1
|
Huang CJ, Choo KB. Frequent dysregulation of multiple circular RNA isoforms with diverse regulatory mechanisms in cancer - Insights from circFNDC3B and beyond: Why unique circular RNA identifiers matter. Biochem Biophys Res Commun 2025; 758:151627. [PMID: 40112536 DOI: 10.1016/j.bbrc.2025.151627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/09/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
Circular RNAs (circRNAs) are post-transcriptional regulators generated through backsplicing of pre-mRNAs, primarily comprising exons of host genes. A single host gene may produce multiple circRNA isoforms with distinct structures and sequences. Dysregulated circRNA expression has been implicated in tumorigenesis. This review aims to investigate the selection and regulatory roles of circRNA isoforms in cancer using the extensively studied hsa_circFNDC3B and thirteen other circRNAs as study models. Interrogation of literature and databases, particularly the circBase, confirms that host genes generate a plethora of circRNA isoforms; however, only a small subset of isoforms is validated as dysregulated in tumor tissues. Notably, two or more isoforms of the same circRNA are frequently dysregulated in cancer. Structurally, short isoforms retaining 5'-proximal exons are preferentially selected, but for long host genes, circRNAs may arise from mid- or 3'-regions. We identify dysregulation of seven circFNDC3B isoforms across twelve cancer types and multi-isoforms in nine of the other thirteen circRNAs also in multiple cancers. MicroRNA sponging appears to be the major regulatory mechanism, but possible biased study designs raise concerns. Using circFNDC3B and circZFR as examples, we show inconsistency and inadequacy in circRNA nomenclature in different databases and the literature, underscoring the urgent need for a universally accepted standardized central circRNA database. As an interim measure, we propose guidelines for circRNA nomenclature in journal publications. Our findings caution against indiscriminate clinical use of specific circRNA isoforms as biomarkers or therapeutic targets without further validation.
Collapse
Affiliation(s)
- Chiu-Jung Huang
- Department of Animal Science & Graduate Institute of Biotechnology, College of Environmental Planning & Bioresources (former School of Agriculture), Chinese Culture University, Taipei, 111114, Taiwan.
| | - Kong Bung Choo
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan.
| |
Collapse
|
2
|
Zhang X, Shi X, Liu Z. CircARID1B Promotes MPP +-Induced Death and Inflammation in Dopaminergic Neurons by Elevating MAVS Through Sequestering miR-143-3p. Cell Biochem Biophys 2025:10.1007/s12013-025-01705-6. [PMID: 40185987 DOI: 10.1007/s12013-025-01705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2025] [Indexed: 04/07/2025]
Abstract
Increasing evidence has shown the involvement of abnormal circRNA in neurodegenerative disease progression, including Parkinson's disease (PD). Hence, this work focused on probing the function and mechanism of circARID1B on PD progression.1-Methyl-4-phenylpyridinium (MPP+)-induced human dopaminergic SK-N-AS neuroblastoma cell models were used to mimic PD injury in vitro. qRT-PCR and western blotting analyses were used to detect the levels of genes and proteins. Cell death was evaluated by cell counting kit-8 assay, flow cytometry, and lactate dehydrogenase (LDH) activity. Oxidative stress was analyzed by measuring the production of reactive oxygen species (ROS) and superoxide dismutase (SOD). Cell inflammation was determined by ELISA analysis. The binding between miR-143-3p and circARID1B or mitochondrial antiviral signaling protein (MAVS) was analyzed by dual-luciferase reporter and RNA immunoprecipitation assays. A high circARID1B expression was observed in MPP+ treated SK-N-AS cells. Functionally, circARID1B deficiency suppressed MPP+-induced apoptosis, LDH release, oxidative stress and inflammatory response in SK-N-AS cells. Mechanistically, circARID1B bound to miR-143-3p, which was reduced in SK-N-AS cells after MPP+ treatment. Moreover, miR-143-3p inhibition reversed the protective effects of circARID1B silencing on MPP+-treated SK-N-AS cells. Subsequently, we confirmed miR-143-3p directly targeted MAVS. MAVS was increased in SK-N-AS cells after MPP+ treatment. Moreover, MAVS overexpression abolished miR-143-3p up-regulation-induced inhibition of cell apoptosis, LDH release, oxidative stress and inflammation. CircARID1B deficiency suppressed MPP+-induced neural death and inflammation by miR-143-3p/MAVS axis, which may offer an improved understanding of PD progression and be useful for the development of circRNA-based therapy in PD.
Collapse
Affiliation(s)
- Xuejie Zhang
- Department of Neurology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | - Xuan Shi
- Department of Gastroenterology, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, Liaoning Province, China
| | - Zhining Liu
- Department of Ultrasound, the First Affiliated Hospital of Jinzhou Medical University, Jinzhou City, Liaoning Province, China.
| |
Collapse
|
3
|
Yang J, Jin N, Zhang S, Tan Y, Chen Z, Huang X, Li G, Yu B, Shi J, Gu X, Cui Z, Xu L. Genome-wide profiling and functional characterization of circular RNAs in neural development and injury: insights from a rat model research. Cell Mol Life Sci 2025; 82:135. [PMID: 40169448 PMCID: PMC11961807 DOI: 10.1007/s00018-025-05665-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/12/2024] [Accepted: 03/17/2025] [Indexed: 04/03/2025]
Abstract
Circular RNAs (circRNAs) have re-emerged as promising gene regulators in various physiological and pathological conditions. However, the expression patterns of circRNAs in the developing spinal cord of mammals and the comprehensive distribution of circRNAs across different tissues remain poorly understood. In this study, rats were used as the model organism. We conducted a comprehensive analysis of 15 RNA-Seq datasets comprising 217 rat samples and developed a web-based resource, CiRNat, to facilitate access to these data. We identified 15,251 credible circRNAs and validated them through experimental approaches. Notably, we observed two significant time points for circRNA increase during spinal cord development, approximately at embryonic day 14 (E14d) and postnatal week 4 (P4w). Analysis of circRNA expression in various rat tissues revealed higher expression levels in central nervous system tissues compared to peripheral nervous system tissues and other tissues. Furthermore, some highly abundant circRNAs exhibited tissue- and species-specific expression patterns and differed from their cognate linear RNAs, such as those derived from Gigyf2. Integrating polysome profiling and bioinformatic predictions suggested potential functions of certain circRNAs as miRNA sponges and translational templates. Collectively, this study provides the first comprehensive landscape of circRNAs in the developing spinal cord, offering an important resource and new insights for future exploration of functional circRNAs in central nervous system development and related diseases.
Collapse
Affiliation(s)
- Jian Yang
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang, Sichuan, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Nana Jin
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
- Institute for Translational Neuroscience, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Shuqiang Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Ya Tan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Zhifeng Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Xiaoli Huang
- Institute for Translational Neuroscience, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Bin Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Jianhua Shi
- Institute for Translational Neuroscience, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| | - Zhiming Cui
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China.
| | - Lian Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
- Institute for Translational Neuroscience, The Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
4
|
Hatzimanolis O, Sykes AM, Cristino AS. Circular RNAs in neurological conditions - computational identification, functional validation, and potential clinical applications. Mol Psychiatry 2025; 30:1652-1675. [PMID: 39966624 PMCID: PMC11919710 DOI: 10.1038/s41380-025-02925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Non-coding RNAs (ncRNAs) have gained significant attention in recent years due to advancements in biotechnology, particularly high-throughput total RNA sequencing. These developments have led to new understandings of non-coding biology, revealing that approximately 80% of non-coding regions in the genome possesses biochemical functionality. Among ncRNAs, circular RNAs (circRNAs), first identified in 1976, have emerged as a prominent research field. CircRNAs are abundant in most human cell types, evolutionary conserved, highly stable, and formed by back-splicing events which generate covalently closed ends. Notably, circRNAs exhibit high expression levels in neural tissue and perform diverse biochemical functions, including acting as molecular sponges for microRNAs, interacting with RNA-binding proteins to regulate their availability and activity, modulating transcription and splicing, and even translating into functional peptides in some cases. Recent advancements in computational and experimental methods have enhanced our ability to identify and validate circRNAs, providing valuable insights into their biological roles. This review focuses on recent developments in circRNA research as they related to neuropsychiatric and neurodegenerative conditions. We also explore their potential applications in clinical diagnostics, therapeutics, and future research directions. CircRNAs remain a relatively underexplored area of non-coding biology, particularly in the context of neurological disorders. However, emerging evidence supports their role as critical players in the etiology and molecular mechanisms of conditions such as schizophrenia, bipolar disorder, major depressive disorder, Alzheimer's disease, and Parkinson's disease. These findings suggest that circRNAs may provide a novel framework contributing to the molecular dysfunctions underpinning these complex neurological conditions.
Collapse
Affiliation(s)
- Oak Hatzimanolis
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alex M Sykes
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alexandre S Cristino
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
5
|
You Q, Yu J, Pan R, Feng J, Guo H, Liu B. Decoding the regulatory roles of circular RNAs in cardiac fibrosis. Noncoding RNA Res 2025; 11:115-130. [PMID: 39759175 PMCID: PMC11697406 DOI: 10.1016/j.ncrna.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 11/28/2024] [Indexed: 01/07/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the primary cause of death globally. The evolution of nearly all types of CVDs is characterized by a common theme: the emergence of cardiac fibrosis. The precise mechanisms that trigger cardiac fibrosis are still not completely understood. In recent years, a type of non-coding regulatory RNA molecule known as circular RNAs (circRNAs) has been reported. These molecules are produced during back splicing and possess significant biological capabilities, such as regulating microRNA activity, serving as protein scaffolds and recruiters, competing with mRNA, forming circR-loop structures to modulate transcription, and translating polypeptides. Furthermore, circRNAs exhibit a substantial abundance, notable stability, and specificity of tissues, cells, and time, endowing them with the potential as biomarkers, therapeutic targets, and therapeutic agents. CircRNAs have garnered growing interest in the field of CVDs. Recent investigations into the involvement of circRNAs in cardiac fibrosis have yielded encouraging findings. This study aims to provide a concise overview of the existing knowledge about the regulatory roles of circRNAs in cardiac fibrosis.
Collapse
Affiliation(s)
| | | | - Runfang Pan
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jiaming Feng
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Baonian Liu
- Department of Anatomy, School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
6
|
Shakerian N, Tafazoli A, Razavinia A, Sadrzadeh Aghajani Z, Bana N, Mard-Soltani M, Khalesi B, Hashemi ZS, Khalili S. Current Understanding of Therapeutic and Diagnostic Applications of Exosomes in Pancreatic Cancer. Pancreas 2025; 54:e255-e267. [PMID: 39661050 DOI: 10.1097/mpa.0000000000002414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
ABSTRACT Unusual symptoms, rapid progression, lack of reliable early diagnostic biomarkers, and lack of efficient treatment choices are the ongoing challenges of pancreatic cancer. Numerous research studies have demonstrated the correlation between exosomes and various aspects of pancreatic cancer. In light of these facts, exosomes possess the potential to play functional roles in the treatment, prognosis, and diagnosis of the pancreatic cancer. In the present study, we reviewed the most recent developments in approaches for exosome separation, modification, monitoring, and communication. Moreover, we discussed the clinical uses of exosomes as less invasive liquid biopsies and drug carriers and their contribution to the control of angiogenic activity of pancreatic cancer. Better investigation of exosome biology would help to effectively engineer therapeutic exosomes with certain nucleic acids, proteins, and even exogenous drugs as their cargo. Circulating exosomes have shown promise as reliable candidates for pancreatic cancer early diagnosis and monitoring in high-risk people without clinical cancer manifestation. Although we have tried to reflect the status of exosome applications in the treatment and detection of pancreatic cancer, it is evident that further studies and clinical trials are required before exosomes may be employed as a routine therapeutic and diagnostic tools for pancreatic cancer.
Collapse
Affiliation(s)
- Neda Shakerian
- From the Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful
| | - Aida Tafazoli
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz
| | - Amir Razavinia
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, IR
| | | | - Nikoo Bana
- Kish International Campus, University of Teheran
| | - Maysam Mard-Soltani
- From the Department of Clinical Biochemistry, Faculty of Medical Sciences, Dezful University of Medical Sciences, Dezful
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj
| | - Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| |
Collapse
|
7
|
Zhao M, Lin M, Zhang Z, Ye L. Research progress of circular RNA FOXO3 in diseases (review). Glob Med Genet 2025; 12:100003. [PMID: 39925449 PMCID: PMC11800306 DOI: 10.1016/j.gmg.2024.100003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 02/11/2025] Open
Abstract
Circular RNAs (circRNAs) are a newly discovered class of endogenous non-coding RNAs with a closed-loop structures, and they exert crucial regulatory functions in diverse biological processes and disease development through the modulation of linear RNA transcription, downstream gene expression, and protein translation, among others. Circular RNA FOXO3(circFOXO3, Hsa_circ_0006404) originates from exon 2 of the FOXO3 gene and exhibits widespread cytoplasmic expression in eukaryotic cells. It shows specific expression in different tissues or cells. Recent research has associated circFOXO3 with various diseases such as cancer, cardiovascular diseases, neurological disorders, senescence, and inflammation. However, a comprehensive review of the research progress of circFOXO3 in human diseases has not been conducted. In this paper, we provide a systematic review of the latest advances in circFOXO3 research in diseases, elucidate its biological functions and potential molecular mechanisms, and discuss the future directions and challenges in circRNAs research to provide valuable references and inspiration for research in this field.
