1
|
Munni YA, Dash R, Choi HJ, Mitra S, Hannan MA, Mazumder K, Timalsina B, Moon IS. Differential Effects of the Processed and Unprocessed Garlic ( Allium sativum L.) Ethanol Extracts on Neuritogenesis and Synaptogenesis in Rat Primary Hippocampal Neurons. Int J Mol Sci 2023; 24:13386. [PMID: 37686193 PMCID: PMC10487397 DOI: 10.3390/ijms241713386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Garlic (Allium sativum L.) is an aromatic herb known for its culinary and medicinal uses for centuries. Both unprocessed (white) and processed (black) garlic are known to protect against the pathobiology of neurological disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD), which has been attributed to their anti-inflammatory and antioxidant properties. The information on the effects of processed and unprocessed garlic on neuronal process outgrowth, maturation, and synaptic development is limited. This study aimed at investigating and comparing the effects of the ethanol extracts of unprocessed (white garlic extract, WGE) and processed (black garlic extract, BGE) garlic on the maturation of primary hippocampal neurons. Neurite outgrowth was stimulated in a dose-dependent manner by both WGE and BGE and the most effective doses were 15 μg/mL and 60 μg/mL, respectively, without showing cytotoxicity. At this optimal concentration, both extracts promoted axonal and dendritic growth and maturation. Furthermore, both extracts substantially increased the formation of functional synapses. However, the effect of WGE was more robust at every developmental stage of neurons. In addition, the gas chromatography and mass spectrometry (GC-MS) analysis revealed a chemical profile of various bioactives in both BGE and WGE. Linalool, a compound that was found in both extracts, has shown neurite outgrowth-promoting activity in neuronal cultures, suggesting that the neurotrophic activity of garlic extracts is attributed, at least in part, to this compound. By using network pharmacology, linalool's role in neuronal development can also be observed through its modulatory effect on the signaling molecules of neurotrophic signaling pathways such as glycogen synthase kinase 3 (GSK3β), extracellular signal-regulated protein kinase (Erk1/2), which was further verified by immunocytochemistry. Overall, these findings provide information on the molecular mechanism of processed and unprocessed garlic for neuronal growth, survival, and memory function which may have the potential for the prevention of several neurological disorders.
Collapse
Affiliation(s)
- Yeasmin Akter Munni
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
| | - Raju Dash
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
- Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Ho Jin Choi
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
| | - Sarmistha Mitra
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
| | - Md. Abdul Hannan
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Kishor Mazumder
- Department of Pharmacy, Jashore University of Science and Technology, Jashore 7408, Bangladesh;
- School of Optometry and Vision Science, UNSW Medicine, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Binod Timalsina
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
| | - Il Soo Moon
- Department of Anatomy, College of Medicine, Dongguk University, Gyeongju 38066, Republic of Korea; (Y.A.M.); (R.D.); (H.J.C.); (S.M.); (M.A.H.); (B.T.)
| |
Collapse
|
2
|
Bombardi C, Grandis A, Pivac N, Sagud M, Lucas G, Chagraoui A, Lemaire-Mayo V, De Deurwaerdère P, Di Giovanni G. Serotonin modulation of hippocampal functions: From anatomy to neurotherapeutics. PROGRESS IN BRAIN RESEARCH 2021; 261:83-158. [PMID: 33785139 DOI: 10.1016/bs.pbr.2021.01.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The hippocampal region receives a dense serotoninergic innervation originating from both medial and dorsal raphe nuclei. This innervation regulates hippocampal activity through the activation of distinct receptor families that are expressed in excitatory and inhibitory neurons, terminals of several afferent neurotransmitter systems, and glial cells. Preclinical and clinical studies indicate that hippocampal dysfunctions are involved in learning and memory deficits, dementia, Alzheimer's disease, epilepsy and mood disorders such as anxiety, depression and post-traumatic syndrome disorder, whereas the hippocampus participates also in the therapeutic mechanisms of numerous medicines. Not surprisingly, several drugs acting via 5-HT mechanisms are efficacious to some extent in some diseases and the link between 5-HT and the hippocampus although clear remains difficult to untangle. For this reason, we review reported data concerning the distribution and the functional roles of the 5-HT receptors in the hippocampal region in health and disease. The impact of the 5-HT systems on the hippocampal function is such that the research of new 5-HT mechanisms and drugs is still very active. It concerns notably drugs acting at the 5-HT1A,2A,2C,4,6 receptor subtypes, in addition to the already existing drugs including the selective serotonin reuptake inhibitors.
Collapse
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy.
| | - Annamaria Grandis
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Nela Pivac
- Division of Molecular Medicine, Rudier Boskovic Institute, Zagreb, Croatia
| | - Marina Sagud
- Clinical Hospital Center Zagreb and School of Medicine University of Zagreb, Zagreb, Croatia
| | - Guillaume Lucas
- Neurocentre Magendie, INSERM 1215, Université de Bordeaux, Bordeaux, France
| | - Abdeslam Chagraoui
- Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie University, UNIROUEN, INSERM U1239, Rouen, France; Department of Medical Biochemistry, Rouen University Hospital, Rouen, France
| | - Valérie Lemaire-Mayo
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique, Institut des Neurosciences Intégratives et Cognitives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta; Neuroscience Division, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
3
|
Tong D, Ma Z, Su P, Wang S, Xu Y, Zhang LM, Wu Z, Liu K, Zhao P. Sevoflurane-Induced Neuroapoptosis in Rat Dentate Gyrus Is Activated by Autophagy Through NF-κB Signaling on the Late-Stage Progenitor Granule Cells. Front Cell Neurosci 2020; 14:590577. [PMID: 33384584 PMCID: PMC7769878 DOI: 10.3389/fncel.2020.590577] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE The mechanisms by which exposure of the late-stage progenitor cells to the anesthesia sevoflurane alters their differentiation are not known. We seek to query whether the effects of sevoflurane on late-stage progenitor cells might be regulated by apoptosis and/or autophagy. METHODS To address the short-term impact of sevoflurane exposure on granule cell differentiation, we used 5-bromo-2-deoxyuridine (BrdU) to identify the labeled late-stage progenitor granule cells. Male or female rats were exposed to 3% sevoflurane for 4 h when the labeled granule cells were 2 weeks old. Differentiation of the BrdU-labeled granule cells was quantified 4 and 7 days after exposure by double immunofluorescence. The expression of apoptosis and autophagy in hippocampal dentate gyrus (DG) was determined by western blot and immunofluorescence. Western blot for the expression of NF-κB was used to evaluate the mechanism. Morris water maze (MWM) test was performed to detect cognitive function in the rats on postnatal 28-33 days. RESULTS Exposure to sevoflurane decreased the differentiation of the BrdU-labeled late-stage progenitor granule cells, but increased the expression of caspase-3, autophagy, and phosphorylated-P65 in the hippocampus of juvenile rats and resulted in cognitive deficiency. These damaging effects of sevoflurane could be mitigated by inhibitors of autophagy, apoptosis, and NF-κB. The increased apoptosis could be alleviated by pretreatment with the autophagy inhibitor 3-MA, and the increased autophagy and apoptosis could be reduced by pretreatment with NF-κB inhibitor BAY 11-7085. CONCLUSION These findings suggest that a single, prolonged sevoflurane exposure could impair the differentiation of late-stage progenitor granule cells in hippocampal DG and cause cognitive deficits possibly via apoptosis activated by autophagy through NF-κB signaling. Our results do not preclude the possibility that the affected differentiation and functional deficits may be caused by depletion of the progenitors pool.
