.); (O.E.R.); (I.L.K.); (A.G.G.)
- Neurogenetics of Social Behavior Sector, The FRC Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia
- Correspondence:
| |
Collapse
|
13
|
Moon C, Marion M, Thanos PK, Steiner H. Fluoxetine Potentiates Oral Methylphenidate-Induced Gene Regulation in the Rat Striatum. Mol Neurobiol 2021; 58:4856-4870. [PMID: 34213723 DOI: 10.1007/s12035-021-02466-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022]
Abstract
Methylphenidate (MP) is combined with selective serotonin reuptake inhibitors (SSRIs) such as fluoxetine (FLX) to treat various disorders. MP, a dopamine reuptake inhibitor, helps manage attention-deficit hyperactivity disorder (ADHD) and is abused as a cognitive enhancer; it has a reduced addiction liability. We showed that combining FLX (serotonin) with MP potentiates MP-induced gene regulation in the striatum. These studies used intraperitoneal drug administration, which is relevant for MP abuse. Clinically, MP and FLX are taken orally (slower bioavailability). Here, we investigated whether chronic oral administration of MP and FLX also altered striatal gene regulation. MP (30/60 mg/kg/day), FLX (20 mg/kg/day), and MP + FLX were administered in rats' drinking water for 8 h/day over 4 weeks. We assessed the expression of dynorphin and substance P (both markers for striatal direct pathway neurons) and enkephalin (indirect pathway) by in situ hybridization histochemistry. Chronic oral MP alone produced a tendency for increased dynorphin and substance P expression and no changes in enkephalin expression. Oral FLX alone did not increase gene expression. In contrast, when given together, FLX greatly enhanced MP-induced expression of dynorphin and substance P and to a lesser degree enkephalin. Thus, FLX potentiated oral MP-induced gene regulation predominantly in direct pathway neurons, mimicking cocaine effects. The three functional domains of the striatum were differentially affected. MP + SSRI concomitant therapies are indicated in ADHD/depression comorbidity and co-exposure occurs with MP misuse as a cognitive enhancer by patients on SSRIs. Our findings indicate that MP + SSRI combinations, even given orally, may enhance addiction-related gene regulation.
Collapse
Affiliation(s)
- Connor Moon
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA
| | - Matt Marion
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Clinical Research Institute On Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University At Buffalo, Buffalo, NY, 14203, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory, Clinical Research Institute On Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University At Buffalo, Buffalo, NY, 14203, USA
| | - Heinz Steiner
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL, 60064, USA. .,Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| |
Collapse
|
14
|
Takata N, Sato N, Komaki Y, Okano H, Tanaka KF. Flexible annotation atlas of the mouse brain: combining and dividing brain structures of the Allen Brain Atlas while maintaining anatomical hierarchy. Sci Rep 2021; 11:6234. [PMID: 33737651 PMCID: PMC7973786 DOI: 10.1038/s41598-021-85807-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
A brain atlas is necessary for analyzing structure and function in neuroimaging research. Although various annotation volumes (AVs) for the mouse brain have been proposed, it is common in magnetic resonance imaging (MRI) of the mouse brain that regions-of-interest (ROIs) for brain structures (nodes) are created arbitrarily according to each researcher's necessity, leading to inconsistent ROIs among studies. One reason for such a situation is the fact that earlier AVs were fixed, i.e. combination and division of nodes were not implemented. This report presents a pipeline for constructing a flexible annotation atlas (FAA) of the mouse brain by leveraging public resources of the Allen Institute for Brain Science on brain structure, gene expression, and axonal projection. A mere two-step procedure with user-specified, text-based information and Python codes constructs FAA with nodes which can be combined or divided objectively while maintaining anatomical hierarchy of brain structures. Four FAAs with total node count of 4, 101, 866, and 1381 were demonstrated. Unique characteristics of FAA realized analysis of resting-state functional connectivity (FC) across the anatomical hierarchy and among cortical layers, which were thin but large brain structures. FAA can improve the consistency of whole brain ROI definition among laboratories by fulfilling various requests from researchers with its flexibility and reproducibility.
Collapse
Affiliation(s)
- Norio Takata
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan.
- Central Institute for Experimental Animals (CIEA), 3-25-12, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan.