Collapse
Affiliation(s)
- Min Zhao
- Good Clinical Practice(GCP) Institutional Office of The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, China
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, China
| | - Minting Lin
- Good Clinical Practice(GCP) Institutional Office of The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, China
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, China
| | - Zhibo Zhang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University), China
| | - Linhu Ye
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, China
| |
Collapse
|
8
|
Li G, Peng T, Zhang J. Diagnostic significance of serum hsa_circ_0000745 and hsa_circ_0001459 in ischemic stroke and its role in the prognosis of interventional therapy. Brain Inj 2025; 39:381-389. [PMID: 39602335 DOI: 10.1080/02699052.2024.2433668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 11/08/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
OBJECTIVE We aimed to identify hsa_circ_0000745 and hsa_circ_0001459 expression, value as biomarkers in ischemic stroke (IS), and functions in BV2 cells. METHODS RNA sequencing datasets in the GEO database were retrieved. The expression of circulating hsa_circ_0000745 and hsa_circ_0001459 was validated by RT-qPCR. The predictive values of hsa_circ_0000745 and hsa_circ_0001459 in the diagnosis and outcome of acute IS were evaluated using receiver operator characteristic curve analysis. BV2 cells were treated with lipopolysaccharide, followed by hsa_circ_0000745 or hsa_circ_0001459 downregulation and subsequent migration and apoptosis assay. The downstream miR-1287-5p was detected using the luciferase reporter gene assay. RESULTS Hsa_circ_0000745 or hsa_circ_0001459 were upregulated in acute IS. Hsa_circ_0000745 or/and hsa_circ_0001459 differentiated between healthy control subjects and patients with IS, resulting in areas under curve (AUC) of 0.85 and 0.83, respectively. Hsa_circ_0000745 or hsa_circ_0001459 was positively correlated with serum pro-inflammatory cytokines and the NIHSS (P<0.001). Longitudinal and ROC analyses of hsa_circ_0001459 and hsa_circ_0000745 expression levels revealed the 90-day-outcome-predicting potential after stroke. Hsa_circ_0001459 and hsa_circ_0000745 promoted the apoptosis and inhibited the migration of LPS-induced BV2 cells. Hsa_circ_0001459 and hsa_circ_0000745 commonly sponged miR-1287-5p. CONCLUSIONS Hsa_circ_0001459 and hsa_circ_0000745 showed upregulations in IS and might have clinical utility as a diagnostic and outcome-predicting marker.
Collapse
Affiliation(s)
- Gaoyi Li
- Department of Neurosurgery, Putuo People's Hospital, Tongji University, Shanghai, China
| | - Tao Peng
- Department of Neurosurgery, Seventh People's Hospital of Shanghai University of TCM, Shanghai, China
| | - Jingquan Zhang
- Department of Neurosurgery, Putuo People's Hospital, Tongji University, Shanghai, China
| |
Collapse
|
9
|
Min X, Bai X, Zhao Q, Yang W, Lin S, Xian L, Jing R, Li X, Jia W, Miao W, Yin M, Shang F, Zeng Y. miR-758-3p Interferes with Neuronal Apoptosis in Cerebral Ischemia-Reperfusion by Inhibiting ILK. Mol Neurobiol 2025:10.1007/s12035-025-04736-5. [PMID: 39937418 DOI: 10.1007/s12035-025-04736-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 01/31/2025] [Indexed: 02/13/2025]
Abstract
This study investigated the role of integrin-linked kinase (ILK) in neuronal apoptosis induced by cerebral ischemia‒reperfusion injury (CIRI) and its interaction with a circRNA (0000964) and miR-758-3p. Using in vivo and in vitro rat models, we clarified how ILK regulates neuronal apoptosis during CIRI. Our findings revealed that ILK expression is upregulated in response to CIRI and is modulated by the circRNA (0000964)/miR-758-3p axis. This study provides new insights into the molecular mechanisms of CIRI and suggests potential therapeutic targets to reduce neuronal apoptosis. A CIRI rat model was created through middle cerebral artery occlusion (MCAO). After miR-758-3p overexpression, neurological deficits, CIRI volume, and the expression levels of circRNAs (0000964) and ILK were evaluated. Neurons were subjected to oxygen‒glucose deprivation (OGD) to simulate in vitro CIRI, and the same molecules were analyzed. MCAO-induced CIRI downregulated a circRNA (0000964) and upregulated ILK and miR-758-3p. Similarly, in vitro OGD-induced apoptosis downregulated a circRNA (0000964) and upregulated ILK and miR-758-3p. Further analysis confirmed that a circRNA (0000964) negatively regulates miR-758-3p, which in turn negatively regulates ILK. This axis controls ILK and Caspase-3 expression, influencing neuronal apoptosis. ILK has been identified as a key regulator of neuronal apoptosis in CIRI. The circRNA (0000964)/miR-758-3p axis modulates ILK, impacting neuronal survival. This molecular network offers new insights into CIRI pathophysiology and highlights possible therapeutic approaches.
Collapse
Affiliation(s)
- Xiaoli Min
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- International Neuroscience Institute (China-INI), Beijing, China
| | - Qing Zhao
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenwu Yang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Sixian Lin
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lei Xian
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rui Jing
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuhui Li
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wenji Jia
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Miao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Mei Yin
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Feifei Shang
- Institute of Life Science, Chongqing Medical University, Chongqing, China.
| | - Yong Zeng
- Department of Psychiatry, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.
| |
Collapse
|
10
|
Hou JP, Yang LY, Liu LB, Han EK, Han CQ, Yang LP. Correlation of local and serum CircHIPK3 expressions with the progression of liver fibrosis/cirrhosis. Arab J Gastroenterol 2025; 26:71-77. [PMID: 39765392 DOI: 10.1016/j.ajg.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/24/2024] [Accepted: 11/24/2024] [Indexed: 03/16/2025]
Abstract
BACKGROUND AND STUDY AIMS This study was aimed to validate the correlation of circular RNA HIPK3 (CircHIPK3) expression in serum and tissues with the progression of liver fibrosis (LF) and liver cirrhosis (LC). PATIENTS AND METHODS Serum CircHIPK3 expressions were detected in 120 patients with LF/LC and 120 healthy controls (HCs). CircHIPK3 expression in tissues was detected in 120 fibrotic liver tissues and compared to 57 healthy liver tissues from patients with hepatic hemangioma. The expressions of CircHIPK3, TGF-β1, and CollA1 mRNAs were assessed by qRT-PCR. The Child-Pugh (CP) classification was used to evaluate disease severity. The Ishak score was applied to assess LF/LC in liver biopsy samples. The levels of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were also investigated. Receiver operating characteristic (ROC) analysis was conducted to assess the diagnostic value of CircHIPK3 expressions in serum and tissues. RESULTS CircHIPK3 expressions in serum and tissues were upregulated in patients with LF/LC compared to HCs. The patient group comprised 39 with CP class A (CP-A), 45 with CP class B (CP-B), and 36 with CP class B (CP-C). Patients with CP-C had markedly increased serum and local CircHIPK3 levels compared to those with CP-B and CP-A. Patients with CP-B showed upregulated CircHIPK3 expressions in serum and tissues compared to CP-A with statistical significance. ROC curve analysis indicated that CircHIPK3 expressions in both serum and tissues may serve as potential diagnostic indicators for the progression of LF/LC. Moreover, serum CircHIPK3 expressions were positively associated with serum ALT and AST levels. Tissue CircHIPK3 expressions were positively correlated with tissue TGF-β1 and CollA1 mRNA expressions. In addition, both serum and tissue CircHIPK3 expressions were positively associated with the Ishak score. CONCLUSIONS For the first time, this study demonstrated the positive correlation of CircHIPK3 expressions in both serum and tissues with the progression of LF/LC, regardless of etiology. CircHIPK3 might play a significant role in the development of LF/LC and act as a potential therapeutic target for these conditions.
Collapse
Affiliation(s)
- Ji-Ping Hou
- Department of General Surgery, Tianjin Medical University Baodi Hospital, China
| | - Lian-Ying Yang
- Department of General Surgery, Tianjin Medical University Baodi Hospital, China
| | - Li-Bin Liu
- Department of General Surgery, Tianjin Medical University Baodi Hospital, China
| | - En-Kun Han
- Department of General Surgery, Tianjin Medical University Baodi Hospital, China
| | - Chun-Qi Han
- Department of General Surgery, Tianjin Medical University Baodi Hospital, China
| | - Li-Ping Yang
- Department of Medical Imaging, Tianjin Medical University Baodi Hospital, China.
| |
Collapse
|
11
|
Pilotto Heming C, Aran V. The potential of circulating cell-free RNA in CNS tumor diagnosis and monitoring: A liquid biopsy approach. Crit Rev Oncol Hematol 2024; 204:104504. [PMID: 39251048 DOI: 10.1016/j.critrevonc.2024.104504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/20/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024] Open
Abstract
Early detection of malignancies, through regular cancer screening, has already proven to have potential to increase survival rates. Yet current screening methods rely on invasive, expensive tissue sampling that has hampered widespread use. Liquid biopsy is noninvasive and represents a potential approach to precision oncology, based on molecular profiling of body fluids. Among these, circulating cell-free RNA (cfRNA) has gained attention due to its diverse composition and potential as a sensitive biomarker. This review provides an overview of the processes of cfRNA delivery into the bloodstream and the role of cfRNA detection in the diagnosis of central nervous system (CNS) tumors. Different types of cfRNAs such as microRNAs (miRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) have been recognized as potential biomarkers in CNS tumors. These molecules exhibit differential expression patterns in the plasma, cerebrospinalfluid (CSF) and urine of patients with CNS tumors, providing information for diagnosing the disease, predicting outcomes, and assessing treatment effectiveness. Few clinical trials are currently exploring the use of liquid biopsy for detecting and monitoring CNS tumors. Despite obstacles like sample standardization and data analysis, cfRNA shows promise as a tool in the diagnosis and management of CNS tumors, offering opportunities for early detection, personalized therapy, and improved patient outcomes.
Collapse
Affiliation(s)
- Carlos Pilotto Heming
- Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Av. Rodolpho Paulo Rocco 225, Rio de Janeiro 21941-905, Brazil; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rua do Rezende 156, Rio de Janeiro 20231-092, Brazil
| | - Veronica Aran
- Programa de Pós-Graduação em Anatomia Patológica, Faculdade de Medicina, Universidade Federal do Rio de Janeiro (UFRJ), Av. Rodolpho Paulo Rocco 225, Rio de Janeiro 21941-905, Brazil; Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), Rua do Rezende 156, Rio de Janeiro 20231-092, Brazil.
| |
Collapse
|
12
|
Mafi A, Hedayati N, Kahkesh S, Khoshayand S, Alimohammadi M, Farahani N, Hushmandi K. The landscape of circRNAs in gliomas temozolomide resistance: Insights into molecular pathways. Noncoding RNA Res 2024; 9:1178-1189. [PMID: 39022676 PMCID: PMC11250881 DOI: 10.1016/j.ncrna.2024.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 07/20/2024] Open
Abstract
As the deadliest type of primary brain tumor, gliomas represent a significant worldwide health concern. Circular RNA (circRNA), a unique non-coding RNA molecule, seems to be one of the most alluring target molecules involved in the pathophysiology of many kinds of cancers. CircRNAs have been identified as prospective targets and biomarkers for the diagnosis and treatment of numerous disorders, particularly malignancies. Recent research has established a clinical link between temozolomide (TMZ) resistance and certain circRNA dysregulations in glioma tumors. CircRNAs may play a therapeutic role in controlling or overcoming TMZ resistance in gliomas and may provide guidance for a novel kind of individualized glioma therapy. To address the biological characteristics of circRNAs and their potential to induce resistance to TMZ, this review has highlighted and summarized the possible roles that circRNAs may play in molecular pathways of drug resistance, including the Ras/Raf/ERK PI3K/Akt signaling pathway and metabolic processes in gliomas.