Collapse
Affiliation(s)
- Dongyi Tong
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhongliang Ma
- Department of Otolaryngology Head and Neck Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Peng Su
- Medical Research Center, Shengjing Hospital of China Medical University, Benxi, China
| | - Shuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ying Xu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Li Min Zhang
- Department of Anesthesiology, Cangzhou Central Hospital, Cangzhou, China
| | - Ziyi Wu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Kun Liu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
4
|
Synthesis, structural investigations, DFT studies, and neurotrophic activity of zinc complex with a multidentate ligand. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02696-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
3β, 6β-dichloro-5-hydroxy-5α-cholestane facilitates neuronal development through modulating TrkA signaling regulated proteins in primary hippocampal neuron. Sci Rep 2019; 9:18919. [PMID: 31831796 PMCID: PMC6908615 DOI: 10.1038/s41598-019-55364-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/27/2019] [Indexed: 12/11/2022] Open
Abstract
Potentiating neuritogenesis through pharmacological intervention might hold therapeutic promise in neurodegenerative disorders and acute brain injury. Here, we investigated the novel neuritogenic potentials of a steroidal chlorohydrin, 3β, 6β-dichloro-5-hydroxy-5α-cholestane (hereafter, SCH) and the change in cellular proteome to gain insight into the underlying mechanism of its neurotrophic activity in hippocampal neurons. Morphometric analysis showed that SCH promoted early neuronal differentiation, dendritic arborization and axonal maturation. Proteomic and bioinformatic analysis revealed that SCH induced upregulation of several proteins, including those associated with neuronal differentiation and development. Immunocytochemical data further indicates that SCH-treated neurons showed upregulation of Hnrnpa2b1 and Map1b, validating their proteomic profiles. In addition, a protein-protein interaction network analysis identified TrkA as a potential target connecting most of the upregulated proteins. The neurite outgrowth effect of SCH was suppressed by TrkA inhibitor, GW441756, verifying TrkA-dependent activity of SCH, which further supports the connection of TrkA with the upregulated proteins. Also, the computational analysis revealed that SCH interacts with the NGF-binding domain of TrkA through Phe327 and Asn355. Collectively, our findings provide evidence that SCH promotes neuronal development via upregulating TrkA-signaling proteins and suggest that SCH could be a promising therapeutic agent in the prevention and treatment of neurodegenerative disorders.
Collapse
|
6
|
Haque MN, Mohibbullah M, Hong YK, Moon IS. Calotropis gigantea Promotes Neuritogenesis and Synaptogenesis through Activation of NGF-TrkA-Erk1/2 Signaling in Rat Hippocampal Neurons. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2019; 46:1861-1877. [DOI: 10.1142/s0192415x18500933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Calotropis gigantea (L.) R. Br (Apocynaceae) (commonly known as milkweed or crown flower) is a large shrub native to temperate regions of Asia, including China, Bangladesh and India and has a long history of use in traditional medicines. In this study, we investigated the neuromodulatory effects of the ethanol extracts of C. gigantea leaves (CGE) during synaptogenesis in the late stage of neuronal development and during early stage neuritogenesis in cultured rat hippocampal neurons. Maximum neuritogenic activity was achieved at a CGE concentration of 7.5[Formula: see text][Formula: see text]g/ml. At this concentration, CGE facilitated the early development of cytoarchitecture, as evidenced by increases in morphometric parameters, such as, the numbers, lengths, and number of branches of initial neurites, axon and dendrites. During the synaptogenic stage (DIV 14), immunocytochemistry (ICC) showed that CGE upregulated synaptic vesicle 2 (SV2, a marker of axon terminals) and postsynaptic density-95 (PSD-95, a postsynaptic marker) and their colocalization. CGE upregulated nerve growth factor (NGF) and activated extracellular signal-regulated kinase 1/2 (Erk1/2), which is blocked by a TrkA-specific inhibitor suggesting the neuritogenic and synaptogenic potential of CGE was due to the activation of NGF-TrkA-Erk1/2 signaling. Moreover, UPLC of CGE did not detect stigmasterol, an active component of C. gigantea. However, the chloroform-methanol and ethyl acetate subfractions of CGE exhibited initial neuritogenic activity, suggesting that multiple active components were responsible for the neurotrophic-mimetic properties of CGE. Our data prove the neuromodulatory ability of CGE and provide a means of identifying new active phytochemicals with potential nootropic, preventative or therapeutic effects on the human brain.
Collapse
Affiliation(s)
- Md Nazmul Haque
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea
| | - Md Mohibbullah
- Department of Biotechnology, Pukyong National University, Namku, Busan 48513, Republic of Korea
- Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalgonj-8100, Bangladesh
| | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Namku, Busan 48513, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju 38066, Republic of Korea
| |
Collapse
|
7
|
Hemopexin is required for adult neurogenesis in the subventricular zone/olfactory bulb pathway. Cell Death Dis 2018; 9:268. [PMID: 29449593 PMCID: PMC5833796 DOI: 10.1038/s41419-018-0328-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/31/2017] [Accepted: 01/09/2018] [Indexed: 12/03/2022]
Abstract
The neural stem cells (NSCs) of the subventricular zone (SVZ) reside within a specialized niche critical for neurogenesis. Hemopexin, a plasma glycoprotein, has been extensively studied as a heme scavenger at the systemic level. However, little is known about its function in the central nervous system, especially in neurogenesis. In the present study, we demonstrate that deletion of hemopexin leads to neurogenic abnormalities in the SVZ/olfactory bulb (OB) pathway. The lateral ventricle is enlarged in hemopexin-deficient mice, and more apoptosis was observed in Dcx+ cells. Lineage differentiation of NSCs was also inhibited in the SVZ of hemopexin-deficient mice, with more stem cells stayed in an undifferentiated, GFAP+ radial glia-like cell stage. Moreover, hemopexin deletion resulted in impaired neuroblast migration in the rostral migratory stream. Furthermore, exogenous hemopexin protein inhibited apoptosis and promoted the migration and differentiation of cultured NSCs. Finally, immunohistochemical analysis demonstrated that deletion of hemopexin reduced the number of interneurons in the OB. Together, these results suggest a new molecular mechanism for the NSC niche that regulates adult neurogenesis in the SVZ/OB pathway. Our findings may benefit the understanding for olfactory system development.