| | - Nobuhiko Sato
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Yuji Komaki
- Central Institute for Experimental Animals (CIEA), 3-25-12, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan
| |
Collapse
|
15
|
Mukherjee D, Gonzales BJ, Ashwal-Fluss R, Turm H, Groysman M, Citri A. Egr2 induction in spiny projection neurons of the ventrolateral striatum contributes to cocaine place preference in mice. eLife 2021; 10:65228. [PMID: 33724178 PMCID: PMC8057818 DOI: 10.7554/elife.65228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/15/2021] [Indexed: 12/16/2022] Open
Abstract
Drug addiction develops due to brain-wide plasticity within neuronal ensembles, mediated by dynamic gene expression. Though the most common approach to identify such ensembles relies on immediate early gene expression, little is known of how the activity of these genes is linked to modified behavior observed following repeated drug exposure. To address this gap, we present a broad-to-specific approach, beginning with a comprehensive investigation of brain-wide cocaine-driven gene expression, through the description of dynamic spatial patterns of gene induction in subregions of the striatum, and finally address functionality of region-specific gene induction in the development of cocaine preference. Our findings reveal differential cell-type specific dynamic transcriptional recruitment patterns within two subdomains of the dorsal striatum following repeated cocaine exposure. Furthermore, we demonstrate that induction of the IEG Egr2 in the ventrolateral striatum, as well as the cells within which it is expressed, are required for the development of cocaine seeking. The human brain is ever changing, constantly rewiring itself in response to new experiences, knowledge or information from the environment. Addictive drugs such as cocaine can hijack the genetic mechanisms responsible for this plasticity, creating dangerous, obsessive drug-seeking and consuming behaviors. Cocaine-induced plasticity is difficult to apprehend, however, as brain regions or even cell populations can react differently to the compound. For instance, sub-regions in the striatum – the brain area that responds to rewards and helps to plan movement – show distinct responses during progressive exposure to cocaine. And while researchers know that the drug immediately changes how neurons switch certain genes on and off, it is still unclear how these genetic modifications later affect behavior. Mukherjee, Gonzales et al. explored these questions at different scales, first focusing on how progressive cocaine exposure changed the way various gene programs were activated across the entire brain. This revealed that programs in the striatum were the most affected by the drug. Examining this region more closely showed that cocaine switches on genes in specific ‘spiny projection’ neuron populations, depending on where these cells are located and the drug history of the mouse. Finally, Mukherjee, Gonzales et al. used genetically modified mice to piece together cocaine exposure, genetic changes and modifications in behavior. These experiments revealed that the drive to seek cocaine depended on activation of the Egr2 gene in populations of spiny projection neurons in a specific sub-region of the striatum. The gene, which codes for a protein that regulates how genes are switched on and off, was itself strongly activated by cocaine intake. Cocaine addiction can have devastating consequences for individuals. Grasping how this drug alters the brain could pave the way for new treatments, while also providing information on the basic mechanisms underlying brain plasticity.
Collapse
Affiliation(s)
- Diptendu Mukherjee
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ben Jerry Gonzales
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reut Ashwal-Fluss
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Hagit Turm
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maya Groysman
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel
| | - Ami Citri
- The Edmond and Lily Safra Center for Brain Sciences, Jerusalem, Israel.,Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.,Program in Child and Brain Development, Canadian Institute for Advanced Research, MaRS Centre, Toronto, Canada
| |
Collapse
|
16
|
Structural Modeling of Object Relations Mediated by Cognitive Emotion Regulation to Predict the Love Trauma Syndrome in Female Students. PREVENTIVE CARE IN NURSING AND MIDWIFERY JOURNAL 2020. [DOI: 10.52547/pcnm.10.2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Sousa A, Dinis-Oliveira RJ. Pharmacokinetic and pharmacodynamic of the cognitive enhancer modafinil: Relevant clinical and forensic aspects. Subst Abus 2020; 41:155-173. [PMID: 31951804 DOI: 10.1080/08897077.2019.1700584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Modafinil is a nonamphetamine nootropic drug with an increasingly therapeutic interest due to its different sites of action and behavioral effects in comparison to cocaine or amphetamine. A review of modafinil (and of its prodrug adrafinil and its R-enantiomer armodafinil) chemical, pharmacokinetic, pharmacodynamic, toxicological, clinical and forensic aspects was performed, aiming to better understand possible health problems associated to its unconscious and unruled use. Modafinil is a racemate metabolized mainly in the liver into its inactive acid and sulfone metabolites, which undergo primarily renal excretion. Although not fully clarified, major effects seem to be associated to inhibition of dopamine reuptake and modulation of several other neurochemical pathways, namely noradrenergic, serotoninergic, orexinergic, histaminergic, glutamatergic and GABAergic. Due its wake-promoting effects, modafinil is used for the treatment of daily sleepiness associated to narcolepsy, obstructive sleep apnea and shift work sleep disorder. Its psychotropic and cognitive effects are also attractive in several other pathologies and conditions that affect sleep structure, induce fatigue and lethargy, and impair cognitive abilities. Additionally, in health subjects, including students, modafinil is being used off-label to overcome sleepiness, increase concentration and improve cognitive potential. The most common adverse effects associated to modafinil intake are headache, insomnia, anxiety, diarrhea, dry mouth and raise in blood pressure and heart rate. Infrequently, severe dermatologic effects in children, including maculopapular and morbilliform rash, erythema multiforme and Stevens-Johnson Syndrome have been reported. Intoxication and dependence associated to modafinil are uncommon. Further research on effects and health implications of modafinil and its analogs is steel needed to create evidence-based policies.