Collapse
Affiliation(s)
- Alireza Mafi
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Neda Hedayati
- School of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Samaneh Kahkesh
- Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sara Khoshayand
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Najma Farahani
- Department of Genetics and Molecular Biology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Wang Q, Yang Z, Chen X, Yang Y, Jiang K. Noncoding RNA, friend or foe for nephrolithiasis? Front Cell Dev Biol 2024; 12:1457319. [PMID: 39633711 PMCID: PMC11614778 DOI: 10.3389/fcell.2024.1457319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/08/2024] [Indexed: 12/07/2024] Open
Abstract
Nephrolithiasis is one of the most common diseases in urology, characterized by notable incidence and recurrence rates, leading to significant morbidity and financial burden. Despite its prevalence, the precise mechanisms underlying stone formation remain incompletely understood, thus hindering significant advancements in kidney stone management over the past three decades. Investigating the pivotal biological molecules that govern stone formation has consistently been a challenging and high-priority task. A significant portion of mammalian genomes are transcribed into noncoding RNAs (ncRNAs), which have the ability to modulate gene expression and disease progression. They are thus emerging as a novel target class for diagnostics and pharmaceutical exploration. In recent years, the role of ncRNAs in stone formation has attracted burgeoning attention. They have been found to influence stone formation by regulating ion transportation, oxidative stress injury, inflammation, osteoblastic transformation, autophagy, and pyroptosis. These findings contributes new perspectives on the pathogenesis of nephrolithiasis. To enhance our understanding of the diagnostic and therapeutic potential of nephrolithiasis-associated ncRNAs, we summarized the expression profiles, biological functions, and clinical significance of these ncRNAs in the current review.
Collapse
Affiliation(s)
- Qing Wang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Zhenlu Yang
- Department of Radiology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Xiaolong Chen
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| | - Yuanyuan Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kehua Jiang
- Department of Urology, Guizhou Provincial People’s Hospital, Guiyang, Guizhou, China
| |
Collapse
|
14
|
Beric A, Sun Y, Sanchez S, Martin C, Powell T, Kumar R, Pardo JA, Darekar G, Sanford J, Dikec D, Phillips B, Botia JA, Cruchaga C, Ibanez L. Circulating blood circular RNA in Parkinson's Disease; from involvement in pathology to diagnostic tools in at-risk individuals. NPJ Parkinsons Dis 2024; 10:222. [PMID: 39557914 PMCID: PMC11574145 DOI: 10.1038/s41531-024-00839-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024] Open
Abstract
To identify circRNAs associated with Parkinson's disease (PD) we leveraged two of the largest publicly available studies with longitudinal clinical and blood transcriptomic data. We performed a cross-sectional study utilizing the last visit of each participant (N = 1848), and a longitudinal analysis that included 1166 participants with at least two time points. We identified 192 differentially expressed circRNAs, with effects that were sustained during disease, in mutation carriers, and diverse ancestry. The 192 circRNAs were leveraged to distinguish between PD and healthy participants with a ROC AUC of 0.797. Further, 71 circRNAs were sufficient to distinguish between genetic PD (AUC71 = 0.954) and, at-risk participants (AUC71 = 0.929) and healthy controls, supporting that circRNAs have the potential to aid the diagnosis of PD. Finally, we identified five circRNAs highly correlated with symptom severity. Overall, we demonstrated that circRNAs play an important role in PD and can be clinically relevant to improve diagnostic and monitoring.
Collapse
Affiliation(s)
- Aleksandra Beric
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Yichen Sun
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- Division of Biology & Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Santiago Sanchez
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Charissa Martin
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Tyler Powell
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Ravindra Kumar
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Jose Adrian Pardo
- Departamento de Ingeniería de la Información y las Comunicaciones; Universidad de Murcia, Murcia, Spain
| | - Gauri Darekar
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Jessie Sanford
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Devin Dikec
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Bridget Phillips
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Juan A Botia
- Departamento de Ingeniería de la Información y las Comunicaciones; Universidad de Murcia, Murcia, Spain
- Department of Neurodegenerative Diseases, Institute of Neurology, University College London, London, UK
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- Department of Neurology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
- The Charles F. and Joanne Knight Alzheimer Disease Research Center, Washington University in Saint Louis, St. Louis, MO, USA
- Department of Genetics, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA
| | - Laura Ibanez
- Department of Psychiatry, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA.
- NeuroGenomics and Informatics Center, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA.
- Department of Neurology, Washington University in Saint Louis School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
15
|
Xie S, Li Y, Mai L, Gao X, Huang G, Sun W, Qiao L, Li B, Wang Y, Lin Z. A tumor-promotional molecular axis CircMAPKBP1/miR-17-3p/TGFβ2 activates autophagy pathway to drive tongue squamous cell carcinoma cisplatin chemoresistance. Cancer Lett 2024; 604:217230. [PMID: 39276917 DOI: 10.1016/j.canlet.2024.217230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024]
Abstract
Platinum-based chemotherapy is the first-line treatment for tongue squamous cell carcinoma (TSCC), but most patients rapidly develop resistance. Circular RNAs (circRNAs) are a class of critical regulators in the pathogenesis of several tumors, but their role in cisplatin resistance in TSCC has not been fully elucidated. Here we found that circMAPKBP1 was enriched in cisplatin resistant TSCC cells and was closely associated with enhanced autophagic activity. Functionally, silencing circMAPKBP1 significantly restored the chemosensitivity of cisplatin-resistant TSCC cells both in vitro and in vivo by suppressing autophagy. Mechanistically, circMAPKBP1 enhanced cisplatin sensitivity through the miR-17-3p/TGFβ2 axis by activating autophagy pathway. Data from clinical studies revealed that high expression of circMAPKBP1 and TGFβ2 was closely linked to a poor outcome in TSCC patients. We thus concluded that circMAPKBP1 is a tumor promoting factor and confers cisplatin sensitivity by activating the miR-17-3p/TGFβ2 axis-mediated autophagy. We propose that circMAPKBP1 may be a potential therapeutic target for TSCC.
Collapse
Affiliation(s)
- Shule Xie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yingru Li
- Department of General Surgery (hernia and Abdominal Wall), The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lianxi Mai
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Xiaolin Gao
- Stomatological Hospital of Haizhu District, Guangzhou, 510220, China
| | - Guoxin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Wenhao Sun
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, University of Sydney at Westmead Hospital, Westmead, NSW, 2145, Australia.
| | - Bowen Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Youyuan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Zhaoyu Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China; Department of Oral & Maxillofacial Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| |
Collapse
|
16
|
Joghataie P, Ardakani MB, Sabernia N, Salary A, Khorram S, Sohbatzadeh T, Goodarzi V, Amiri BS. The Role of Circular RNA in the Pathogenesis of Chemotherapy-Induced Cardiotoxicity in Cancer Patients: Focus on the Pathogenesis and Future Perspective. Cardiovasc Toxicol 2024; 24:1151-1167. [PMID: 39158829 DOI: 10.1007/s12012-024-09914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 08/11/2024] [Indexed: 08/20/2024]
Abstract
Cardiotoxicity is a serious challenge cancer patients face today. Various factors are involved in cardiotoxicity. Circular RNAs (circRNAs) are one of the effective factors in the occurrence and prevention of cardiotoxicity. circRNAs can lead to increased proliferation, apoptosis, and regeneration of cardiomyocytes by regulating the molecular pathways, as well as increasing or decreasing gene expression; some circRNAs have a dual role in cardiomyocyte regeneration or death. Identifying each of the pathways related to these processes can be effective on managing patients and preventing cardiotoxicity. In this study, an overview of the molecular pathways involved in cardiotoxicity by circRNAs and their effects on the downstream factors have been discussed.
Collapse
Affiliation(s)
- Pegah Joghataie
- Department of Cardiology, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | | | - Neda Sabernia
- Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | | | - Tooba Sohbatzadeh
- Student Research Committee, School of Medicine, Alborz University of Medical Sciences, Alborz, Iran
| | - Vahid Goodarzi
- Department of Anesthesiology, Rasoul-Akram Medical Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Bahareh Shateri Amiri
- Assistant Professor of Internal Medicine, Department of Internal Medicine, School of Medicine, Hazrat-E Rasool General Hospital, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Mehta SL, Arruri V, Vemuganti R. Role of transcription factors, noncoding RNAs, epitranscriptomics, and epigenetics in post-ischemic neuroinflammation. J Neurochem 2024; 168:3430-3448. [PMID: 38279529 PMCID: PMC11272908 DOI: 10.1111/jnc.16055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Post-stroke neuroinflammation is pivotal in brain repair, yet persistent inflammation can aggravate ischemic brain damage and hamper recovery. Following stroke, specific molecules released from brain cells attract and activate central and peripheral immune cells. These immune cells subsequently release diverse inflammatory molecules within the ischemic brain, initiating a sequence of events, including activation of transcription factors in different brain cell types that modulate gene expression and influence outcomes; the interactive action of various noncoding RNAs (ncRNAs) to regulate multiple biological processes including inflammation, epitranscriptomic RNA modification that controls RNA processing, stability, and translation; and epigenetic changes including DNA methylation, hydroxymethylation, and histone modifications crucial in managing the genic response to stroke. Interactions among these events further affect post-stroke inflammation and shape the depth of ischemic brain damage and functional outcomes. We highlighted these aspects of neuroinflammation in this review and postulate that deciphering these mechanisms is pivotal for identifying therapeutic targets to alleviate post-stroke dysfunction and enhance recovery.
Collapse
Affiliation(s)
- Suresh L. Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- William S. Middleton Veterans Hospital, Madison, WI, USA
| |
Collapse
|
18
|
Zhang Q, Liu J, Wang W, Lin W, Ahmed W, Duan W, Huang S, Zhu Z, Chen L. The role of exosomes derived from stem cells in nerve regeneration: A contribution to neurological repair. Exp Neurol 2024; 380:114882. [PMID: 39002923 DOI: 10.1016/j.expneurol.2024.114882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Stem cell-derived exosomes have gained attention in regenerative medicine for their role in encouraging nerve regeneration and potential use in treating neurological diseases. These nanosized extracellular vesicles act as carriers of bioactive molecules, facilitating intercellular communication and enhancing the regenerative process in neural tissues. This comprehensive study explores the methods by which exosomes produced from various stem cells contribute to nerve healing, with a particular emphasis on their role in angiogenesis, inflammation, and cellular signaling pathways. By examining cutting-edge developments and exploring the potential of exosomes in delivering disease-specific miRNAs and proteins, we highlight their versatility in tailoring personalized therapeutic strategies. The findings presented here highlight the potential of stem cell-produced exosomes for use in neurological diseases therapy, establishing the door for future research into exosome-based neurotherapies.
Collapse
Affiliation(s)
- Qiankun Zhang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiale Liu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wentong Lin
- Department of Orthopaedics, Chaozhou Hospital of Traditional Chinese Medicine, Chaozhou, China
| | - Waqas Ahmed
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wenjie Duan
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Songze Huang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhihan Zhu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
19
|
Morandell J, Monziani A, Lazioli M, Donzel D, Döring J, Oss Pegorar C, D'Anzi A, Pellegrini M, Mattiello A, Bortolotti D, Bergonzoni G, Tripathi T, Mattis VB, Kovalenko M, Rosati J, Dieterich C, Dassi E, Wheeler VC, Ellederová Z, Wilusz JE, Viero G, Biagioli M. CircHTT(2,3,4,5,6) - co-evolving with the HTT CAG-repeat tract - modulates Huntington's disease phenotypes. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102234. [PMID: 38974999 PMCID: PMC11225910 DOI: 10.1016/j.omtn.2024.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
Circular RNA (circRNA) molecules have critical functions during brain development and in brain-related disorders. Here, we identified and validated a circRNA, circHTT(2,3,4,5,6), stemming from the Huntington's disease (HD) gene locus that is most abundant in the central nervous system (CNS). We uncovered its evolutionary conservation in diverse mammalian species, and a correlation between circHTT(2,3,4,5,6) levels and the length of the CAG-repeat tract in exon-1 of HTT in human and mouse HD model systems. The mouse orthologue, circHtt(2,3,4,5,6), is expressed during embryogenesis, increases during nervous system development, and is aberrantly upregulated in the presence of the expanded CAG tract. While an IRES-like motif was predicted in circH TT (2,3,4,5,6), the circRNA does not appear to be translated in adult mouse brain tissue. Nonetheless, a modest, but consistent fraction of circHtt(2,3,4,5,6) associates with the 40S ribosomal subunit, suggesting a possible role in the regulation of protein translation. Finally, circHtt(2,3,4,5,6) overexpression experiments in HD-relevant STHdh striatal cells revealed its ability to modulate CAG expansion-driven cellular defects in cell-to-substrate adhesion, thus uncovering an unconventional modifier of HD pathology.