Collapse
|
8
|
Hannan MA, Mohibbullah M, Hong YK, Moon IS. Proteomic Analysis of the Neurotrophic Effect of Gelidium amansii in Primary Cultured Neurons. J Med Food 2017; 20:279-287. [DOI: 10.1089/jmf.2016.3848] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Affiliation(s)
- Md. Abdul Hannan
- Department of Biotechnology, Pukyong National University, Busan, Republic of Korea
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Mohibbullah
- Department of Biotechnology, Pukyong National University, Busan, Republic of Korea
| | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Busan, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University Graduate School of Medicine, Gyeongju, Republic of Korea
| |
Collapse
|
9
|
Mohibbullah M, Bhuiyan MMH, Hannan MA, Getachew P, Hong YK, Choi JS, Choi IS, Moon IS. The Edible Red Alga Porphyra yezoensis Promotes Neuronal Survival and Cytoarchitecture in Primary Hippocampal Neurons. Cell Mol Neurobiol 2016; 36:669-82. [PMID: 26259718 PMCID: PMC11482408 DOI: 10.1007/s10571-015-0247-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/28/2015] [Indexed: 12/13/2022]
Abstract
The edible red alga Porphyra yezoensis is among the most popular marine algae and is of economic and medicinal importance. In the present study, the neurotrophic and neuroprotective activities of the ethanol extract of P. yezoensis (PYE) were investigated in primary cultures of hippocampal neurons. Results revealed that PYE significantly increased neurite outgrowth at an optimal concentration of 15 µg/mL. PYE dose-dependently increased viable cells, significantly accelerated the rate of neuronal differentiation in cultures, promoted axodendritic arborization, and eventually induced synaptogenesis. In addition to morphological development, PYE also promoted functional maturation as indicated by the staining of live cultures with FM 1-43. Moreover, PYE increased neuronal survivability, which was attributed to reduced apoptosis and its ROS scavenging activity. Taurine, a major organic acid in PYE (2.584/100 mg of dry PYE) promoted neurite outgrowth in a dose-dependent manner, and this promotion was suppressed by the taurine antagonist isethionic acid. The study indicates that PYE and its active component, taurine, facilitate neuronal development and maturation and have a neuroprotective effect.
Collapse
Affiliation(s)
- Md Mohibbullah
- Department of Biotechnology, Pukyong National University, Namku, Busan, 608-737, Republic of Korea
| | | | - Md Abdul Hannan
- Department of Biotechnology, Pukyong National University, Namku, Busan, 608-737, Republic of Korea
- Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Paulos Getachew
- Department of Biotechnology, Pukyong National University, Namku, Busan, 608-737, Republic of Korea
| | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Namku, Busan, 608-737, Republic of Korea
| | - Jae-Suk Choi
- RIS Center, IACF, Silla University, Sasang-gu, Busan, 617-736, Republic of Korea
| | - In Soon Choi
- RIS Center, IACF, Silla University, Sasang-gu, Busan, 617-736, Republic of Korea
- Department of Biological Science, Silla University, Sasang-gu, Busan, 617-736, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 780-714, Republic of Korea.
| |
Collapse
|
10
|
Li X, Bao X, Wang R. Neurogenesis-based epigenetic therapeutics for Alzheimer's disease (Review). Mol Med Rep 2016; 14:1043-53. [DOI: 10.3892/mmr.2016.5390] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 04/14/2016] [Indexed: 11/06/2022] Open
|
11
|
Tian JY, Chen WW, Cui J, Wang H, Chao C, Lu ZY, Bi YY. Effect of Lycium bararum polysaccharides on methylmercury-induced abnormal differentiation of hippocampal stem cells. Exp Ther Med 2016; 12:683-689. [PMID: 27446261 PMCID: PMC4950050 DOI: 10.3892/etm.2016.3415] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 02/04/2016] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to observe the effects of a general extract of Lycium bararum polysaccharides (LBPs) on methylmercury (MeHg)-induced damage in hippocampus neural stem cells (hNSCs). The hippocampal tissues of embryonic day 16 Sprague-Dawley rats were extracted for the isolation, purification and cloning of hNSCs. Following passage and proliferation for 10 days, the cells were allocated at random into the following groups: Control, LBPs, MeHg and MeHg + LBPs. MTT and microtubule-associated protein 2 (MAP-2)/glial fibrillary acidic protein/Hoechst immunofluorescence tests were performed to detect the differentiation and growth of hNSCs in the various groups. The differentiation rate of MeHg-treated hNSCs and the perimeter of MAP-2-positive neurons were 3.632±0.63% and 62.36±5.58 µm, respectively, significantly lower compared with the control group values of 6.500±0.81% and 166±8.16 µm (P<0.05). Furthermore, the differentiation rate and the perimeter of MAP-2-positive neurons in LBPs groups cells was 7.75±0.59% and 253.3±11.21 µm, respectively, significantly higher compared with the control group (P<0.05). The same parameters in the MeHg + LBPs group were 5.92±0.98% and 111.9±6.07 µm, respectively, significantly higher than the MeHg group (P<0.05). The astrocyte differentiation rates in the MeHg and MeHg + LBPs group were 41.19±2.14 and 34.58±1.70, respectively (P<0.05). These results suggest that LBPs may promote the generation and development of new neurons and inhibit the MeHg-induced abnormal differentiation of astrocytes. Thus, LBPs may be considered to be a potential new treatment for MeHg-induced neurotoxicity in hNSCs.
Collapse
Affiliation(s)
- Jian-Ying Tian
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, Hubei 430072, P.R. China; Department of Anatomy, Basic Medical School, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Wei-Wei Chen
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Jing Cui
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Hao Wang
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Ci Chao
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Zhi-Yan Lu
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Yong-Yi Bi
- Department of Health, Labor Health and Environment, School of Public Health, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
12
|
Tognatta R, Miller RH. Contribution of the oligodendrocyte lineage to CNS repair and neurodegenerative pathologies. Neuropharmacology 2016; 110:539-547. [PMID: 27108096 DOI: 10.1016/j.neuropharm.2016.04.026] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 04/01/2016] [Accepted: 04/19/2016] [Indexed: 12/22/2022]
Abstract
The concept of the oligodendrocyte lineage as simply a source of myelinating cells in the vertebrate CNS is undergoing radical revision. Elucidation of the origins of oligodendrocytes in the CNS has led to identification of important signaling pathways, the timing and mechanism of lineage commitments and overlapping as well as redundant functionality among oligodendrocytes. The realization that a significant proportion of the oligodendrocyte lineage cells remain in a proliferative and immature state suggests they have roles other than as a reservoir of myelinating cells. While early studies were focused on understanding the development of oligodendrocytes, more recent work has begun to define the role of oligodendrocyte lineage cells in CNS functionality and the identification of new avenues for neural repair. A relatively unexplored aspect of the oligodendrocyte lineage is their contribution either directly or indirectly to the pathology of neurodegenerative diseases such as ALS and Alzheimer's disease. Here we briefly consider the potential role of oligodendrocyte lineage cells as mediators of neural repair and neurodegeneration in the vertebrate CNS. This article is part of the Special Issue entitled 'Oligodendrocytes in Health and Disease'.