Collapse
Affiliation(s)
- Ana Sousa
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ricardo Jorge Dinis-Oliveira
- Department of Public Health and Forensic Sciences, and Medical Education, Faculty of Medicine, University of Porto, Porto, Portugal.,IINFACTS - Institute of Research and Advanced Training in Health Sciences and Technologies, Department of Sciences, University Institute of Health Sciences (IUCS), CESPU, CRL, Gandra, Portugal.,UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
18
|
Dietz P, Iberl B, Schuett E, van Poppel M, Ulrich R, Sattler MC. Prevalence Estimates for Pharmacological Neuroenhancement in Austrian University Students: Its Relation to Health-Related Risk Attitude and the Framing Effect of Caffeine Tablets. Front Pharmacol 2018; 9:494. [PMID: 29946254 PMCID: PMC6006370 DOI: 10.3389/fphar.2018.00494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/25/2018] [Indexed: 01/22/2023] Open
Abstract
Background: Pharmacological neuroenhancement (PN) is defined as the use of illicit or prescription drugs by healthy individuals for cognitive-enhancing purposes. The present study aimed (i) to investigate whether including caffeine tablets in the definition of PN within a questionnaire increases the PN prevalence estimate (framing effect), (ii) to investigate whether the health-related risk attitude is increased in students who use PN. Materials and methods: Two versions of a paper-and-pencil questionnaire (first version included caffeine tablets in the definition of PN, the second excluded caffeine tablets) were distributed among university students at the University of Graz, Austria. The unrelated question model (UQM) was used to estimate the 12-month PN prevalence and the German version of the 30-item Domain-Specific Risk-Taking (DOSPERT) scale to assess the health-related risk attitude. Moreover, large-sample z-tests (α = 0.05) were performed for comparing the PN prevalence estimates of two groups. Results: Two thousand four hundred and eighty-nine questionnaires were distributed and 2,284 (91.8%) questionnaires were included in analysis. The overall PN prevalence estimate for all students was 11.9%. One-tailed large-sample z-tests revealed that the PN estimate for students with higher health-related risk attitude was significantly higher compared to students with lower health-related risk attitude (15.6 vs. 8.5%; z = 2.65, p = 0.004). Furthermore, when caffeine tablets were included into the example of PN, the prevalence estimate of PN was significantly higher compared to the version without caffeine tablets (14.9 vs. 9.0%; z = 2.20, p = 0.014). Discussion: This study revealed that the PN prevalence estimate increases when caffeine tablets are included in the definition of PN. Therefore, future studies investigating the prevalence of, and predictors for, PN should be performed and interpreted with respect to potential framing effects. This study further revealed that the PN prevalence estimate is increased in students with a higher health-related risk attitude compared to students with a lower one. Therefore, future education and prevention programs addressing PN in the collective of students should not only inform about potential side effects of its use but also address the limited effects on cognition and potential alternatives of PN.
Collapse
Affiliation(s)
- Pavel Dietz
- Research Group of Physical Activity and Public Health, Institute of Sports Science, University of Graz, Graz, Austria
- Working Group Social and Health Sciences of Sport, Institute for Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Benedikt Iberl
- Research Group of Cognition and Perception, Institute of Psychology, University of Tübingen, Tübingen, Germany
| | - Emanuel Schuett
- Research Group of Cognition and Perception, Institute of Psychology, University of Tübingen, Tübingen, Germany
| | - Mireille van Poppel
- Research Group of Physical Activity and Public Health, Institute of Sports Science, University of Graz, Graz, Austria
- Working Group Social and Health Sciences of Sport, Institute for Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Rolf Ulrich
- Research Group of Cognition and Perception, Institute of Psychology, University of Tübingen, Tübingen, Germany
| | - Matteo Christian Sattler
- Research Group of Physical Activity and Public Health, Institute of Sports Science, University of Graz, Graz, Austria
- Working Group Social and Health Sciences of Sport, Institute for Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
19
|
Pedron S, Beverley J, Haffen E, Andrieu P, Steiner H, Van Waes V. Transcranial direct current stimulation produces long-lasting attenuation of cocaine-induced behavioral responses and gene regulation in corticostriatal circuits. Addict Biol 2017; 22:1267-1278. [PMID: 27265728 DOI: 10.1111/adb.12415] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive method to modulate cortical excitability. This technique is a promising emerging tool to treat several neuropathologies, including addiction. We have previously shown in mice that repeated tDCS normalizes pathological behaviors associated with chronic nicotine exposure. Here, we evaluated, in adult female mice, the impact of tDCS on cocaine-induced behavior and gene regulation in corticostriatal circuits implicated in psychostimulant addiction. Anodal tDCS was applied transcranially over the frontal cortex. Three weeks after repeated tDCS, we investigated the induction of a gene expression marker (Zif268) by cocaine (25 mg/kg) in 26 cortical and 23 striatal regions using in situ hybridization histochemistry. We also assessed place preference conditioning by cocaine (5, 10 and 25 mg/kg). tDCS pretreatment increased basal expression and attenuated cocaine (25 mg/kg)-induced expression of Zif268 in specific corticostriatal circuits. Cocaine-induced locomotor activation (25 mg/kg) and place preference conditioning (5 and 25 mg/kg) were also reduced. These results demonstrate that tDCS can attenuate molecular and behavioral responses to cocaine for several weeks. Together, our findings provide pre-clinical evidence that such electrical brain stimulation may be useful to modify the psychostimulant addiction risk.