Collapse
Affiliation(s)
- Jasmin Morandell
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Alan Monziani
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Martina Lazioli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Deborah Donzel
- Institute of Biophysics Unit at Trento, National Research Council - CNR, 38123 Trento, Italy
| | - Jessica Döring
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Claudio Oss Pegorar
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Angela D'Anzi
- Cellular Reprogramming Unit Fondazione IRCCS, Casa Sollievo Della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Miguel Pellegrini
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Andrea Mattiello
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Dalia Bortolotti
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Guendalina Bergonzoni
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Takshashila Tripathi
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Virginia B Mattis
- Board of Governor's Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Marina Kovalenko
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jessica Rosati
- Cellular Reprogramming Unit Fondazione IRCCS, Casa Sollievo Della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zdenka Ellederová
- Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gabriella Viero
- Institute of Biophysics Unit at Trento, National Research Council - CNR, 38123 Trento, Italy
| | - Marta Biagioli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| |
Collapse
|
20
|
Xu S, Chen T, Yu J, Wan L, Zhang J, Chen J, Wei W, Li X. Insights into the regulatory role of epigenetics in moyamoya disease: Current advances and future prospectives. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102281. [PMID: 39188306 PMCID: PMC11345382 DOI: 10.1016/j.omtn.2024.102281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Moyamoya disease (MMD) is a progressive steno-occlusive cerebrovascular disorder that predominantly affecting East Asian populations. The intricate interplay of distinct and overlapping mechanisms, including genetic associations such as the RNF213-p.R4810K variant, contributes to the steno-occlusive lesions and moyamoya vessels. However, genetic mutations alone do not fully elucidate the occurrence of MMD, suggesting a potential role for epigenetic factors. Accruing evidence has unveiled the regulatory role of epigenetic markers, including DNA methylation, histone modifications, and non-coding RNAs (ncRNAs), in regulating pivotal cellular and molecular processes implicated in the pathogenesis of MMD by modulating endothelial cells and smooth muscle cells. The profile of these epigenetic markers in cerebral vasculatures and circulation has been determined to identify potential diagnostic biomarkers and therapeutic targets. Furthermore, in vitro studies have demonstrated the multifaceted effects of modulating specific epigenetic markers on MMD pathogenesis. These findings hold great potential for the discovery of novel therapeutic targets, translational studies, and clinical applications. In this review, we comprehensively summarize the current understanding of epigenetic mechanisms, including DNA methylation, histone modifications, and ncRNAs, in the context of MMD. Furthermore, we discuss the potential challenges and opportunities that lie ahead in this rapidly evolving field.
Collapse
Affiliation(s)
- Shuangxiang Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Tongyu Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jin Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lei Wan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jianjian Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jincao Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan 430071, China
- Medical Research Institute, Wuhan University, Wuhan 430071, China
- Sino-Italian Ascula Brain Science Joint Laboratory, Wuhan University, Wuhan 430071, China
| |
Collapse
|
21
|
Mehta SL, Namous H, Vemuganti R. Stroke triggers dynamic m 6A reprogramming of cerebral circular RNAs. Neurochem Int 2024; 178:105802. [PMID: 38971504 PMCID: PMC11296895 DOI: 10.1016/j.neuint.2024.105802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
We previously showed that stroke alters circular RNA (circRNA) expression profiles. Many circRNAs undergo epitranscriptomic modifications, particularly methylation of adenosine to form N6-methyladenosine (m6A). This modification significantly influences the circRNA metabolism and functionality. Hence, we currently evaluated if transient focal ischemia in adult C57BL/6J mice alters the m6A methylation of circRNAs. Changes in m6A were profiled in the peri-infarct cortex following immunoprecipitation coupled with microarrays. Correlation and gene ontology analyses were performed to understand the association of m6A changes with circRNA regulation and functional implications after stroke. Many circRNAs showed differential regulation (up or down) after stroke, and this change was highest at 24h of reperfusion. Notably, most circRNAs differentially regulated after stroke also exhibited temporal changes in m6A modification patterns. The majority of circRNAs that showed post-stroke differential m6A modifications were derived from protein-coding genes. Hyper-than hypomethylation of circRNAs was most prevalent after stroke. Gene ontology analysis of the host genes suggested that m6A-modified circRNAs might regulate functions such as synapse-related processes, indicating that m6A epitranscriptomic modification in circRNAs could potentially influence post-stroke synaptic pathophysiology.
Collapse
Affiliation(s)
- Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Hadjer Namous
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial Veteran Administration Hospital, Madison, WI, USA.
| |
Collapse
|
22
|
Panchalingam S, Kasivelu G, Jayaraman M. Computational identification and molecular dynamics simulation of potential circularRNA derived peptide from gene expression profile of Rheumatoid arthritis, Alzheimer's disease, and Atrial fibrillation. J Biomol Struct Dyn 2024; 42:7699-7714. [PMID: 37526241 DOI: 10.1080/07391102.2023.2241535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/21/2023] [Indexed: 08/02/2023]
Abstract
The two most serious global health challenges confronting human society today are autoimmune disorders (AIDs) and neurological diseases (NDs), both of which shorten people's lives and worsen the situation. Despite their extensive impact, statistics show that AIDs is associated with a higher risk of ND. Circular RNAs (circRNAs) are critical in several illnesses and disorders, especially AID and ND. Therefore, the present study focused on understanding the underlying causes of the pathophysiology of diseases such as AID and ND through in silico-based research. In order to determine how circRNAs are related to various disease pathways, this study examined the gene expression data sets for Rheumatoid arthritis (RA), Alzheimer's disease (AD), and atrial fibrillation (AF). Our study identified and analyzed two circRNAs, their respective host genes (DHTKD1 and RAN) and their related miRNAs, which could serve as potential markers for treating disorders like myotonic dystrophy type 1, spinocerebellar ataxia and fragile X syndrome. Further, the circRNA-derived peptide was identified and analysed with the molecular dynamics simulation (MDS) followed by a principal component (PC) based free energy landscape (FEL) profile. The computational results obtained here provide a basis for the development of therapeutics against AD, RA and AF. Moreover, further functional studies are needed to validate their role in disease aetiology and to provide a detailed understanding of their association with AID and ND.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Santhiya Panchalingam
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, India
| | - Govindaraju Kasivelu
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, India
| | - Manikandan Jayaraman
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Puducherry, India
- Structural Biology and Biocomputing Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamil Nadu, India
| |
Collapse
|
23
|
Xu Z, Guan C, Cheng Z, Zhou H, Qin W, Feng J, Wan M, Zhang Y, Jia C, Shao S, Guo H, Li S, Liu B. Research trends and hotspots of circular RNA in cardiovascular disease: A bibliometric analysis. Noncoding RNA Res 2024; 9:930-944. [PMID: 38680417 PMCID: PMC11047193 DOI: 10.1016/j.ncrna.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/03/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
From a global perspective, cardiovascular diseases (CVDs), the leading factor accounting for population mortality, and circRNAs, RNA molecules with stable closed-loop structures, have been proven to be closely related. The latent clinical value and the potential role of circRNAs in CVDs have been attracting increasing, active research interest, but bibliometric studies in this field are still lacking. Thus, in this study, we conducted a bibliometric analysis by using software such as VOSviewer, CiteSpace, Microsoft Excel, and the R package to determine the current research progress and hotspots and ultimately provide an overview of the development trends and future frontiers in this field. In our study, based on our search strategy, a total of 1206 publications published before July 31, 2023 were accessed from the WOSCC database. According to our findings, there is a notable increasing trend in global publications in the field of circRNA in CVDs. China was found to be the dominant country in terms of publication number, but a lack of high-quality articles was a significant fault. A cluster analysis on the co-cited references indicated that dilated cardiomyopathy, AMI, and cardiac hypertrophy are the greatest objects of concern. In contrast, a keywords analysis indicated that high importance has been ascribed to MI, abdominal aortic aneurysm, cell proliferation, and coronary artery diseases.
Collapse
Affiliation(s)
- Zehui Xu
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chong Guan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ziji Cheng
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Houle Zhou
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wanting Qin
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Jiaming Feng
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Melisandre Wan
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yihan Zhang
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chengyao Jia
- Guanghua School of Stomatology, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shuijin Shao
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haidong Guo
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shaoling Li
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Baonian Liu
- Department of Anatomy, College of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
24
|
Zhang Y, Zhang C, Peng C, Jia J. Unraveling the crosstalk: circRNAs and the wnt signaling pathway in cancers of the digestive system. Noncoding RNA Res 2024; 9:853-864. [PMID: 38586314 PMCID: PMC10995981 DOI: 10.1016/j.ncrna.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/02/2024] [Accepted: 03/03/2024] [Indexed: 04/09/2024] Open
Abstract
Circular RNA (circRNA) is a unique type of noncoding RNA molecule characterized by its closed-loop structure. Functionally versatile, circRNAs play pivotal roles in gene expression regulation, protein activity modulation, and participation in cell signaling processes. In the context of cancers of the digestive system, the Wnt signaling pathway holds particular significance. Anomalous activation of the Wnt pathway serves as a primary catalyst for the development of colorectal cancer. Extensive research underscores the notable participation of circRNAs associated with the Wnt pathway in the progression of digestive system tumors. These circRNAs exhibit pronounced dysregulation across esophageal cancer, gastric cancer, liver cancer, colorectal cancer, pancreatic cancer, and cholangiocarcinoma. Furthermore, the altered expression of circRNAs linked to the Wnt pathway correlates with prognostic factors in digestive system tumors. Additionally, circRNAs related to the Wnt pathway showcase potential as diagnostic, therapeutic, and prognostic markers within the realm of digestive system tumors. This comprehensive review outlines the interplay between circRNAs and the Wnt signaling pathway in cancers of the digestive system. It seeks to provide a comprehensive perspective on their association while delving into ongoing research that explores the clinical applications of circRNAs associated with the Wnt pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cheng Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chuanhui Peng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Junjun Jia
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
25
|
Tibenda JJ, Wang N, Li N, Dang Y, Zhu Y, Wang X, Zhang Z, Zhao Q. Research progress of circular RNAs in myocardial ischemia. Life Sci 2024; 352:122809. [PMID: 38908786 DOI: 10.1016/j.lfs.2024.122809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/18/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024]
Abstract
Circular RNAs (circRNAs) are a type of single-stranded RNA that forms a covalently closed continuous loop. Its structure, stability, properties, and cell- and tissue-specificity have gained considerable recognition in the research and clinical sectors, as its role has been observed in different diseases, such as cardiovascular diseases, cancers, and central nervous system diseases, etc. Cardiovascular disease is still named as the number one cause of death globally, with myocardial ischemia (MI) accounting for 15 % of mortality annually. A number of circRNAs have been identified and are being studied for their ability to reduce MI by inhibiting the molecular mechanisms associated with myocardial ischemia reperfusion injury, such as inflammation, oxidative stress, autophagy, apoptosis, and so on. CircRNAs play a significant role as crucial regulatory elements at transcriptional levels, regulating different proteins, and at posttranscriptional levels, having interactions with RNA-binding proteins, ribosomal proteins, micro-RNAS, and long non-coding RNAS, making it possible to exert their effects through the circRNA-miRNA-mRNA axis. CircRNAs are a potential novel biomarker and therapeutic target for myocardial ischemia and cardiovascular diseases in general. The purpose of this review is to summarize the relationship, function, and mechanism observed between circRNAs and MI injury, as well as to provide directions for future research and clinical trials.
Collapse
Affiliation(s)
- Jonnea Japhet Tibenda
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Niuniu Wang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Nuan Li
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Yanning Dang
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Yafei Zhu
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Zhengjun Zhang
- Department of Cardiology, General Hospital of Ningxia Medical University, Ningxia, China.
| | - Qipeng Zhao
- School of Pharmacy, Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China.
| |
Collapse
|
26
|
Panchalingam S, Kasivelu G. Exploring the impact of circular RNA on ALS progression: A systematic review. Brain Res 2024; 1838:148990. [PMID: 38734122 DOI: 10.1016/j.brainres.2024.148990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/28/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Amyotrophic lateral sclerosis is a neurodegenerative disease that damages motor neurons and causes gradual muscular weakening and paralysis. Although studies have linked a number of genetic and environmental factors to ALS, the specific causes and mechanisms of the disease are still unclear. The pivotal role of circular RNA in the pathogenesis of ALS is a newly emerging area of research. The term "circular RNA" describes a particular class of RNA molecule that, in contrast to most RNA molecules, has a closed-loop structure. According to recent research, circular RNA might be essential for the development and progression of ALS. It has been discovered that these circular RNAs support important cellular functions related to ALS, including protein turnover, mitochondrial function, RNA processing, and cellular transport. Gaining knowledge about the precise roles and processes of circular RNA in the development of ALS could assist in understanding the pathophysiology of the disease and possibly pave the way for the development of targeted therapies. However, the understanding of circular RNA in ALS is still limited, and more research is needed to fully elucidate its role. In order to gain a comprehensive understanding of the role of circRNAs in ALS, it is imperative to delve into the various mechanisms through which circRNAs may contribute to the development and progression of the disease. Examining the current status of circRNA research in ALS and offering insights into their potential as therapeutic targets and diagnostic markers are the primary objectives of this review.