Collapse
Affiliation(s)
- Reshmi Tognatta
- George Washington University, School of Medicine and Health Sciences, 2300 Eye Street NW, Ross Hall 709G, Washington, DC, 20037, USA
| | - Robert H Miller
- George Washington University, School of Medicine and Health Sciences, 2300 Eye Street NW, Ross Hall 709G, Washington, DC, 20037, USA.
| |
Collapse
|
13
|
Hannan MA, Kang JY, Mohibbullah M, Hong YK, Lee H, Choi JS, Choi IS, Moon IS. Moringa oleifera with promising neuronal survival and neurite outgrowth promoting potentials. JOURNAL OF ETHNOPHARMACOLOGY 2014; 152:142-150. [PMID: 24389557 DOI: 10.1016/j.jep.2013.12.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 12/03/2013] [Accepted: 12/21/2013] [Indexed: 06/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Moringa oleifera Lam. (Moringaceae) by virtue of its high nutritional as well as ethnomedical values has been gaining profound interest both in nutrition and medicinal research. The leaf of this plant is used in ayurvedic medicine to treat paralysis, nervous debility and other nerve disorders. In addition, research evidence also suggests the nootropic as well as neuroprotective roles of Moringa oleifera leaf in animal models. The aim of the present study was to evaluate the effect of Moringa oleifera leaf in the primary hippocampal neurons regarding its neurotrophic and neuroprotective properties. MATERIALS AND METHODS The primary culture of embryonic hippocampal neurons was incubated with the ethanol extract of Moringa oleifera leaf (MOE). After an indicated time, cultures were either stained directly with a lipophilic dye, DiO, or fixed and immunolabeled to visualize the neuronal morphology. Morphometric analyses for neurite maturation and synaptogenesis were performed using Image J software. Neuronal viability was evaluated using trypan blue exclusion and lactate dehydrogenase assays. RESULTS MOE promoted neurite outgrowth in a concentration-dependent manner with an optimal concentration of 30 μg/mL. As a very initial effect, MOE significantly promoted the earlier stages of neuronal differentiation. Subsequently, MOE significantly increased the number and length of dendrites, the length of axon, and the number and length of both dendrite and axonal branches, and eventually facilitated synaptogenesis. The β-carotene, one major compound of MOE, promoted neuritogensis, but the increase was not comparable with the effect of MOE. In addition, MOE supported neuronal survival by protecting neurons from naturally occurring cell death in vitro. CONCLUSIONS Our findings indicate that MOE promotes axodendritic maturation as well as provides neuroprotection suggesting a promising pharmacological importance of this nutritionally and ethnomedically important plant for the well-being of nervous system.
Collapse
Affiliation(s)
- Md Abdul Hannan
- Department of Biotechnology, Pukyong National University, Namku, Busan 608-737, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Ji-Young Kang
- Department of Biotechnology, Pukyong National University, Namku, Busan 608-737, Republic of Korea
| | - Md Mohibbullah
- Department of Biotechnology, Pukyong National University, Namku, Busan 608-737, Republic of Korea
| | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Namku, Busan 608-737, Republic of Korea
| | - Hyunsook Lee
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 780-714, Republic of Korea
| | - Jae-Suk Choi
- RIS Center, IACF, Silla University, Sasang-gu, Busan 617-736, Republic of Korea
| | - In Soon Choi
- RIS Center, IACF, Silla University, Sasang-gu, Busan 617-736, Republic of Korea; Department of Biological Science, Silla University, Sasang-gu, Busan 617-736, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 780-714, Republic of Korea.
| |
Collapse
|
14
|
Hannan MA, Mohibbullah M, Hwang SY, Lee K, Kim YC, Hong YK, Moon IS. Differential neuritogenic activities of two edible brown macroalgae, Undaria pinnatifida and Saccharina japonica. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2014; 42:1371-84. [PMID: 25413631 DOI: 10.1142/s0192415x14500864] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Undaria pinnatifida (Harvey) Suringar and Saccharina japonica Areschoug are two common seaweeds, and both are known to have numerous pharmacological properties that include neuroprotective effects. In a previous study, we found that the ethanol extracts of U. pinnatifida (UPE) and S. japonica (SJE) had neurite promoting activities on developing hippocampal neurons. In the present study, we studied and compared the effects of UPE and SJE on neuronal maturation. Both UPE and SJE promoted neurite outgrowth in a dose-dependent manner with optimal concentrations of 5 and 15 μg/mL, respectively. Initial neuronal differentiation was significantly promoted by UPE and SJE. Subsequently, treatment with both increased indices of axonal and dendritic cytoarchitecture, such as, the numbers and lengths of primary processes, although only UPE had a significant effect on branching frequencies. In addition, UPE and SJE showed no evidence of cytotoxicity, rather they protected neurons from naturally occurring death in vitro. These results indicate that UPE and SJE promote axodendritic maturation and neuronal survival and suggest that these algal extracts, especially UPE, have beneficial effects on the nervous system.
Collapse
Affiliation(s)
- Md Abdul Hannan
- Department of Biotechnology, Pukyong National University, Namku, Busan 608-737, Republic of Korea , Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | | | | | | | | | | | | |
Collapse
|
15
|
High-mobility group box-1 protein and β-amyloid oligomers promote neuronal differentiation of adult hippocampal neural progenitors via receptor for advanced glycation end products/nuclear factor-κB axis: relevance for Alzheimer's disease. J Neurosci 2013; 33:6047-59. [PMID: 23554486 DOI: 10.1523/jneurosci.2052-12.2013] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Dysregulated hippocampal neurogenesis has been associated with neurodegenerative disorders, including Alzheimer's disease (AD), in which it may potentially represent an auto-reparatory mechanism that could counteract neuronal loss and cognitive impairment. We evaluated hippocampal neurogenesis in TgCRND8 mice and reported that, at 32 weeks of age, corresponding to an advanced AD-like neuropathology stage, increased numbers of proliferating cells, doublecortin-expressing progenitors/neuroblasts, and early postmitotic calretinin-expressing neurons were present compared with wild-type (WT) littermates. When hippocampal neural progenitor cells (NPCs) were isolated from TgCRND8 mice, we demonstrated that (1) their neurogenic potential was higher compared with WT NPCs; (2) medium conditioned by TgCRND8 NPC promoted neuronal differentiation of WT NPCs; and (3) the proneurogenic effect of TgCRND8-conditioned medium was counteracted by blockade of the receptor for advanced glycation end products (RAGE)/nuclear factor-κB (NF-κB) axis. Furthermore, we showed that β-amyloid 1-42 (Aβ(1-42)) oligomers, but not monomers and fibrils, and the alarmin high-mobility group box-1 protein (HMGB-1) could promote neuronal differentiation of NPCs via activation of the RAGE/NF-κB axis. Altogether, these data suggest that, in AD brain, an endogenous proneurogenic response could be potentially triggered and involve signals (Aβ(1-42) oligomers and HMGB-1) and pathways (RAGE/NF-κB activation) that also contribute to neuroinflammation/neurotoxicity. A more detailed analysis confirmed no significant increase of new mature neurons in hippocampi of TgCRND8 compared with WT mice, suggesting reduced survival and/or integration of newborn neurons. Therapeutic strategies in AD should ideally combine the ability of sustaining hippocampal neurogenesis as well as of counteracting an hostile brain microenvironment so to promote survival of vulnerable cell populations, including adult generated neurons.