Collapse
Affiliation(s)
- Solène Pedron
- EA 481 Laboratory of Integrative and Clinical Neuroscience; University of Franche-Comté/SFR FED 4234, COMUE Bourgogne/Franche-Comté; France
| | - Joel Beverley
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School; Rosalind Franklin University of Medicine and Science; North Chicago IL USA
| | - Emmanuel Haffen
- EA 481 Laboratory of Integrative and Clinical Neuroscience; University of Franche-Comté/SFR FED 4234, COMUE Bourgogne/Franche-Comté; France
- INSERM CIC-IT 808 Clinical Investigation Centre for Innovative Technology; University Hospital of Besançon; France
| | - Patrice Andrieu
- EA 481 Laboratory of Integrative and Clinical Neuroscience; University of Franche-Comté/SFR FED 4234, COMUE Bourgogne/Franche-Comté; France
| | - Heinz Steiner
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School; Rosalind Franklin University of Medicine and Science; North Chicago IL USA
| | - Vincent Van Waes
- EA 481 Laboratory of Integrative and Clinical Neuroscience; University of Franche-Comté/SFR FED 4234, COMUE Bourgogne/Franche-Comté; France
| |
Collapse
|
20
|
Alter D, Beverley JA, Patel R, Bolaños-Guzmán CA, Steiner H. The 5-HT1B serotonin receptor regulates methylphenidate-induced gene expression in the striatum: Differential effects on immediate-early genes. J Psychopharmacol 2017; 31:1078-1087. [PMID: 28720013 PMCID: PMC5540766 DOI: 10.1177/0269881117715598] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Drug combinations that include a psychostimulant such as methylphenidate (Ritalin) and a selective serotonin reuptake inhibitor such as fluoxetine are indicated in several medical conditions. Co-exposure to these drugs also occurs with "cognitive enhancer" use by individuals treated with selective serotonin reuptake inhibitors. Methylphenidate, a dopamine reuptake inhibitor, by itself produces some addiction-related gene regulation in the striatum. We have demonstrated that co-administration of selective serotonin reuptake inhibitors potentiates these methylphenidate-induced molecular effects, thus producing a more "cocaine-like" profile. There is evidence that the 5-HT1B serotonin receptor subtype mediates some of the cocaine-induced gene regulation. We thus investigated whether the 5-HT1B receptor also modifies methylphenidate-induced gene regulation, by assessing effects of a selective 5-HT1B receptor agonist (CP94253) on immediate-early gene markers ( Zif268, c- Fos, Homer1a) in adolescent male rats. Gene expression was measured by in situ hybridization histochemistry. Our results show that CP94253 (3, 10 mg/kg) produced a dose-dependent potentiation of methylphenidate (5 mg/kg)-induced expression of Zif268 and c- Fos. This potentiation was widespread in the striatum and was maximal in lateral (sensorimotor) sectors, thus mimicking the effects seen after cocaine alone, or co-administration of fluoxetine. However, in contrast to fluoxetine, this 5-HT1B agonist did not influence methylphenidate-induced expression of Homer1a. CP94253 also potentiated methylphenidate-induced locomotor activity. These findings indicate that stimulation of the 5-HT1B receptor can enhance methylphenidate (dopamine)-induced gene regulation. This receptor may thus participate in the potentiation induced by fluoxetine (serotonin) and may serve as a pharmacological target to attenuate methylphenidate + selective serotonin reuptake inhibitor-induced "cocaine-like" effects.
Collapse
Affiliation(s)
- David Alter
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Joel A. Beverley
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Ronak Patel
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | | | - Heinz Steiner
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
21
|
Peanlikhit T, Van Waes V, Pedron S, Risold PY, Haffen E, Etiévant A, Monnin J. The antidepressant-like effect of tDCS in mice: A behavioral and neurobiological characterization. Brain Stimul 2017; 10:748-756. [PMID: 28416160 DOI: 10.1016/j.brs.2017.03.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 02/09/2017] [Accepted: 03/25/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Transcranial direct current stimulation (tDCS) is a non-invasive method increasingly popular for the treatment of several brain disorders, such as major depression. Despite great enthusiasm and promising results, some studies report discrepant findings and no consensus exists for the clinical use of tDCS. OBJECTIVE The present study aims to (i) determine the most effective stimulation parameters to optimize antidepressant-like effect of tDCS in the forced-swim test in mice and (ii) identify brain regions recruited by tDCS and possibly involved in its behavioral effect using Fos immunohistochemistry. RESULTS We reported that tDCS induced long-lasting antidepressant-like effect, which varied as a function of stimulation settings including number, duration, intensity and polarity of stimulation. Interestingly, the present study also demonstrated that tDCS reduced depressive-like behaviors induced by chronic corticosterone exposure. Furthermore, behavioral outcomes induced by a single stimulation were associated with neuronal activation in the prefrontal cortex, dorsal hippocampus, ventral tegmental area and nucleus accumbens, whereas no overexpression of c-fos was associated with 10 stimulations. CONCLUSION The strongest behavioral response was observed with an anodal stimulation of 200 μA during 20min. The repetition of this stimulation was necessary to induce long-lasting behavioral effects that are probably associated with plastic changes in the neuronal response.
Collapse
Affiliation(s)
- Tanat Peanlikhit
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France.
| | - Vincent Van Waes
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France.
| | - Solène Pedron
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France.
| | - Pierre-Yves Risold
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France.
| | - Emmanuel Haffen
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France; Service de Psychiatrie, CHRU Besançon, 25000 Besançon, France; Centre d'Investigation Clinique CIC1431, Inserm, CHRU Besançon, France.
| | - Adeline Etiévant
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France; Service de Psychiatrie, CHRU Besançon, 25000 Besançon, France.
| | - Julie Monnin
- Laboratoire de Neurosciences intégratives et cliniques, EA 481, Université Bourgogne Franche-Comté, 25000 Besançon, France; Service de Psychiatrie, CHRU Besançon, 25000 Besançon, France; Centre d'Investigation Clinique CIC1431, Inserm, CHRU Besançon, France.