Collapse
Affiliation(s)
- Santhiya Panchalingam
- Centre for Ocean Research (DST-FIST Sponsored Centre), Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Govindaraju Kasivelu
- Centre for Ocean Research (DST-FIST Sponsored Centre), Sathyabama Institute of Science and Technology, Chennai 600119, India.
| |
Collapse
|
27
|
Long CM, Li Z, Song W, Zeng X, Yang R, Lu L. The Roles of Non-coding RNA Targeting Astrocytes in Cerebral Ischemia. Mol Neurobiol 2024; 61:5814-5825. [PMID: 38236344 DOI: 10.1007/s12035-023-03898-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 12/20/2023] [Indexed: 01/19/2024]
Abstract
Astrocytes are key targets for treating cerebral ischemia in the central nervous system. Non-coding RNAs (ncRNAs) participate in the pathological processes of astrocytes in cerebral ischemia. Recent reports suggest that ncRNAs ameliorate the outcome of cerebral ischemia by mediating astrocytes' inflammatory reaction, oxidative stress, excitotoxicity, autophagy, and apoptosis. Reconstructing cellular systems might offer a promising strategy for treating cerebral ischemia. This review briefly discusses the potential of ncRNAs as drug targets and explores the molecular regulatory mechanisms through which ncRNAs target astrocytes in cerebral ischemia. It provides an overview of the current research, discusses ncRNAs' implications as clinical markers for cerebral ischemia, and anticipates that ongoing research on ncRNAs may contribute to novel therapeutic approaches for treating this condition.
Collapse
Affiliation(s)
- Chun-Mei Long
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Zhen Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Wang Song
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Xin Zeng
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China
| | - Rui Yang
- The Endocrinology Department, Lanzhou Hospital of Traditional Chinese Medicine, Lanzhou, 73000, Gansu, China
| | - Li Lu
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, 73000, Gansu, China.
- Medical College of Lanzhou University, 199 Dong gang West Road, Cheng guan District, Lanzhou, China.
| |
Collapse
|
28
|
Hu H, Shen S, Wu J, Ma L. CircTOP1 targeted regulation of PTBP1 expression promotes the progression of coronary artery calcification. Exp Cell Res 2024; 440:114147. [PMID: 38944174 DOI: 10.1016/j.yexcr.2024.114147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/31/2024] [Accepted: 06/22/2024] [Indexed: 07/01/2024]
Abstract
Coronary artery calcification (CAC) is a hallmark event in the pathogenesis of cardiovascular disease, involving the phenotypic transformation of vascular smooth muscle cells (VSMC) towards an osteogenic state. Despite this understanding, the molecular mechanisms governing the VSMC osteogenic switch remain incompletely elucidated. Here, we sought to examine the potential role of circular RNA (circRNA) in the context of CAC. Through transcriptome analysis of circRNA-seq, we identified circTOP1 as a potential candidate circRNA in individuals with CAC. Furthermore, we observed that overexpression of circTOP1 exacerbated vascular calcification in a CAC model. Subsequent pull-down assays revealed an interaction between circTOP1 and PTBP1, a putative target gene of circTOP1 in the context of CAC. In both in vivo and in vitro experiments, we observed heightened expression of circTOP1 and PTBP1 in the CAC model, and noted that reducing circTOP1 expression effectively reduced calcium salt deposits and mineralized nodules in model mice. Additionally, in vitro experiments demonstrated that overexpression of PTBP1 reversed the weakening of signaling caused by silencing circTOP1, thereby exacerbating the osteogenic transition and calcification of VSMC. Collectively, our findings suggested that circTOP1 promotes CAC by modulating PTBP1 expression to mediate VSMC transdifferentiation.
Collapse
Affiliation(s)
- Hao Hu
- Department of Cardiology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China; Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shichun Shen
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jiawei Wu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Likun Ma
- Department of Cardiology, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China; Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
29
|
Wang B, Tian L, Zhang Z, Liu Z, Li K, Zhang Q, Song Y, Qi J. CircTrim37 Ameliorates Intracerebral Hemorrhage Outcomes by Modulating Microglial Polarization via the miR-30c-5p/SOCS3 Axis. Mol Neurobiol 2024; 61:4038-4054. [PMID: 38055163 DOI: 10.1007/s12035-023-03776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Circular RNAs (circRNAs) have been progressively recognized as critical regulators in the pathology and pathophysiology of central nervous system disease. However, the potential role of circRNAs in intracerebral hemorrhage (ICH) is still largely unclear. Here, we demonstrate that circTrim37 expression was significantly upregulated at 3 days after ICH by circular RNA microarray and qPCR assays. Overexpression of circTrim37 could significantly ameliorate brain injury volume, brain edema, neurologic deficits, and inflammation in vivo after ICH. CircTrim37 promotes M2 polarization while restrains M1 polarization in vitro. Furthermore, circTrim37 acts as an endogenous sponge for miR-30c-5p, thereby inhibiting miR-30c-5p activity, leading to the upregulation of SOCS3 and making the balance of microglial response towards an M2 phenotype. Taken together, our results indicate the participation of circTrim37 and its coupling mechanism in ICH and provide a novel therapeutic target for ICH.
Collapse
Affiliation(s)
- Benshuai Wang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, 150001, China
| | - Lin Tian
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, 150001, China
| | - Zhen Zhang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, 150001, China
| | - Zhiyi Liu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, 150001, China
| | - Ke Li
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, 150001, China
| | - Qianqian Zhang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, 150001, China
| | - Yuejia Song
- Department of Endocrinology, First Clinical Hospital, Harbin Medical University, Harbin, 150001, China.
| | - Jiping Qi
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
30
|
Zhong C, Zhang Q, Bao H, Li Y, Nie C. Hsa_circ_0054220 Upregulates HMGA1 by the Competitive RNA Pattern to Promote Neural Impairment in MPTP Model of Parkinson's Disease. Appl Biochem Biotechnol 2024; 196:4008-4023. [PMID: 37815624 DOI: 10.1007/s12010-023-04740-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2023] [Indexed: 10/11/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease. Circular RNAs (circRNAs) have been confirmed to regulate neurodegenerative diseases. This study was aimed to explore hsa_circ_0054220 functions in PD. MPP-stimulated SH-SY5Y cells were established as the PD cell model. PD mouse model was established by MPTP. Gene expression in cells and tissues was tested by RT-qPCR. Cell viability and apoptosis were evaluated through CCK-8 and TUNEL assays. The interactions of RNAs were determined by RNA pull-down assay, RIP assay, and luciferase reporter assay. Circ_0054220 expressed at a high level in MPP-treated SH-SY5Y cells. Circ_0054220 inhibition promoted viability and suppressed apoptosis in MPP-stimulated cells. Furthermore, we found that circ_0054220 can competitively bind to miR-145 and miR-625 to upregulate high mobility group A1 (HMGA1) expression. HMGA1 was positively regulated by circ_0054220 and overexpressed in MPP-treated cells as well as the striatum (STR), substantia nigra pars compacta (SNpc), and serum of MPTP-induced mouse model of PD. HMGA1 overexpression counteracted the function of circ_0054220 silencing on cell apoptosis. Furthermore, HMGA1 inhibition notably alleviated motor dysfunction and increased the quantity of neurons in mice resembling PD. Circ_0054220 upregulates HMGA1 by the competitive endogenous RNAs (ceRNA) pattern to promote neural impairment in PD.
Collapse
Affiliation(s)
- Cundi Zhong
- Clinical Laboratory, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, Niaoning, China
| | - Qiang Zhang
- Rehabilitation Medicine, Sinopharm (Dalian) Rehabilitation Hospital, Dalian, 116013, Niaoning, China
| | - Haiping Bao
- Neurology, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, Niaoning, China
| | - Yu Li
- Neurology, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, Niaoning, China
| | - Chen Nie
- Neurology, The Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, 116023, Niaoning, China.
| |
Collapse
|
31
|
Rossi MN, Fiorucci C, Mariottini P, Cervelli M. Unveiling the hidden players: noncoding RNAs orchestrating polyamine metabolism in disease. Cell Biosci 2024; 14:84. [PMID: 38918813 PMCID: PMC11202255 DOI: 10.1186/s13578-024-01235-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/19/2024] [Indexed: 06/27/2024] Open
Abstract
Polyamines (PA) are polycations with pleiotropic functions in cellular physiology and pathology. In particular, PA have been involved in the regulation of cell homeostasis and proliferation participating in the control of fundamental processes like DNA transcription, RNA translation, protein hypusination, autophagy and modulation of ion channels. Indeed, their dysregulation has been associated to inflammation, oxidative stress, neurodegeneration and cancer progression. Accordingly, PA intracellular levels, derived from the balance between uptake, biosynthesis, and catabolism, need to be tightly regulated. Among the mechanisms that fine-tune PA metabolic enzymes, emerging findings highlight the importance of noncoding RNAs (ncRNAs). Among the ncRNAs, microRNA, long noncoding RNA and circRNA are the most studied as regulators of gene expression and mRNA metabolism and their alteration have been frequently reported in pathological conditions, such as cancer progression and brain diseases. In this review, we will discuss the role of ncRNAs in the regulation of PA genes, with a particular emphasis on the changes of this modulation observed in health disorders.
Collapse
Affiliation(s)
| | | | - Paolo Mariottini
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy
| | - Manuela Cervelli
- Department of Sciences, University of Roma Tre, 00146, Rome, Italy.
| |
Collapse
|
32
|
Ilieva MS. Non-Coding RNAs in Neurological and Neuropsychiatric Disorders: Unraveling the Hidden Players in Disease Pathogenesis. Cells 2024; 13:1063. [PMID: 38920691 PMCID: PMC11201512 DOI: 10.3390/cells13121063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Neurological and neuropsychiatric disorders pose substantial challenges to public health, necessitating a comprehensive understanding of the molecular mechanisms underlying their pathogenesis. In recent years, the focus has shifted toward the intricate world of non-coding RNAs (ncRNAs), a class of RNA molecules that do not encode proteins but play pivotal roles in gene regulation and cellular processes. This review explores the emerging significance of ncRNAs in the context of neurological and neuropsychiatric disorders, shedding light on their diverse functions and regulatory mechanisms. The dysregulation of various ncRNAs, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), has been implicated in the pathophysiology of conditions such as Alzheimer's disease, Parkinson's disease, schizophrenia, and mood disorders. This review delves into the specific roles these ncRNAs play in modulating key cellular processes, including synaptic plasticity, neuroinflammation, and apoptosis, providing a nuanced understanding of their impact on disease progression. Furthermore, it discusses the potential diagnostic and therapeutic implications of targeting ncRNAs in neurological and neuropsychiatric disorders. The identification of specific ncRNA signatures holds promise for the development of novel biomarkers for early disease detection, while the manipulation of ncRNA expression offers innovative therapeutic avenues. Challenges and future directions in the field are also considered, highlighting the need for continued research to unravel the complexities of ncRNA-mediated regulatory networks in the context of neurological and neuropsychiatric disorders. This review aims to provide a comprehensive overview of the current state of knowledge and stimulate further exploration into the fascinating realm of ncRNAs in the brain's intricate landscape.