Collapse
|
16
|
Zhang W, Wang PJ, Li MH, Gao XL, Gu GJ, Shao ZH. 1H-MRS can monitor metabolites changes of lateral intraventricular BDNF infusion into a mouse model of Alzheimer's disease in vivo. Neuroscience 2013; 245:40-9. [PMID: 23608100 DOI: 10.1016/j.neuroscience.2013.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 04/02/2013] [Accepted: 04/03/2013] [Indexed: 11/16/2022]
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) can provide noninvasive detection of brain metabolite changes in vivo in Alzheimer's disease (AD). AD is a prevalent neurodegenerative disorder characterized by deposition of β-amyloid peptides (Aβ) in multiple brain regions. Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor whose level has been shown to be decreased in AD. BDNF supplementation can offer improvement in AD. However, the means of evaluation are still relatively limited. In the present study, 1H-MRS was applied to evaluate the therapeutic effects of bilateral intraventricular BDNF infusion into APP+PS1 (amyloid precursor protein+presenilin 1) transgenic mice. For comparison to the 1H-MRS changes in the prefrontal cortex, Morris water maze (MWM) test, Fluoro-Jade B staining and immunofluorescence for Aβ, glial fibrillary acidic protein and tropomyosin-related kinase B (TrkB) were also performed. Our results showed that N-acetylaspartate (NAA) levels increased and myo-inositol levels decreased in Tg-BDNF mice compared with Tg-PBS mice. But NAA level in Tg-BDNF mice was still lower than that in wild-type mice at 6weeks after infusion. These changes correlated with increased immunoreactivity of TrkB, reduced compact Aβ peptide and FJB+ neurons in Tg-BDNF mice compared to Tg-PBS mice. However, Tg-BDNF mice did not present obvious changes in behavior in the MWM. Taken together, we suggest that 1H-MRS may be a sensitive means of evaluating metabolic changes in response to therapeutic strategies in AD. Moreover, BDNF, may be a viable means of offering trophic support during disease.
Collapse
Affiliation(s)
- W Zhang
- Department of Radiology, Tongji Hospital, Medical School of Tongji University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
17
|
1H-MRS assessment of the therapeutic effect of bilateral intraventricular BDNF infusion into APP/PS1 double transgenic mice. J Mol Neurosci 2013; 50:434-42. [PMID: 23315172 DOI: 10.1007/s12031-013-9951-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Accepted: 01/02/2013] [Indexed: 01/26/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by extracellular accumulation of amyloid deposits. Brain-derived neurotrophic factor (BDNF) is a neurotrophic factor whose levels have been shown to be decreased in AD brains. BDNF supplementation can offer improvement in the course of AD. However, the means of assessment are still relatively limited. In the present study, 1H-MRS was used to evaluate the therapeutic effects of bilateral intraventricular BDNF infusion into Alzheimer's disease APP/PS1 double transgenic mice. For comparison to the 1H-MRS observations, Fluoro-Jade B staining and immunofluorescence for beta amyloid peptides (Aβ), glial fibrillary acidic protein, and tropomyosin-related kinase B (TrkB) were also performed. Our results showed that N-acetylaspartate (NAA) levels increased and myoinositol levels decreased in the BDNF group compared with the PBS group. However, the BDNF group NAA level was still lower than the control group at 6 weeks after infusion. These changes correlated with increased immunoreactivity for TrkB, decreased compact Aβ peptide containing plaques, and decreased Fluoro-Jade B-positive cells in the BDNF-infused mice compared to vehicle controls. These findings demonstrate that 1H-MRS may be a promising means of evaluating the therapeutic effects of BDNF on AD.
Collapse
|
18
|
ARMATO UBALDO, CHAKRAVARTHY BALU, PACCHIANA RAFFAELLA, WHITFIELD JAMESF. Alzheimer’s disease: An update of the roles of receptors, astrocytes and primary cilia (Review). Int J Mol Med 2012; 31:3-10. [DOI: 10.3892/ijmm.2012.1162] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 10/10/2012] [Indexed: 11/06/2022] Open
|
19
|
Hannan MA, Kang JY, Hong YK, Lee H, Chowdhury MTH, Choi JS, Choi IS, Moon IS. A brown alga Sargassum fulvellum facilitates neuronal maturation and synaptogenesis. In Vitro Cell Dev Biol Anim 2012; 48:535-44. [PMID: 22893212 DOI: 10.1007/s11626-012-9537-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/10/2012] [Indexed: 11/28/2022]
Abstract
Sargassum fulvellum (Turner) C. Agardh is an edible brown macroalgae having pharmacological importance. In previous reports, we described the screening of marine algae for their neuritogenic activity in developing hippocampal neurons and found that ethanol extract of S. fulvellum (SFE) possesses promising neurite-outgrowth-promoting activity. In this study, we evaluated whether the initial neurite promoting effect of SFE was followed on the further neuronal maturation and synapse formation. SFE exhibited dose-dependent effect on neurite maturation with an optimum concentration of 5 μg/mL. The initial neuronal differentiation is significantly promoted by SFE. Subsequently, compared with control culture, SFE increased the indices of axonal and dendritic developments such as the number and the length of primary processes, and branching frequencies. In addition to its effect on neurite development, SFE significantly increased the number of puncta for postsynaptic density-95, synaptic vesicle 2, and synapse (about 35%, 67%, and 125%, respectively, of control). Moreover, SFE dose-dependently protects neurons from naturally occurring death in normal culture condition. Taken together, our data demonstrate that SFE can promote neuronal maturation and synaptogenesis and support neuronal survival, suggesting the beneficial effect of this alga in nervous system.