| |
Collapse
|
22
|
Wolff W, Sandouqa Y, Brand R. Using the simple sample count to estimate the frequency of prescription drug neuroenhancement in a sample of Jordan employees. THE INTERNATIONAL JOURNAL OF DRUG POLICY 2016; 31:51-5. [PMID: 26818080 DOI: 10.1016/j.drugpo.2015.12.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 11/10/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND Epidemiological research indicates that the use of prescription drugs to enhance cognitive functioning is prevalent in Western countries, however, research on this phenomenon in Arab countries is lacking. Our study aimed to investigate the frequency of neuroenhancement (NE) using prescription drugs in a sample of employees in Jordan. METHODS A sample of 1186 employees (37.11±8.37 years old, 495 female), of whom 723 (35.65±7.53 years old, 396 female) served as teachers, completed a paper-pencil questionnaire. The single sample count technique (SSC) was used in order to secure confidential, self-reporting of prescription drug NE. RESULTS The 12-month prevalence of NE, estimated with the SSC was 15.43%. At 26.16%, the prevalence estimate was markedly higher in the subsample of teachers compared to non-teachers, 0.29%. Surprisingly, 336 participants did not use the SSC and directly affirmed or denied prescription drug NE. These direct responses yielded a prevalence of 11.57% for the full sample, 9.73% for the teachers and 15.60% for the non-teachers. CONCLUSION This is the first study of the frequency of NE in an Arab sample. Results indicate that the use of prescription drug NE is not limited to Western countries and that teachers in Jordan might constitute a high-risk population. Further, participants seem to differ in their use of indirect estimation methods for reporting prescription drug NE. For future research, it might be useful to triangulate standard self-reports and indirect estimation methods to assess NE. Possible cultural differences and specific high-risk populations for NE should be investigated further.
Collapse
Affiliation(s)
- Wanja Wolff
- Sport and Exercise Psychology, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
| | - Yaser Sandouqa
- Sport and Exercise Psychology, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany
| | - Ralf Brand
- Sport and Exercise Psychology, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany.
| |
Collapse
|
23
|
Choy TL. Cognitive-enhancing drugs in the healthy population: Fundamental drawbacks and researcher roles. COGENT PSYCHOLOGY 2015. [DOI: 10.1080/23311908.2015.1011579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Tsee Leng Choy
- BRAINetwork Centre for Neurocognitive Science, School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
24
|
Van Waes V, Ehrlich S, Beverley JA, Steiner H. Fluoxetine potentiation of methylphenidate-induced gene regulation in striatal output pathways: potential role for 5-HT1B receptor. Neuropharmacology 2015; 89:77-86. [PMID: 25218038 PMCID: PMC4250300 DOI: 10.1016/j.neuropharm.2014.08.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 07/30/2014] [Accepted: 08/29/2014] [Indexed: 10/24/2022]
Abstract
Drug combinations that include the psychostimulant methylphenidate plus a selective serotonin reuptake inhibitor (SSRI) such as fluoxetine are increasingly used in children and adolescents. For example, this combination is indicated in the treatment of attention-deficit/hyperactivity disorder and depression comorbidity and other mental disorders. Such co-exposure also occurs in patients on SSRIs who use methylphenidate as a cognitive enhancer. The neurobiological consequences of these drug combinations are poorly understood. Methylphenidate alone can produce gene regulation effects that mimic addiction-related gene regulation by cocaine, consistent with its moderate addiction liability. We have previously shown that combining SSRIs with methylphenidate potentiates methylphenidate-induced gene regulation in the striatum. The present study investigated which striatal output pathways are affected by the methylphenidate + fluoxetine combination, by assessing effects on pathway-specific neuropeptide markers, and which serotonin receptor subtypes may mediate these effects. Our results demonstrate that a 5-day repeated treatment with fluoxetine (5 mg/kg) potentiates methylphenidate (5 mg/kg)-induced expression of both dynorphin (direct pathway marker) and enkephalin (indirect pathway). These changes were accompanied by correlated increases in the expression of the 5-HT1B, but not 5-HT2C, serotonin receptor in the same striatal regions. A further study showed that the 5-HT1B receptor agonist CP94253 (3-10 mg/kg) mimics the fluoxetine potentiation of methylphenidate-induced gene regulation. These findings suggest a role for the 5-HT1B receptor in the fluoxetine effects on striatal gene regulation. Given that 5-HT1B receptors are known to facilitate addiction-related gene regulation and behavior, our results suggest that SSRIs may enhance the addiction liability of methylphenidate by increasing 5-HT1B receptor signaling.
Collapse
Affiliation(s)
- Vincent Van Waes
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Sarah Ehrlich
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Joel A Beverley
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Heinz Steiner
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
25
|
Beverley JA, Piekarski C, Van Waes V, Steiner H. Potentiated gene regulation by methylphenidate plus fluoxetine treatment: Long-term gene blunting ( Zif268, Homer1a) and behavioral correlates. BASAL GANGLIA 2014; 4:109-116. [PMID: 25530939 PMCID: PMC4267118 DOI: 10.1016/j.baga.2014.10.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Use of psychostimulants such as methylphenidate (Ritalin) in medical treatments and as cognitive enhancers in the healthy is increasing. Methylphenidate produces some addiction-related gene regulation in animal models. Recent findings show that combining selective serotonin reuptake inhibitor (SSRI) antidepressants such as fluoxetine with methylphenidate potentiates methylphenidate-induced gene regulation. We investigated the endurance of such abnormal gene regulation by assessing an established marker for altered gene regulation after drug treatments - blunting (repression) of immediate-early gene (IEG) inducibility - 14 days after repeated methylphenidate+fluoxetine treatment in adolescent rats. Thus, we measured the effects of a 6-day repeated treatment with methylphenidate (5 mg/kg), fluoxetine (5 mg/kg) or their combination on the inducibility (by cocaine) of neuroplasticity-related IEGs (Zif268, Homer1a) in the striatum, by in situ hybridization histochemistry. Repeated methylphenidate treatment alone produced modest gene blunting, while fluoxetine alone had no effect. In contrast, fluoxetine given in conjunction with methylphenidate produced pronounced potentiation of methylphenidate-induced blunting for both genes. This potentiation was seen in many functional domains of the striatum, but was most robust in the lateral, sensorimotor striatum. These enduring molecular changes were associated with potentiated induction of behavioral stereotypies in an open-field test. For illicit psychostimulants, blunting of gene expression is considered part of the molecular basis of addiction. Our results thus suggest that SSRIs such as fluoxetine may increase the addiction liability of methylphenidate. Key words: cognitive enhancer, dopamine, serotonin, gene expression, psychostimulant, SSRI antidepressant, striatum.