Collapse
Affiliation(s)
- Mirolyuba Simeonova Ilieva
- The Bartholin Institute, Department of Pathology, Rigshospitalet, Copenhagen N, Ole Maaløes Vej 5, 3rd Floor, 2200 Copenhagen, Denmark
| |
Collapse
|
33
|
Zhang X, Yuan Y, Wang X, Wang H, Zhang L, He J. CircWHSC1 (CircNSD2): A Novel Circular RNA in Multiple Cancers. Clin Med Insights Oncol 2024; 18:11795549241254781. [PMID: 38855031 PMCID: PMC11159554 DOI: 10.1177/11795549241254781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/25/2024] [Indexed: 06/11/2024] Open
Abstract
Circular RNAs (circRNAs) are a type of non-coding RNA (ncRNA) that possesses a unique single-stranded circular structure. They are primarily formed through alternative splicing of pre-mRNA (messenger RNA). The primary biological function of circRNAs is to regulate gene expression at both the transcriptional and post-transcriptional levels. Recent studies have increasingly demonstrated a close association between the dysregulation of circRNAs and the progression of diverse cancers, where they can function as either tumor suppressors or oncogenes. circWHSC1 (circNSD2) is a circular ncRNA that originates from the first 2 exons of the Wolf-Hirschhorn syndrome candidate gene (WHSC1). As Chen 2019 discovery that circWHSC1 (circNSD2) functions as a sponge for miRNAs and promotes cancer, this circRNA has garnered significant interest among researchers. circWHSC1 (circNSD2) has been found to be up-regulated in various malignant tumors, including nasopharyngeal carcinoma, lung cancer, breast cancer, liver cancer, colorectal cancer, ovarian cancer, cervical cancer, and endometrial cancer. It exerts its effects on cancer by either inhibiting or promoting the expression of related genes through direct or indirect pathways, ultimately affecting cancer proliferation, invasion, and prognosis. This article provides a comprehensive review and discussion of the biological roles of circWHSC1 (circNSD2) and its target genes in various cancers, as well as the latest research progress on related molecular biological regulatory mechanisms. Furthermore, the potential significance of circWHSC1 (circNSD2) in future clinical applications and transformations is thoroughly analyzed and discussed.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Yiran Yuan
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaoxiao Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Heyue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Lei Zhang
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Hepatic Surgery Center, Institute of Hepato-Pancreato-Biliary Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiefeng He
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| |
Collapse
|
34
|
Shi H, Kong S. A comprehensive evaluation of serum circCSPP1 as a novel diagnostic and prognostic biomarker for gastric cancer. Clin Res Hepatol Gastroenterol 2024; 48:102367. [PMID: 38744073 DOI: 10.1016/j.clinre.2024.102367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Accepted: 05/01/2024] [Indexed: 05/16/2024]
Abstract
PURPOSE Gastric cancer (GC) has high incidence and mortality due to its low early screening efficiency. Circular RNAs (CircRNAs) are a new class of non-coding RNAs which is closely related to GC. Nevertheless, the clinical application value of circRNAs in GC are largely unknown. Therefore, we studied the role of a novel circRNA named circCSPP1 in patients with GC. METHODS CircRNA sequencing was performed to screen out the target molecule. Real-time fluorescent quantitative PCR (RT-qPCR) was utilized to detect the expression level of circCSPP1 in GC tissues, cells, and serum. Gel and Sanger sequencing were utilized to verify the ring structure of circCSPP1. RNase R enzyme digestion experiment and actinomycin D experiment were verifed the advantage of circCSPP1 as a diagnostic biomarker in patients with GC when that compared with linear RNA. The correlation between the expression level of serum circCSPP1 and clinicopathological data of GC patients was further analyzed. Receiver operating characteristic curve (ROC) and the area under ROC curve (AUC) were utilied to evaluate the diagnostic performance. RESULTS CircCSPP1 has a circular structure which with resistance to RNA exonuclease digestion and long half-life compared with linear RNA. In our study, circCSPP1 was first found up-regulated in patients with GC. Serum circCSPP1 level was decreased significantly after surgical resection whereas increased after recurrence. High expression of circCSPP1 was associated with poor survival rates. The expression level of circCSPP1 was significantly correlated to tumor size, T stage, lymph node metastasis, and TNM stage. The AUC of serum circCSPP1 was 0.834, with high sensitivity and specificity in discriminating patients with GC from healthy donors. More importantly, the combined diagnosis of circCSPP1, CEA, and CA19-9 achieved the superior AUC of 0.882, with the highest specificity. CONCLUSION Serum circCSPP1 may prove to be a potential non-invasive auxiliary diagnostic biomarker for patients with GC.
Collapse
Affiliation(s)
- Hengchuan Shi
- Department of Laboratory Medicine, Geriatric Hospital of Nanjing Medical University: Jiangsu Province Geriatric Hospital, Nanjing 210009 Jiangsu, China
| | - Shan Kong
- Department of Laboratory Medicine, Geriatric Hospital of Nanjing Medical University: Jiangsu Province Geriatric Hospital, Nanjing 210009 Jiangsu, China.
| |
Collapse
|
35
|
Fang X, Tang C, Zeng D, Shan Y, Liu Q, Yin X, Li Y. CircInpp5b Ameliorates Renal Interstitial Fibrosis by Promoting the Lysosomal Degradation of DDX1. Biomolecules 2024; 14:613. [PMID: 38927017 PMCID: PMC11201918 DOI: 10.3390/biom14060613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Renal interstitial fibrosis (RIF) is a classic pathophysiological process of chronic kidney disease (CKD). However, the mechanisms underlying RIF remain unclear. The present study found that a novel circular RNA, cirInpp5b, might be involved in RIF by high-throughput sequencing. Subsequent experiments revealed that circInpp5b was reduced in UUO mouse kidney tissues and TGF-β1-treated proximal tubular cells. The overexpression of circInpp5b inhibited RIF in UUO mice and prevented extracellular matrix (ECM) deposition in TGF-β1-treated proximal tubular cells. Furthermore, overexpression of circInpp5b down-regulated the protein level of DDX1. Mechanistically, circInpp5b bound to the DDX1 protein and promoted its lysosomal degradation. Collectively, the findings of our study demonstrate that circInpp5b ameliorates RIF by binding to the DDX1 protein and promoting its lysosomal degradation.
Collapse
Affiliation(s)
- Xi Fang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.F.); (C.T.); (D.Z.); (Y.S.); (Q.L.); (X.Y.)
- Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Chengyuan Tang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.F.); (C.T.); (D.Z.); (Y.S.); (Q.L.); (X.Y.)
- Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Dong Zeng
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.F.); (C.T.); (D.Z.); (Y.S.); (Q.L.); (X.Y.)
- Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Yi Shan
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.F.); (C.T.); (D.Z.); (Y.S.); (Q.L.); (X.Y.)
- Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Qianfang Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.F.); (C.T.); (D.Z.); (Y.S.); (Q.L.); (X.Y.)
- Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Xuemin Yin
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.F.); (C.T.); (D.Z.); (Y.S.); (Q.L.); (X.Y.)
- Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| | - Ying Li
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha 410011, China; (X.F.); (C.T.); (D.Z.); (Y.S.); (Q.L.); (X.Y.)
- Key Laboratory of Kidney Disease and Blood Purification in Hunan Province, Changsha 410011, China
| |
Collapse
|
36
|
Luo D, Ottesen EW, Lee JH, Singh RN. Transcriptome- and proteome-wide effects of a circular RNA encompassing four early exons of the spinal muscular atrophy genes. Sci Rep 2024; 14:10442. [PMID: 38714739 PMCID: PMC11076517 DOI: 10.1038/s41598-024-60593-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/25/2024] [Indexed: 05/10/2024] Open
Abstract
Spinal muscular atrophy (SMA) genes, SMN1 and SMN2 (hereinafter referred to as SMN1/2), produce multiple circular RNAs (circRNAs), including C2A-2B-3-4 that encompasses early exons 2A, 2B, 3 and 4. C2A-2B-3-4 is a universally and abundantly expressed circRNA of SMN1/2. Here we report the transcriptome- and proteome-wide effects of overexpression of C2A-2B-3-4 in inducible HEK293 cells. Our RNA-Seq analysis revealed altered expression of ~ 15% genes (4172 genes) by C2A-2B-3-4. About half of the affected genes by C2A-2B-3-4 remained unaffected by L2A-2B-3-4, a linear transcript encompassing exons 2A, 2B, 3 and 4 of SMN1/2. These findings underscore the unique role of the structural context of C2A-2B-3-4 in gene regulation. A surprisingly high number of upregulated genes by C2A-2B-3-4 were located on chromosomes 4 and 7, whereas many of the downregulated genes were located on chromosomes 10 and X. Supporting a cross-regulation of SMN1/2 transcripts, C2A-2B-3-4 and L2A-2B-3-4 upregulated and downregulated SMN1/2 mRNAs, respectively. Proteome analysis revealed 61 upregulated and 57 downregulated proteins by C2A-2B-3-4 with very limited overlap with those affected by L2A-2B-3-4. Independent validations confirmed the effect of C2A-2B-3-4 on expression of genes associated with chromatin remodeling, transcription, spliceosome function, ribosome biogenesis, lipid metabolism, cytoskeletal formation, cell proliferation and neuromuscular junction formation. Our findings reveal a broad role of C2A-2B-3-4, and expands our understanding of functions of SMN1/2 genes.
Collapse
Affiliation(s)
- Diou Luo
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Eric W Ottesen
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ji Heon Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Ravindra N Singh
- Department of Biomedical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
37
|
Ma X, Wang H, Ye G, Zheng X, Wang Y. Hsa_circ_0018401 and miR-127-5p Expressions Are Diagnostic and Prognostic Markers for Traumatic Brain Injury (TBI) in Trauma Patients. Neuroscience 2024; 545:59-68. [PMID: 38492795 DOI: 10.1016/j.neuroscience.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 03/06/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
This study investigated the potentials of hsa_circ_0018401 and miR-127-5p in traumatic brain injury (TBI) diagnosis, stratification and outcome prediction. A retrospective analysis of clinical data and blood samples of n = 109 TBI patients was performed. Expression levels of hsa_circ_0018401 and miR-127-5p were measured using Real-time PCR. The diagnostic values, as well as the values in TBI stratification, of hsa_circ_0018401 and miR-127-5p were assessed by receiver operating characteristic analyses. The prognostic impacts were investigated for one-year endpoint events using multivariable Cox regression analyses and receiver operating characteristic analysis. The target genes for miR-127-5p were predicted. An upregulation of hsa_circ_0018401 and a downregulation of miR-127-5p expression was detected in patients with TBI, and the highest or lowest levels were found in moderate/severe TBI. A negative correlation between miR-423-3p level and Dual luciferase reporter assay verified the binding relationship between hsa_circ_0018401 and miR-127-5p. Hsa_circ_0018401 and miR-127-5p, used alone or combinedly, showed clinical values for TBI diagnosis and stratification, as well as outcome prediction. The proteins for target genes covered TBI-related functions and pathways. Therefore, hsa_circ_0018401 and miR-127-5p could represent promising new biomarkers to identify TBI from healthy, moderate/severe TBI from mild TBI, as well as to predict the TBI outcome.
Collapse
Affiliation(s)
- Xiancun Ma
- Department of Emergency, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Huimin Wang
- Department of Emergency, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Gaige Ye
- Department of Emergency, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Xin Zheng
- Department of Emergency, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China
| | - Yu Wang
- Department of Emergency, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China.
| |
Collapse
|
38
|
Cao Y, Xu Y, Zhang R, Qi J, Su Q, Chen Z. Circ_0000115 Protects Against Cerebral Ischemia Injury by Suppressing Neuronal Apoptosis, Oxidative Stress and Inflammation by miR-1224-5p/Nos3 Axis In Vitro. Mol Biotechnol 2024; 66:1082-1094. [PMID: 38151617 DOI: 10.1007/s12033-023-01005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/27/2023] [Indexed: 12/29/2023]
Abstract
Cerebral ischemia is a severe neurological disability related to neuronal apoptosis and cellular stress response. Circular RNAs (circRNAs) are emerging regulators of cerebral ischemia. Herein, this study proposed to probe the action of circ_0000115 in cerebral ischemia injury. The mouse neuroblastoma cells N2a and HT22 underwent oxygen-glucose deprivation (OGD) were used as a model of in vitro cerebral ischemia. Levels of genes and proteins were detected by qRT-PCR and western blotting. Cell proliferation and apoptosis were determined by EdU assay and flow cytometry. Western blotting was used to detect the protein level of pro-inflammatory factors. The oxidative stress injury was evaluated by detecting reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) generation. Dual-luciferase reporter and RIP assays were used to confirm the target relationship between miR-1224-5p and circ_0000115 or nitric oxide synthase 3 (NOS3). OGD exposure decreased circ_0000115 and NOS3 expression, and increased miR-1224-5p in N2a and HT22 cells in a time-dependent manner. Circ_0000115 silencing attenuated OGD-induced apoptosis, oxidative stress and inflammation in N2a and HT22 cells. Mechanistically, circ_0000115 directly sponged miR-1224-5p, which targeted NOS3. Furthermore, rescue experiments showed that miR-1224-5p overexpression abolished the neuroprotective effect of circ_0000115 in N2a and HT22 cells under OGD treatment. Besides that, silencing of miR-1224-5p protected N2a and HT22 cells against OGD-evoked injury, which was counteracted by NOS3 knockdown. Circ_0000115 protects N2a and HT22 cells against OGD-evoked neuronal apoptosis, inflammation, and oxidative stress via the miR-1224-5p/NOS3 axis, providing an exciting view of the pathogenesis of cerebral ischemia.