Collapse
Affiliation(s)
- Md Abdul Hannan
- Department of Biotechnology, Pukyong National University, Namku, Busan, 608-737, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Hannan MA, Kang JY, Hong YK, Lee H, Choi JS, Choi IS, Moon IS. The Marine AlgaGelidium amansiiPromotes the Development and Complexity of Neuronal Cytoarchitecture. Phytother Res 2012; 27:21-9. [DOI: 10.1002/ptr.4684] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 02/29/2012] [Accepted: 03/02/2012] [Indexed: 01/19/2023]
Affiliation(s)
- Md. Abdul Hannan
- Department of Biotechnology; Pukyong National University; Namku; Busan; 608-737; Korea
| | - Ji-Young Kang
- Department of Biotechnology; Pukyong National University; Namku; Busan; 608-737; Korea
| | - Yong-Ki Hong
- Department of Biotechnology; Pukyong National University; Namku; Busan; 608-737; Korea
| | - HyunSook Lee
- Department of Anatomy, College of Medicine; Dongguk University; Gyeongju; 780-714; Korea
| | - Jae-Suk Choi
- RIS Center, IACF; Silla University; Sasang-gu; Busan; 617-736; Korea
| | | | - Il Soo Moon
- Department of Anatomy, College of Medicine; Dongguk University; Gyeongju; 780-714; Korea
| |
Collapse
|
21
|
Gincberg G, Arien-Zakay H, Lazarovici P, Lelkes PI. Neural stem cells: therapeutic potential for neurodegenerative diseases. Br Med Bull 2012; 104:7-19. [PMID: 22988303 DOI: 10.1093/bmb/lds024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Neural stem cells (NSCs) from specific brain areas or developed from progenitors of different sources are of therapeutic potential for neurodegenerative diseases. SOURCES OF DATA Treatment strategies involve the (i) transplantation of exogenous NSCs; (ii) pharmacological modulations of endogenous NSCs and (iii) modulation of endogenous NSCs via the transplantation of exogenous NSCs. AREAS OF AGREEMENT There is a consensus about the therapeutic potential of transplanted NSCs. The ability of NSCs to home into areas of central nervous system injury allows their delivery by intravenous injection. There is also a general agreement about the neuroprotective mechanisms of NSCs involving a 'bystander effect'. AREAS OF CONTROVERSY Individual laboratories may be using phenotypically diverse NSCs, since these cells have been differentiated by a variety of neurotrophins and/or cultured on different ECM proteins, therefore differing in the expression of neuronal markers. GROWING POINTS Optimization of the dose, delivery route, timing of administration of NSCs, their interactions with the immune system and combination therapies in conjunction with tissue engineered neural prostheses are under investigation. AREAS TIMELY FOR DEVELOPING RESEARCH In-depth understanding of the biological properties of NSCs, including mechanisms of therapy, safety, efficacy and elimination from the organism. These areas are central for further use in cell therapy. CAUTIONARY NOTE: As long as critical safety and efficacy issues are not resolved, we need to be careful in translating NSC therapy from animal models to patients.
Collapse
Affiliation(s)
- Galit Gincberg
- The School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | |
Collapse
|
22
|
Llorens-Martín M, Tejeda GS, Trejo JL. Antidepressant and proneurogenic influence of environmental enrichment in mice: protective effects vs recovery. Neuropsychopharmacology 2011; 36:2460-8. [PMID: 21796111 PMCID: PMC3194073 DOI: 10.1038/npp.2011.134] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Physical-cognitive activity has long-lasting beneficial effects on the brain and on behavior. Environmental enrichment (EE) induces brain activity known to influence the behavior of mice, as measured in learned helplessness paradigms (forced swim test), and neurogenic cell populations in the hippocampal dentate gyrus. However, it is not completely clear whether the antidepressant and proneurogenic effects of EE are different in animals that are naive or pre-exposed to the stress inducing helplessness, and if this depends on the type of stressor. It also remains unclear whether differential effects are exerted on distinct neurogenic subpopulations. We found that EE has a protective effect in adult female mice (C57BL/6J) when exposed twice to the same stressor (forced swim test) but it has no influence on recovery. The repeated exposure to this stressor was analyzed together with the effects of EE on different neurogenic populations distinguished by age and differentiation state. Younger cells are more sensitive and responsive to the conditions, both the positive and negative effects. These results are relevant to identify the cell populations that are the targets of stress, depression, and enrichment, and that form part of the mechanism responsible for mood dysfunctions.
Collapse
Affiliation(s)
- María Llorens-Martín
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, CSIC, Madrid, Spain
| | - Gonzalo S Tejeda
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, CSIC, Madrid, Spain
| | - José L Trejo
- Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, CSIC, Madrid, Spain,Department of Molecular, Cellular and Developmental Neurobiology, Cajal Institute, CSIC, Av. Doctor Arce 37, 28002 Madrid, Spain, Tel: +34 91 585 4651, Fax: +34 91 585 4754, E-mail:
| |
Collapse
|
23
|
Rosenzweig S, Wojtowicz JM. Analyzing dendritic growth in a population of immature neurons in the adult dentate gyrus using laminar quantification of disjointed dendrites. Front Neurosci 2011; 5:34. [PMID: 21442026 PMCID: PMC3063547 DOI: 10.3389/fnins.2011.00034] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Accepted: 03/02/2011] [Indexed: 11/16/2022] Open
Abstract
In the dentate gyrus (DG) of the hippocampus, new granule neurons are continuously produced throughout adult life. A prerequisite for the successful synaptic integration of these neurons is the sprouting and extension of dendrites into the molecular layer of the DG. Thus, studies aimed at investigating the developmental stages of adult neurogenesis often use dendritic growth as an important indicator of neuronal health and maturity. Based on the known topography of the DG, characterized by distinct laminar arrangement of granule neurons and their extensions, we have developed a new method for analysis of dendritic growth in immature adult-born granule neurons. The method is comprised of laminar quantification of cell bodies, primary, secondary and tertiary dendrites separately and independently from each other. In contrast to most existing methods, laminar quantification of dendrites does not require the use of exogenous markers and does not involve arbitrary selection of individual neurons. The new method relies on immunohistochemical detection of endogenous markers such as doublecortin to perform a comprehensive analysis of a sub-population of immature neurons. Disjointed, “orphan” dendrites that often appear in the thin histological sections are taken into account. Using several experimental groups of rats and mice, we demonstrate here the suitable techniques for quantifying neurons and dendrites, and explain how the ratios between the quantified values can be used in a comparative analysis to indicate variations in dendritic growth and complexity.