Collapse
Affiliation(s)
- Joel A Beverley
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Cassandra Piekarski
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Vincent Van Waes
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Heinz Steiner
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| |
Collapse
|
26
|
Reid AM, Graziano PA, Balkhi AM, McNamara JPH, Cottler LB, Meneses E, Geffken GR. Frequent nonprescription stimulant use and risky behaviors in college students: the role of effortful control. JOURNAL OF AMERICAN COLLEGE HEALTH : J OF ACH 2014; 63:23-30. [PMID: 25222628 DOI: 10.1080/07448481.2014.960422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
OBJECTIVE The goal of this study was to (a) investigate the association between nonprescription stimulant use (NPSU) and risky behaviors, including risky sex, driving, financial behaviors, and drug use and (b) collect preliminary evidence on mechanisms that may link NPSU to risky behaviors. PARTICIPANTS A sample of 555 college students was collected between August 2010 and February 2012. METHODS Students completed several self-report measures assessing their drug use history, attention-deficit and hyperactivity symptoms, temperament, and risky behaviors beyond drug use. RESULTS Those who reported more frequent NPSU were more likely to engage in high-risk behavior across all 4 domains studied. Further, effortful control abilities partially mediated the link between NPSU and risky behaviors. CONCLUSIONS These results highlight the associated risks of frequent NPSU for college students as well as provide future directions for examining effortful control as a potentially important mechanism linking NPSU to other risky behaviors.
Collapse
Affiliation(s)
- Adam M Reid
- a Department of Psychiatry , University of Florida , Gainesville , Florida
| | | | | | | | | | | | | |
Collapse
|
27
|
Van Waes V, Vandrevala M, Beverley J, Steiner H. Selective serotonin re-uptake inhibitors potentiate gene blunting induced by repeated methylphenidate treatment: Zif268 versus Homer1a. Addict Biol 2014; 19:986-95. [PMID: 23763573 DOI: 10.1111/adb.12067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There is a growing use of psychostimulants, such as methylphenidate (Ritalin; dopamine re-uptake inhibitor), for medical treatments and as cognitive enhancers in the healthy. Methylphenidate is known to produce some addiction-related gene regulation. Recent findings in animal models show that selective serotonin re-uptake inhibitors (SSRIs), including fluoxetine, can potentiate acute induction of gene expression by methylphenidate, thus indicating an acute facilitatory role for serotonin in dopamine-induced gene regulation. We investigated whether repeated exposure to fluoxetine, in conjunction with methylphenidate, in adolescent rats facilitated a gene regulation effect well established for repeated exposure to illicit psychostimulants such as cocaine-blunting (repression) of gene inducibility. We measured, by in situ hybridization histochemistry, the effects of a 5-day repeated treatment with methylphenidate (5 mg/kg), fluoxetine (5 mg/kg) or a combination on the inducibility (by cocaine) of neuroplasticity-related genes (Zif268, Homer1a) in the striatum. Repeated methylphenidate treatment alone produced minimal gene blunting, while fluoxetine alone had no effect. In contrast, fluoxetine added to methylphenidate robustly potentiated methylphenidate-induced blunting for both genes. This potentiation was widespread throughout the striatum, but was most robust in the lateral, sensorimotor striatum, thus mimicking cocaine effects. For illicit psychostimulants, blunting of gene expression is considered part of the molecular basis of addiction. Our results thus suggest that SSRIs, such as fluoxetine, may increase the addiction liability of methylphenidate.