Collapse
Affiliation(s)
- Ying Cao
- Department of Critical Care Medicine, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, People's Republic of China
| | - Yanbing Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, People's Republic of China
| | - Rui Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, People's Republic of China
| | - Junsheng Qi
- Department of Critical Care Medicine, The First Affiliated Hospital of Army Medical University, Chongqing, 400038, People's Republic of China
| | - Qiuyu Su
- Department of Neurosurgery, The Fifth Clinical College of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhiqiang Chen
- Department of Pediatrics, The First Affiliated Hospital of Army Medical University, No.30, Gaotanyan Street, Chongqing, 400038, People's Republic of China.
| |
Collapse
|
39
|
Cui F, Sun Z, Zhang X, Liu C. CircMAP3K4 Suppresses H2O2-Induced Human Lens Epithelial Cell Injury by miR-630/ERCC6 Axis in Age-Related Cataract. Curr Eye Res 2024; 49:487-495. [PMID: 38152055 DOI: 10.1080/02713683.2023.2298908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND Dysregulated circular RNAs (circRNAs) is involved in the pathogenesis of age-related cataract (ARC). Here, this study aimed to explore the function and mechanism of circMAP3K4 in ARC. METHODS Human lens epithelial cells were exposed to hydrogen peroxide (H2O2) for functional experiments. qRT-PCR and western blotting analyses were used for the expression detection of genes and proteins. Cell proliferation was tested using cell counting kit-8 and EdU. Flow cytometry was applied to analyze cell apoptosis and cell cycle. The oxidative stress was evaluated by detecting the production of malondialdehyde (MDA), reactive oxygen species (ROS), and superoxide dismutase (SOD). The target relationship between miR-630 and circMAP3K4 or Excision repair cross-complementing group 6 (ERCC6) was analyzed by dual-luciferase reporter assay and RIP assay. RESULTS CircMAP3K4 was lowly expressed in ARC patients and H2O2-induced HLECs. Functionally, forced expression of circMAP3K4 protected HLECs against H2O2-evoked proliferation inhibition, cell cycle arrest and the promotion of cell apoptosis and oxidative stress. Mechanistically, circMAP3K4 acted as a sponge for miR-630 to regulate the expression of its target ERCC6. MiR-630 was highly expressed while ERCC6 was lowly expressed in ARC patients and H2O2-induced HLECs. Up-regulation of miR-630 could reverse the protective effects of circMAP3K4 on HLECs under H2O2 treatment. In addition, inhibition of miR-630 suppressed H2O2-induced HLEC injury, which was abolished by ERCC6 silencing. CONCLUSION Forced expression of circMAP3K4 protected HLECs against H2O2-evoked apoptotic and oxidative injury via miR-630/ERCC6 axis, suggesting that circMAP3K4 may function as a potential therapeutic target for ARC.
Collapse
Affiliation(s)
- Fenghua Cui
- Department of Ophthalmology, the Jinan Second People's Hospital, Jinan City, Shandong, China
| | - Zhonghua Sun
- Department of Ophthalmology, the Jinan Second People's Hospital, Jinan City, Shandong, China
| | - Xueyan Zhang
- Department of Ophthalmology, the Jinan Second People's Hospital, Jinan City, Shandong, China
| | - Cuijuan Liu
- Department of Ophthalmology, the Jinan Second People's Hospital, Jinan City, Shandong, China
| |
Collapse
|
40
|
Ruan D, Xu J, Liu Y, Luo J, Zhao X, Li Y, Wang G, Feng J, Liang H, Yin Y, Luo J, Yin Y. CircPTEN-MT from PTEN regulates mitochondrial energy metabolism. J Genet Genomics 2024; 51:531-542. [PMID: 38184105 DOI: 10.1016/j.jgg.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Phosphatase and tensin homolog (PTEN) is a multifunctional gene involved in a variety of physiological and pathological processes. Circular RNAs (circRNAs) are generated from back-splicing events during mRNA processing and participate in cell biological processes through binding to RNAs or proteins. However, PTEN-related circRNAs are largely unknown. Here, we report that circPTEN- mitochondria (MT) (hsa_circ_0002934) is a circular RNA encoded by exons 3, 4, and 5 of PTEN and is a critical regulator of mitochondrial energy metabolism. CircPTEN-MT is localized to mitochondria and physically associated with leucine-rich pentatricopeptide repeat-containing protein (LRPPRC), which regulates posttranscriptional gene expression in mitochondria. Knocking down circPTEN-MT reduces the interaction of LRPPRC and steroid receptor RNA activator (SRA) stem-loop interacting RNA binding protein (SLIRP) and inhibits the polyadenylation of mitochondrial mRNA, which decreases the mRNA level of the mitochondrial complex I subunit and reduces mitochondrial membrane potential and adenosine triphosphate production. Our data demonstrate that circPTEN-MT is an important regulator of cellular energy metabolism. This study expands our understanding of the role of PTEN, which produces both linear and circular RNAs with different and independent functions.
Collapse
Affiliation(s)
- Danhui Ruan
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiancheng Xu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yang Liu
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Juan Luo
- Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China
| | - Xuyang Zhao
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuhua Li
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guangxi Wang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jiawen Feng
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Hui Liang
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yue Yin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianyuan Luo
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, Department of Pathology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Peking University International Cancer Institute, Peking-Tsinghua Center of Life Sciences, Peking University Health Science Center, Beijing 100191, China; Institute of Precision Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong 518036, China.
| |
Collapse
|
41
|
Bhat AA, Kukreti N, Afzal M, Goyal A, Thapa R, Ali H, Shahwan M, Almalki WH, Kazmi I, Alzarea SI, Singh SK, Dua K, Gupta G. Ferroptosis and circular RNAs: new horizons in cancer therapy. EXCLI JOURNAL 2024; 23:570-599. [PMID: 38887390 PMCID: PMC11180955 DOI: 10.17179/excli2024-7005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/09/2024] [Indexed: 06/20/2024]
Abstract
Cancer poses intricate challenges to treatment due to its complexity and diversity. Ferroptosis and circular RNAs (circRNAs) are emerging as innovative therapeutic avenues amid the evolving landscape of cancer therapy. Extensive investigations into circRNAs reveal their diverse roles, ranging from molecular regulators to pivotal influencers of ferroptosis in cancer cell lines. The results underscore the significance of circRNAs in modulating molecular pathways that impact crucial aspects of cancer development, including cell survival, proliferation, and metastasis. A detailed analysis delineates these pathways, shedding light on the molecular mechanisms through which circRNAs influence ferroptosis. Building upon recent experimental findings, the study evaluates the therapeutic potential of targeting circRNAs to induce ferroptosis. By identifying specific circRNAs associated with the etiology of cancer, this analysis paves the way for the development of targeted therapeutics that exploit vulnerabilities in cancer cells. This review consolidates the existing understanding of ferroptosis and circRNAs, emphasizing their role in cancer therapy and providing impetus for ongoing research in this dynamic field. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U. P., India
| | - Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
| | - Haider Ali
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India
- Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Moyad Shahwan
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Sami I. Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Al-Jouf, Saudi Arabia
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, India
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- School of Medical and Life Sciences, Sunway University, Sunway, Malaysia
| | - Kamal Dua
- Faculty of Health, Australian Research Center in Complementary and Integrative Medicine, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology, Sydney, Ultimo-NSW 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, Ajman, 346, United Arab Emirates
| |
Collapse
|
42
|
Wei Y, Lei J, Peng Y, Chang H, Luo T, Tang Y, Wang L, Wen H, Volpe G, Liu L, Han L. Expression characteristics and potential function of non-coding RNA in mouse cortical cells. Front Mol Neurosci 2024; 17:1365978. [PMID: 38660385 PMCID: PMC11040102 DOI: 10.3389/fnmol.2024.1365978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Non-coding RNAs (ncRNAs) play essential regulatory functions in various physiological and pathological processes in the brain. To systematically characterize the ncRNA profile in cortical cells, we downloaded single-cell SMART-Seq v4 data of mouse cerebral cortex. Our results revealed that the ncRNAs alone are sufficient to define the identity of most cortical cell types. We identified 1,600 ncRNAs that exhibited cell type specificity, even yielding to distinguish microglia from perivascular macrophages with ncRNA. Moreover, we characterized cortical layer and region specific ncRNAs, in line with the results by spatial transcriptome (ST) data. By constructing a co-expression network of ncRNAs and protein-coding genes, we predicted the function of ncRNAs. By integrating with genome-wide association studies data, we established associations between cell type-specific ncRNAs and traits related to neurological disorders. Collectively, our study identified differentially expressed ncRNAs at multiple levels and provided the valuable resource to explore the functions and dysfunctions of ncRNAs in cortical cells.
Collapse
Affiliation(s)
- Yanrong Wei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | - Junjie Lei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | | | | | | | - Yuanchun Tang
- BGI Research, Hangzhou, China
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | | | - Huiying Wen
- BGI Research, Hangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Giacomo Volpe
- Hematology and Cell Therapy Unit, IRCCS–Istituto Tumori ‘Giovanni Paolo II’, Bari, Italy
| | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | - Lei Han
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| |
Collapse
|
43
|
Margvelani G, Welden JR, Maquera AA, Van Eyk JE, Murray C, Miranda Sardon SC, Stamm S. Influence of FTDP-17 mutants on circular tau RNAs. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167036. [PMID: 38286213 DOI: 10.1016/j.bbadis.2024.167036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/21/2023] [Accepted: 01/21/2024] [Indexed: 01/31/2024]
Abstract
At least 53 mutations in the microtubule associated protein tau gene (MAPT) have been identified that cause frontotemporal dementia. 47 of these mutations are localized between exons 7 and 13. They could thus affect the formation of circular RNAs (circRNAs) from the MAPT gene that occurs through backsplicing from exon 12 to either exon 10 or exon 7. We analyzed representative mutants and found that five FTDP-17 mutations increase the formation of 12➔7 circRNA and three different mutations increase the amount of 12➔10 circRNA. CircRNAs are translated after undergoing adenosine to inosine RNA editing, catalyzed by ADAR enzymes. We found that the interferon induced ADAR1-p150 isoform has the strongest effect on circTau RNA translation. ADAR1-p150 activity had a stronger effect on circTau RNA expression and strongly decreased 12➔7 circRNA, but unexpectedly increased 12➔10 circRNA. In both cases, ADAR-activity strongly promoted translation of circTau RNAs. Unexpectedly, we found that the 12➔7 circTau protein interacts with eukaryotic initiation factor 4B (eIF4B), which is reduced by four FTDP-17 mutations located in the second microtubule domain. These are the first studies of the effect of human mutations on circular RNA formation and translation. They show that point mutations influence circRNA expression levels, likely through changes in pre-mRNA structures. The effect of the mutations is surpassed by editing of the circular RNAs, leading to their translation. Thus, circular RNAs and their editing status should be considered when analyzing FTDP-17 mutations.