Collapse
Affiliation(s)
- Shira Rosenzweig
- Department of Physiology, University of Toronto Toronto, ON, Canada
| | | |
Collapse
|
24
|
Khairallah MI, Kassem LAA. Alzheimer's disease: current status of etiopathogenesis and therapeutic strategies. Pak J Biol Sci 2011; 14:257-272. [PMID: 21870628 DOI: 10.3923/pjbs.2011.257.272] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Alzheimer's Disease (AD) is one of the most common age-related neurodegenerative diseases. It is the most prevalent form of dementia, a general term for memory loss. It is characterized by progressive cognitive dysfunction, various behavioral and neuro-psychiatric disturbances that seriously interfere with daily life. Scientists have identified factors that appear to play a role in the development of AD but no definitive causes have been found for this complex disorder. The pathogenesis of Alzheimer's disease is highly complex. While several pathologies characterize this disease, amyloid plaques and neurofibrillary tangles are hallmark neuropathological lesions in AD brain. Current AD therapies are merely palliative and only temporarily slow cognitive decline and treatments that address the underlying pathologic mechanisms of AD are still lacking. In this review, we focus on the current aspects of AD ranging from the key risk factors for AD, the underlying pathogenic events and the novel medications including disease-modifying properties.
Collapse
|
25
|
Valero J, España J, Parra-Damas A, Martín E, Rodríguez-Álvarez J, Saura CA. Short-term environmental enrichment rescues adult neurogenesis and memory deficits in APP(Sw,Ind) transgenic mice. PLoS One 2011; 6:e16832. [PMID: 21347380 PMCID: PMC3036721 DOI: 10.1371/journal.pone.0016832] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 01/17/2011] [Indexed: 12/12/2022] Open
Abstract
Epidemiological studies indicate that intellectual activity prevents or delays the onset of Alzheimer's disease (AD). Similarly, cognitive stimulation using environmental enrichment (EE), which increases adult neurogenesis and functional integration of newborn neurons into neural circuits of the hippocampus, protects against memory decline in transgenic mouse models of AD, but the mechanisms involved are poorly understood. To study the therapeutic benefits of cognitive stimulation in AD we examined the effects of EE in hippocampal neurogenesis and memory in a transgenic mouse model of AD expressing the human mutant β-amyloid (Aβ) precursor protein (APPSw,Ind). By using molecular markers of new generated neurons (bromodeoxiuridine, NeuN and doublecortin), we found reduced neurogenesis and decreased dendritic length and projections of doublecortin-expressing cells of the dentate gyrus in young APPSw,Ind transgenic mice. Moreover, we detected a lower number of mature neurons (NeuN positive) in the granular cell layer and a reduced volume of the dentate gyrus that could be due to a sustained decrease in the incorporation of new generated neurons. We found that short-term EE for 7 weeks efficiently ameliorates early hippocampal-dependent spatial learning and memory deficits in APPSw,Ind transgenic mice. The cognitive benefits of enrichment in APPSw,Ind transgenic mice were associated with increased number, dendritic length and projections to the CA3 region of the most mature adult newborn neurons. By contrast, Aβ levels and the total number of neurons in the dentate gyrus were unchanged by EE in APPSw,Ind mice. These results suggest that promoting the survival and maturation of adult generated newborn neurons in the hippocampus may contribute to cognitive benefits in AD mouse models.
Collapse
Affiliation(s)
- Jorge Valero
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Judit España
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Arnaldo Parra-Damas
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Elsa Martín
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Rodríguez-Álvarez
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carlos A. Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail:
| |
Collapse
|
26
|
Cholinergic influences on cortical development and adult neurogenesis. Behav Brain Res 2011; 221:379-88. [PMID: 21272598 DOI: 10.1016/j.bbr.2011.01.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 01/10/2011] [Accepted: 01/13/2011] [Indexed: 11/22/2022]
Abstract
In this review, we focus on immature neurons and their regulation by the cholinergic system, both during cortical development as well as during adult neurogenesis. We discuss various studies that indicate roles for acetylcholine in precursor development and neuronal differentiation. Cholinergic neurons projecting from the basal forebrain innervate the cerebral cortex during critical periods of neuronal development. Acetylcholine stimulation may help to promote a favourable environment for neuronal maturation. Afferents and their cortical target cells interact and are likely to influence each other during the establishment and refinement of connections. Intracortical cholinergic interneurons similarly have a local effect on cortical circuits. Reduced cholinergic innervation during development hence leads to reduced cortical thickness and dendritic abnormalities. Acetylcholine is also likely to play a critical role in neuronal plasticity, as shown in the visual and barrel cortices. Spontaneous nicotinic excitation is also important during a brief developmental window in the first postnatal weeks leading to waves of neural activity, likely to have an effect on neurite extension, target selection and synaptogenesis. In the hippocampus such activity plays a role in the maturation of GABAergic synapses during the developmental shift from depolarizing to hyperpolarizing transmission. The cholinergic system also seems likely to regulate hippocampal neurogenesis in the adult, positively promoting proliferation, differentiation, integration and potentially survival of newborn neurons.
Collapse
|
27
|
NAM SM, YOO DY, KIM W, YOO M, KIM DW, WON MH, HWANG IK, YOON YS. Effects of S-Allyl-L-Cysteine on Cell Proliferation and Neuroblast Differentiation in the Mouse Dentate Gyrus. J Vet Med Sci 2011; 73:1071-5. [DOI: 10.1292/jvms.10-0557] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Sung Min NAM
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University
| | - Dae Young YOO
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University
| | - Woosuk KIM
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University
| | - Miyoung YOO
- Food Analysis Center, Korea Food Research Institute
| | | | - Moo-Ho WON
- Department of Neurobiology, School of Medicine, Kangwon National University
| | - In Koo HWANG
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University
| | - Yeo Sung YOON
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, and Research Institute for Veterinary Science, Seoul National University
| |
Collapse
|
28
|
Fiorentini A, Rosi MC, Grossi C, Luccarini I, Casamenti F. Lithium improves hippocampal neurogenesis, neuropathology and cognitive functions in APP mutant mice. PLoS One 2010; 5:e14382. [PMID: 21187954 PMCID: PMC3004858 DOI: 10.1371/journal.pone.0014382] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 11/19/2010] [Indexed: 12/04/2022] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive deterioration of cognitive functions, extracellular β-amyloid (Aβ) plaques and intracellular neurofibrillary tangles within neocortex and hippocampus. Adult hippocampal neurogenesis plays an important role in learning and memory processes and its abnormal regulation might account for cognitive impairments associated with AD. Methodology/Principal Findings The double transgenic (Tg) CRND8 mice (overexpressing the Swedish and Indiana mutations in the human amyloid precursor protein), aged 2 and 6 months, were used to examine in vivo the effects of 5 weeks lithium treatment. BrdU labelling showed a decreased neurogenesis in the subgranular zone of Tg mice compared to non-Tg mice. The decrease of hippocampal neurogenesis was accompanied by behavioural deficits and worsened with age and pathology severity. The differentiation into neurons and maturation of the proliferating cells were also markedly impaired in the Tg mice. Lithium treatment to 2-month-old Tg mice significantly stimulated the proliferation and neuron fate specification of newborn cells and fully counteracted the transgene-induced impairments of cognitive functions. The drug, by the inhibition of GSK-3β and subsequent activation of Wnt/ß-catenin signalling promoted hippocampal neurogenesis. Finally, the data show that the lithium's ability to stimulate neurogenesis and cognitive functions was lost in the aged Tg mice, thus indicating that the lithium-induced facilitation of neurogenesis and cognitive functions declines as brain Aβ deposition and pathology increases. Conclusions Lithium, when given on time, stimulates neurogenesis and counteracts AD-like pathology.