Collapse
Affiliation(s)
- Vincent Van Waes
- Department of Cellular and Molecular Pharmacology; The Chicago Medical School; Rosalind Franklin University of Medicine and Science; North Chicago IL USA
| | - Malcolm Vandrevala
- Department of Cellular and Molecular Pharmacology; The Chicago Medical School; Rosalind Franklin University of Medicine and Science; North Chicago IL USA
| | - Joel Beverley
- Department of Cellular and Molecular Pharmacology; The Chicago Medical School; Rosalind Franklin University of Medicine and Science; North Chicago IL USA
| | - Heinz Steiner
- Department of Cellular and Molecular Pharmacology; The Chicago Medical School; Rosalind Franklin University of Medicine and Science; North Chicago IL USA
| |
Collapse
|
28
|
dela Peña I, de la Peña JB, Kim BN, Han DH, Noh M, Cheong JH. Gene expression profiling in the striatum of amphetamine-treated spontaneously hypertensive rats which showed amphetamine conditioned place preference and self-administration. Arch Pharm Res 2014; 38:865-75. [PMID: 25163681 DOI: 10.1007/s12272-014-0470-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 08/19/2014] [Indexed: 12/11/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD), the most commonly diagnosed neurobehavioral disorder of childhood, is usually treated with psychostimulants (e.g., amphetamine). Little is known about the neuronal and behavioral consequences of chronic amphetamine use or abuse in individuals with ADHD. Of all ADHD animal models, the spontaneously hypertensive rat (SHR) is the most validated and widely used. Here, we analyzed striatal transcriptomes in amphetamine-pretreated SHRs (5 mg/kg, i.p. for 7 days [twice daily]), which showed a conditioned place preference to and self-administration of amphetamine. Microarray analyses revealed increased mRNA expression of 55 genes (>1.65-fold increase), while 17 genes were downregulated (<0.6-fold) in the striatum of SHRs. The main functional categories overrepresented among the differentially expressed genes in the striatum include those involved in transcription (e.g., Cebpb, Per2), genes associated with angiogenesis (e.g., Kdr, Klf5), cell adhesion (e.g., Col11a1, Ctgf), apoptosis (e.g., Nfkbia, Perp) and neuronal development (e.g., Egr2, Nr4a3). In conclusion, we dissected the striatal transcriptional responses to the reinforcing effects of repeated amphetamine treatment in the SHR model of ADHD. Future studies should determine the influence of these altered transcripts on amphetamine reinforcement in amphetamine-treated SHRs, and the clinical relevance of the present findings with regard to amphetamine use/abuse in ADHD individuals.
Collapse
Affiliation(s)
- Ike dela Peña
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro-815, Nowon-gu, Seoul, 139-742, Korea
| | | | | | | | | | | |
Collapse
|
29
|
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurobiological condition of childhood onset with the hallmarks of inattention, impulsivity, and hyperactivity. Inattention includes excessive daydreaming, disorganization, and being easily distracted. Impulsivity manifests as taking an action before fully thinking of the consequences. Hyperactivity includes an excessive rate of speech and motor activity. Complications of ADHD include academic failure, low self-esteem, poor work performance, substance abuse, criminal justice issues, and social problems. ADHD is predominately due to decreased activity in the frontal lobe. Dopamine and norepinephrine are the main neurotransmitters involved in the pathophysiology of ADHD. Pharmacological treatment of ADHD includes psychostimulants, norepinephrine reuptake inhibitors, α2 agonists, bupropion, and monoamine oxidase inhibitors. The most effective medications are the psychostimulants. Nonpharmacological treatment of ADHD includes coaching, providing structure, academic accommodations, and work accommodations.
Collapse
Affiliation(s)
- Gyula Bokor
- Department of Psychiatry, Taunton State Hospital, Taunton, MA, USA
| | | |
Collapse
|
30
|
dela Peña I, Kim HJ, Sohn A, Kim BN, Han DH, Ryu JH, Shin CY, Noh M, Cheong JH. Prefrontal cortical and striatal transcriptional responses to the reinforcing effect of repeated methylphenidate treatment in the spontaneously hypertensive rat, animal model of attention-deficit/hyperactivity disorder (ADHD). Behav Brain Funct 2014; 10:17. [PMID: 24884696 PMCID: PMC4077266 DOI: 10.1186/1744-9081-10-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 04/25/2014] [Indexed: 01/12/2023] Open
Abstract
Background Methylphenidate is the most commonly used stimulant drug for the treatment of attention-deficit/hyperactivity disorder (ADHD). Research has found that methylphenidate is a “reinforcer” and that individuals with ADHD also abuse this medication. Nevertheless, the molecular consequences of long-term recreational methylphenidate use or abuse in individuals with ADHD are not yet fully known. Methods Spontaneously hypertensive rats (SHR), the most validated and widely used ADHD animal model, were pretreated with methylphenidate (5 mg/kg, i.p.) during their adolescence (post-natal day [PND] 42–48) and tested for subsequent methylphenidate-induced conditioned place preference (CPP) and self-administration. Thereafter, the differentially expressed genes in the prefrontal cortex (PFC) and striatum of representative methylphenidate-treated SHRs, which showed CPP to and self-administration of methylphenidate, were analyzed. Results Genome-wide transcriptome profiling analyses revealed 30 differentially expressed genes in the PFC, which include transcripts involved in apoptosis (e.g. S100a9, Angptl4, Nfkbia), transcription (Cebpb, Per3), and neuronal plasticity (Homer1, Jam2, Asap1). In contrast, 306 genes were differentially expressed in the striatum and among them, 252 were downregulated. The main functional categories overrepresented among the downregulated genes include those involved in cell adhesion (e.g. Pcdh10, Ctbbd1, Itgb6), positive regulation of apoptosis (Perp, Taf1, Api5), (Notch3, Nsbp1, Sik1), mitochondrion organization (Prps18c, Letm1, Uqcrc2), and ubiquitin-mediated proteolysis (Nedd4, Usp27x, Ube2d2). Conclusion Together, these changes indicate methylphenidate-induced neurotoxicity, altered synaptic and neuronal plasticity, energy metabolism and ubiquitin-dependent protein degradation in the brains of methylphenidate-treated SHRs, which showed methylphenidate CPP and self-administration. In addition, these findings may also reflect cognitive impairment associated with chronic methylphenidate use as demonstrated in preclinical studies. Future studies are warranted to determine the clinical significance of the present findings with regard to long-term recreational methylphenidate use or abuse in individuals with ADHD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Minsoo Noh
- Uimyung Research Institute for Neuroscience, Sahmyook University, 26-21 Kongreung-2-dong, Hwarangro- 815 Nowon-gu, Seoul 139-742, Korea.