Collapse
Affiliation(s)
- Giorgi Margvelani
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Justin R Welden
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Andrea Arizaca Maquera
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | | | | | - Sandra C Miranda Sardon
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA
| | - Stefan Stamm
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
44
|
Xiao F, He Z, Wang S, Li J, Fan X, Yan T, Yang M, Yang D. Regulatory mechanism of circular RNAs in neurodegenerative diseases. CNS Neurosci Ther 2024; 30:e14499. [PMID: 37864389 PMCID: PMC11017410 DOI: 10.1111/cns.14499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Neurodegenerative disease is a collective term for a category of diseases that are caused by neuronal dysfunction, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Circular RNAs (circRNAs) are a class of non-coding RNAs without the 3' cap and 5' poly(A) and are linked by covalent bonds. CircRNAs are highly expressed in brain neurons and can regulate the pathological process of neurodegenerative diseases by affecting the levels of various deposition proteins. AIMS This review is aiming to suggest that the majority of circRNAs influence neurodegenerative pathologies mainly by affecting the abnormal deposition of proteins in neurodegenerative diseases. METHODS We systematically summarized the pathological features of neurodegenerative diseases and the regulatory mechanisms of circRNAs in various types of neurodegenerative diseases. RESULTS Neurodegenerative disease main features include intercellular ubiquitin-proteasome system abnormalities, changes in cytoskeletal proteins, and the continuous deposition of insoluble protein fragments and inclusion bodies in the cytoplasm or nucleus, resulting in impairment of the normal physiological processes of the neuronal system. CircRNAs have multiple mechanisms, such as acting as microRNA sponges, binding to proteins, and regulating transcription. CircRNAs, which are highly stable molecules, are expected to be potential biomarkers for the pathological detection of neurodegenerative diseases such as AD and PD. CONCLUSIONS In this review, we describe the regulatory roles and mechanisms of circRNAs in neurodegenerative diseases and aim to employ circRNAs as biomarkers for the diagnosis and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Feng Xiao
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Zhi He
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Siqi Wang
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Jiamei Li
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Xiaolan Fan
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Taiming Yan
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Mingyao Yang
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Deying Yang
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| |
Collapse
|
45
|
Zhang B, Zhang H, Wang Z, Cao H, Zhang N, Dai Z, Liang X, Peng Y, Wen J, Zhang X, Zhang L, Luo P, Zhang J, Liu Z, Cheng Q, Peng R. The regulatory role and clinical application prospects of circRNA in the occurrence and development of CNS tumors. CNS Neurosci Ther 2024; 30:e14500. [PMID: 37953502 PMCID: PMC11017455 DOI: 10.1111/cns.14500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/20/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Central nervous system (CNS) tumors originate from the spinal cord or brain. The study showed that even with aggressive treatment, malignant CNS tumors have high mortality rates. However, CNS tumor risk factors and molecular mechanisms have not been verified. Due to the reasons mentioned above, diagnosis and treatment of CNS tumors in clinical practice are currently fraught with difficulties. Circular RNAs (circRNAs), single-stranded ncRNAs with covalently closed continuous structures, are essential to CNS tumor development. Growing evidence has proved the numeral critical biological functions of circRNAs for disease progression: sponging to miRNAs, regulating gene transcription and splicing, interacting with proteins, encoding proteins/peptides, and expressing in exosomes. AIMS This review aims to summarize current progress regarding the molecular mechanism of circRNA in CNS tumors and to explore the possibilities of clinical application based on circRNA in CNS tumors. METHODS We have summarized studies of circRNA in CNS tumors in Pubmed. RESULTS This review summarized their connection with CNS tumors and their functions, biogenesis, and biological properties. Furthermore, we introduced current advances in clinical RNA-related technologies. Then we discussed the diagnostic and therapeutic potential (especially for immunotherapy, chemotherapy, and radiotherapy) of circRNA in CNS tumors in the context of the recent advanced research and application of RNA in clinics. CONCLUSIONS CircRNA are increasingly proven to participate in decveloping CNS tumors. An in-depth study of the causal mechanisms of circRNAs in CNS tomor progression will ultimately advance their implementation in the clinic and developing new strategies for preventing and treating CNS tumors.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Hao Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- Department of Neurosurgery, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- MRC Centre for Regenerative Medicine, Institute for Regeneration and RepairUniversity of EdinburghEdinburghUK
| | - Hui Cao
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaChina
| | - Nan Zhang
- College of Life Science and TechnologyHuazhong University of Science and TechnologyWuhanChina
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xisong Liang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Yun Peng
- Teaching and Research Section of Clinical NursingXiangya Hospital of Central South UniversityChangshaChina
- Department of Geriatrics, Xiangya HospitalCentral South UniversityChangshaChina
| | - Jie Wen
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Xun Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Peng Luo
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Jian Zhang
- Department of Oncology, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Zaoqu Liu
- Department of Interventional RadiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| | - Renjun Peng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaChina
| |
Collapse
|
46
|
Yang XX, Wang C. CircITGA7 regulates malignant phenotypes in bladder cancer cells via targeting miR-330-3p/KLF10 axis. Kaohsiung J Med Sci 2024; 40:324-334. [PMID: 38523597 DOI: 10.1002/kjm2.12821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/14/2024] [Accepted: 01/29/2024] [Indexed: 03/26/2024] Open
Abstract
Bladder cancer (BCa) is one of the common malignancies. Circular RNAs (circRNAs) play regulatory roles in cancer progression. CircITGA7 is a circRNA generated from several exons of ITGA7. The potential role of circITGA7 in BCa remains unknown and needs to be explored. Quantitative real time polymerase chain reaction (qRT-PCR) was used to assess circITGA7 and miR-330-3p expression in BCa tissues and cell lines. Kaplan-Meier analysis was used to evaluate the overall survival of these BCa patients. The biological function of circITGA7 was examined by overexpression of circITGA7 using CCK-8, EdU, wound-healing, and Transwell assays. Xenograft assay was performed to further validate the in vitro results. To explore the mechanism of circITGA7, luciferase reporter, RNA pull-down, fluorescence in situ hybridization (FISH) assays were employed to examine the binding interaction among circITGA7, miR-330-3p and kruppel-like factor 10 (KLF10). Western blot was used to study the protein levels of KLF10.CircITGA7 was downregulated in BCa tissues and cell lines and indicated longer overall survival. Moreover, circITGA7 restricted cell proliferation, migration and invasion of BCa through negatively regulating miR-330-3p. The in vivo model showed that circITGA7 influenced the tumor growth. Besides, the overexpression of miR-330-3p promoted cell progression by directly targeting KLF10. Mechanistically, circITGA7 inhibited BCa progression by activating KLF10 via targeting miR-330-3p.CircITGA7 alleviates BCa cell progression via circITGA7/hsa-miR-330-3p/KLF10 axis, which may provide novel therapeutic targets for BCa.
Collapse
Affiliation(s)
- Xian-Xu Yang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Chao Wang
- Department of Urology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
47
|
Bai Y, Chang D, Ren H, Ju M, Wang Y, Chen B, Li H, Liu X, Li D, Huo X, Guo X, Tong M, Tan Y, Yao H, Han B. Engagement of N6-methyladenisine methylation of Gng4 mRNA in astrocyte dysfunction regulated by CircHECW2. Acta Pharm Sin B 2024; 14:1644-1660. [PMID: 38572093 PMCID: PMC10985031 DOI: 10.1016/j.apsb.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 04/05/2024] Open
Abstract
The N6-methyladenosine (m6A) modification is the most prevalent modification of eukaryotic mRNAs and plays a crucial role in various physiological processes by regulating the stability or function of target mRNAs. Accumulating evidence has suggested that m6A methylation may be involved in the pathological process of major depressive disorder (MDD), a common neuropsychiatric disorder with an unclear aetiology. Here, we found that the levels of the circular RNA HECW2 (circHECW2) were significantly increased in the plasma of both MDD patients and the chronic unpredictable stress (CUS) mouse model. Notably, the downregulation of circHECW2 attenuated astrocyte dysfunction and depression-like behaviors induced by CUS. Furthermore, we demonstrated that the downregulation of circHECW2 increased the expression of the methylase WTAP, leading to an increase in Gng4 expression via m6A modifications. Our findings provide functional insight into the correlation between circHECW2 and m6A methylation, suggesting that circHECW2 may represent a potential target for MDD treatment.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Di Chang
- Department of Radiology, Zhongda Hospital, Jiangsu Key Laboratory of Molecular and Functional Imaging, Medical School of Southeast University, Nanjing 210009, China
| | - Hui Ren
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Minzi Ju
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yu Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Biling Chen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Han Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xue Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Daxing Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xinchen Huo
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xiaofei Guo
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Mengze Tong
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ying Tan
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
48
|
Wang K, Yang Y, Wang Y, Jiang Z, Fang S. CircPTK2 may be associated with depressive-like behaviors by influencing miR-182-5p. Behav Brain Res 2024; 462:114870. [PMID: 38266777 DOI: 10.1016/j.bbr.2024.114870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is a severe psychiatric disorder with uncertain causes. Recent studies have indicated correlations between circular RNAs (circRNAs) and psychiatric disorders. However, the potential role of circRNAs in MDD remains largely unknown. METHODS We investigated the expression and diagnostic significance of circRNA protein tyrosine kinase 2 (circPTK2) by recruiting 50 MDD patients and 40 healthy subjects. Additionally, chronic unpredictable mild stress (CUMS) mouse model was established in animal experiments. QRT-PCR was adopted for circPTK2 and miR-182-5p levels. To investigate the role of circPTK2 in MDD, we utilized microinjection of circPTK2 adeno-associated virus into the mouse hippocampus. Depressive-like behaviors of mice were assessed through forced swim test and open field test. Additionally, the interaction between circPTK2 and miR-182-5p was validated using a dual luciferase reporter assay. RESULTS Decreased expression of circPTK2 was found in peripheral blood mononuclear cells of MDD patients and in hippocampus of CUMS mice, which was useful for distinguishing MDD patients from healthy subjects. Notably, overexpression of circPTK2 was associated with depressive-like behaviors induced by CUMS. Further mechanism research demonstrated that circPTK2 functioned as the sponge for miR-182-5p, which may contribute to the beneficial effect of circPTK2. CONCLUSION Collectively, our findings suggest the participation of circPTK2 and its underlying mechanism in MDD, which might provide a potential target for MDD therapy.
Collapse
Affiliation(s)
- Kunyu Wang
- Department of Neurology, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Yang
- Department of Neurology, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| | - Yiwen Wang
- Department of Neurology, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| | - Zhuoya Jiang
- Department of Neurology, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China
| | - Shaokuan Fang
- Department of Neurology, Neuroscience Research Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
49
|
Liu D, Zhou X, He Y, Zhao J. The Roles of CircRNAs in Mitochondria. J Cancer 2024; 15:2759-2769. [PMID: 38577612 PMCID: PMC10988319 DOI: 10.7150/jca.92111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/02/2024] [Indexed: 04/06/2024] Open
Abstract
Mitochondria participate in varieties of cellular events. It is widely accepted that human mitochondrial genome encodes 13 proteins, 2 rRNAs, and 22 tRNAs. Gene variation derived from human nuclear genome cannot completely explain mitochondrial diseases. The advent of high-throughput sequencing coupled with novel bioinformatic analyses decode the complexity of mitochondria-derived transcripts. Recently, circular RNAs (circRNAs) from both human mitochondrial genome and nuclear genome have been found to be located at mitochondria. Studies about the roles and molecular mechanisms underlying trafficking of the nucleus encoded circRNAs to mitochondria and mitochondria encoded circRNAs to the nucleus or cytoplasm in mammals are only beginning to emerge. These circRNAs have been associated with a variety of diseases, especially cancers. Here, we discuss the emerging field of mitochondria-located circRNAs by reviewing their identification, expression patterns, regulatory roles, and functional mechanisms. Mitochondria-located circRNAs have regulatory roles in cellular physiology and pathology. We also highlight future perspectives and challenges in studying mitochondria-located circRNAs, as well as their potential biomedical applications.
Collapse
Affiliation(s)
- Donghong Liu
- Department of Special Medical Care, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| | - Xinyu Zhou
- Department of Epidemiology, Naval Medical University, Shanghai, 200433, China
| | - Yida He
- Department of Epidemiology, Naval Medical University, Shanghai, 200433, China
| | - Jun Zhao
- Department of Special Medical Care, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
| |
Collapse
|
50
|
Yao M, Mao X, Zhang Z, Cui F, Shao S, Mao B. Communication molecules (ncRNAs) mediate tumor-associated macrophage polarization and tumor progression. Front Cell Dev Biol 2024; 12:1289538. [PMID: 38523627 PMCID: PMC10957787 DOI: 10.3389/fcell.2024.1289538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Non-coding RNAs play important roles in tumor cells and macrophages and participate in their communication as messengers. Non-coding RNAs have an impact in tumor cell proliferation, migration, and apoptosis, and they also regulate the differentiation and regulation of immune cells. In macrophages, they stimulate the polarization of macrophages into M1 or M2 by regulating proteins related to signaling pathways; in tumor cells, non-coding RNAs can enter macrophages through exosomes and affect the latter polarization. The polarization of macrophages further regulates the biological functions of cancer cells. The direction of macrophage polarization determines tumor progression, angiogenesis and drug resistance. This often creates a feedback loop. Non-coding RNAs act as bridges between tumor cells and macrophages to regulate the balance of the tumor microenvironment. We reviewed the signaling pathways related to macrophage polarization and the regulatory mechanisms of non-coding RNA in tumor-associated macrophages M1 and M2, and discussed the potential applications and prospects of exosome engineering.
Collapse
Affiliation(s)
- Min Yao
- The Affiliated Yixing Hospital of Jiangsu University, WuXi, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Xuhua Mao
- The Affiliated Yixing Hospital of Jiangsu University, WuXi, China
| | - Zherui Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Feilun Cui
- The Affiliated Taizhou Second People`s Hospital of Yangzhou University, Taizhou, Jiangsu, China
| | - Shihe Shao
- The Affiliated Yixing Hospital of Jiangsu University, WuXi, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Boneng Mao
- The Affiliated Yixing Hospital of Jiangsu University, WuXi, China
| |
Collapse
|