| | | |
Collapse
|
31
|
Steiner H, Warren BL, Van Waes V, Bolaños-Guzmán CA. Life-long consequences of juvenile exposure to psychotropic drugs on brain and behavior. PROGRESS IN BRAIN RESEARCH 2014; 211:13-30. [PMID: 24968775 DOI: 10.1016/b978-0-444-63425-2.00002-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Psychostimulants such as methylphenidate (MPH) and antidepressants such as fluoxetine (FLX) are widely used in the treatment of various mental disorders or as cognitive enhancers. These medications are often combined, for example, to treat comorbid disorders. There is a considerable body of evidence from animal models indicating that individually these psychotropic medications can have detrimental effects on the brain and behavior, especially when given during sensitive periods of brain development. However, almost no studies investigate possible interactions between these drugs. This is surprising given that their combined neurochemical effects (enhanced dopamine and serotonin neurotransmission) mimic some effects of illicit drugs such as cocaine and amphetamine. Here, we summarize recent studies in juvenile rats on the molecular effects in the mid- and forebrain and associated behavioral changes, after such combination treatments. Our findings indicate that these combined MPH+FLX treatments can produce similar molecular changes as seen after cocaine exposure while inducing behavioral changes indicative of dysregulated mood and motivation, effects that often endure into adulthood.
Collapse
Affiliation(s)
- Heinz Steiner
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| | - Brandon L Warren
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| | - Vincent Van Waes
- Department of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, USA
| |
Collapse
|
32
|
Howard CD, Pastuzyn ED, Barker-Haliski ML, Garris PA, Keefe KA. Phasic-like stimulation of the medial forebrain bundle augments striatal gene expression despite methamphetamine-induced partial dopamine denervation. J Neurochem 2013; 125:555-65. [PMID: 23480199 DOI: 10.1111/jnc.12234] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/20/2013] [Accepted: 03/04/2013] [Indexed: 11/30/2022]
Abstract
Methamphetamine-induced partial dopamine depletions are associated with impaired basal ganglia function, including decreased preprotachykinin mRNA expression and impaired transcriptional activation of activity-regulated, cytoskeleton-associated (Arc) gene in striatum. Recent work implicates deficits in phasic dopamine signaling as a potential mechanism linking methamphetamine-induced dopamine loss to impaired basal ganglia function. This study thus sought to establish a causal link between phasic dopamine transmission and altered basal ganglia function by determining whether the deficits in striatal neuron gene expression could be restored by increasing phasic dopamine release. Three weeks after pretreatment with saline or a neurotoxic regimen of methamphetamine, rats underwent phasic- or tonic-like stimulation of ascending dopamine neurons. Striatal gene expression was examined using in situ hybridization histochemistry. Phasic-like, but not tonic-like, stimulation induced immediate-early genes Arc and zif268 in both groups, despite the partial striatal dopamine denervation in methamphetamine-pretreated rats, with the Arc expression occurring in presumed striatonigral efferent neurons. Phasic-like stimulation also restored preprotachykinin mRNA expression. These results suggest that disruption of phasic dopamine signaling likely underlies methamphetamine-induced impairments in basal ganglia function, and that restoring phasic dopamine signaling may be a viable approach to manage long-term consequences of methamphetamine-induced dopamine loss on basal ganglia functions.
Collapse
|
33
|
Van Waes V, Carr B, Beverley JA, Steiner H. Fluoxetine potentiation of methylphenidate-induced neuropeptide expression in the striatum occurs selectively in direct pathway (striatonigral) neurons. J Neurochem 2012; 122:1054-64. [PMID: 22738672 DOI: 10.1111/j.1471-4159.2012.07852.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Concomitant therapies combining psychostimulants such as methylphenidate and selective serotonin reuptake inhibitors (SSRIs) are used to treat several mental disorders, including attention-deficit hyperactivity disorder/depression comorbidity. The neurobiological consequences of these drug combinations are poorly understood. Methylphenidate alone induces gene regulation that mimics partly effects of cocaine, consistent with some addiction liability. We previously showed that the SSRI fluoxetine potentiates methylphenidate-induced gene regulation in the striatum. The present study investigated which striatal output pathways are affected by the methylphenidate + fluoxetine combination, by assessing effects on pathway-specific neuropeptide markers. Results demonstrate that fluoxetine (5 mg/kg) potentiates methylphenidate (5 mg/kg)-induced expression of substance P and dynorphin, markers for direct pathway neurons. In contrast, no drug effects on the indirect pathway marker enkephalin were found. Because methylphenidate alone has minimal effects on dynorphin, the potentiation of dynorphin induction represents a more cocaine-like effect for the drug combination. On the other hand, the lack of an effect on enkephalin suggests a greater selectivity for the direct pathway compared with psychostimulants such as cocaine. Overall, the fluoxetine potentiation of gene regulation by methylphenidate occurs preferentially in sensorimotor striatal circuits, similar to other addictive psychostimulants. These results suggest that SSRIs may enhance the addiction liability of methylphenidate.
Collapse
Affiliation(s)
- Vincent Van Waes
- Department of Cellular and Molecular Pharmacology, Rosalind Franklin University of Medicine and Science/The Chicago Medical School, North Chicago, IL 60064, USA
| | | | | | | |
Collapse
|