Collapse
Affiliation(s)
- Anna Fiorentini
- Department of Pharmacology, University of Florence, Florence, Italy
| | | | - Cristina Grossi
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Ilaria Luccarini
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Fiorella Casamenti
- Department of Pharmacology, University of Florence, Florence, Italy
- * E-mail:
| |
Collapse
|
29
|
Schaeffer EL, da Silva ER, Novaes BDA, Skaf HD, Gattaz WF. Differential roles of phospholipases A2 in neuronal death and neurogenesis: implications for Alzheimer disease. Prog Neuropsychopharmacol Biol Psychiatry 2010; 34:1381-9. [PMID: 20804810 DOI: 10.1016/j.pnpbp.2010.08.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2010] [Revised: 08/04/2010] [Accepted: 08/21/2010] [Indexed: 01/06/2023]
Abstract
The involvement of phospholipase A(2) (PLA(2)) in Alzheimer disease (AD) was first investigated nearly 15 years ago. Over the years, several PLA(2) isoforms have been detected in brain tissue: calcium-dependent secreted PLA(2) or sPLA(2) (IIA, IIC, IIE, V, X, and XII), calcium-dependent cytosolic PLA(2) or cPLA(2) (IVA, IVB, and IVC), and calcium-independent PLA(2) or iPLA(2) (VIA and VIB). Additionally, numerous in vivo and in vitro studies have suggested the role of different brain PLA(2) in both physiological and pathological events. This review aimed to summarize the findings in the literature relating the different brain PLA(2) isoforms with alterations found in AD, such as neuronal cell death and impaired neurogenesis process. The review showed that sPLA(2)-IIA, sPLA(2)-V and cPLA(2)-IVA are involved in neuronal death, whereas sPLA(2)-III and sPLA(2)-X are related to the process of neurogenesis, and that the cPLA(2) and iPLA(2) groups can be involved in both neuronal death and neurogenesis. In AD, there are reports of reduced activity of the cPLA(2) and iPLA(2) groups and increased expression of sPLA(2)-IIA and cPLA(2)-IVA. The findings suggest that the inhibition of cPLA(2) and iPLA(2) isoforms (yet to be determined) might contribute to impaired neurogenesis, whereas stimulation of sPLA(2)-IIA and cPLA(2)-IVA might contribute to neurodegeneration in AD.
Collapse
Affiliation(s)
- Evelin L Schaeffer
- Laboratory of Neuroscience (LIM-27), Department and Institute of Psychiatry, Faculty of Medicine, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos 785, 05403-010, Sao Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
30
|
Jürgensen S, Antonio LL, Mussi GEA, Brito-Moreira J, Bomfim TR, De Felice FG, Garrido-Sanabria ER, Cavalheiro ÉA, Ferreira ST. Activation of D1/D5 dopamine receptors protects neurons from synapse dysfunction induced by amyloid-beta oligomers. J Biol Chem 2010; 286:3270-6. [PMID: 21115476 DOI: 10.1074/jbc.m110.177790] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Soluble oligomers of the amyloid-β peptide (AβOs) accumulate in the brains of Alzheimer disease (AD) patients and are implicated in synapse failure and early memory loss in AD. AβOs have been shown to impact synapse function by inhibiting long term potentiation, facilitating the induction of long term depression and inducing internalization of both AMPA and NMDA glutamate receptors, critical players in plasticity mechanisms. Because activation of dopamine D1/D5 receptors plays important roles in memory circuits by increasing the insertion of AMPA and NMDA receptors at synapses, we hypothesized that selective activation of D1/D5 receptors could protect synapses from the deleterious action of AβOs. We show that SKF81297, a selective D1/D5 receptor agonist, prevented the reduction in surface levels of AMPA and NMDA receptors induced by AβOs in hippocampal neurons in culture. Protection by SKF81297 was abrogated by the specific D1/D5 antagonist, SCH23390. Levels of AMPA receptor subunit GluR1 phosphorylated at Ser(845), which regulates AMPA receptor association with the plasma membrane, were reduced in a calcineurin-dependent manner in the presence of AβOs, and treatment with SKF81297 prevented this reduction. Establishing the functional relevance of these findings, SKF81297 blocked the impairment of long term potentiation induced by AβOs in hippocampal slices. Results suggest that D1/D5 receptors may be relevant targets for development of novel pharmacological approaches to prevent synapse failure in AD.
Collapse
Affiliation(s)
- Sofia Jürgensen
- Institute of Medical Biochemistry, Federal University of Rio de Janeiro, Rio de Janeiro RJ 1944-590, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Effects of Melissa officinalis L. (Lemon Balm) Extract on Neurogenesis Associated with Serum Corticosterone and GABA in the Mouse Dentate Gyrus. Neurochem Res 2010; 36:250-7. [DOI: 10.1007/s11064-010-0312-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2010] [Indexed: 12/23/2022]
|
32
|
Polazzi E, Monti B. Microglia and neuroprotection: from in vitro studies to therapeutic applications. Prog Neurobiol 2010; 92:293-315. [PMID: 20609379 DOI: 10.1016/j.pneurobio.2010.06.009] [Citation(s) in RCA: 172] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 06/21/2010] [Accepted: 06/22/2010] [Indexed: 12/12/2022]
Abstract
Microglia are the main immune cells in the brain, playing a role in both physiological and pathological conditions. Microglial involvement in neurodegenerative diseases is well-established, being microglial activation and neuroinflammation common features of these neuropathologies. Microglial activation has been considered harmful for neurons, but inflammatory state is not only associated with neurotoxic consequences, but also with neuroprotective effects, such as phagocytosis of dead neurons and clearance of debris. This brought to the idea of protective autoimmunity in the brain and to devise immunomodulatory therapies, aimed to specifically increase neuroprotective aspects of microglia. During the last years, several data supported the intrinsic neuroprotective function of microglia through the release of neuroprotective molecules. These data led to change the traditional view of microglia in neurodegenerative diseases: from the idea that these cells play an detrimental role for neurons due to a gain of their inflammatory function, to the proposal of a loss of microglial neuroprotective function as a causing factor in neuropathologies. This "microglial dysfunction hypothesis" points at the importance of understanding the mechanisms of microglial-mediated neuroprotection to develop new therapies for neurodegenerative diseases. In vitro models are very important to clarify the basic mechanisms of microglial-mediated neuroprotection, mainly for the identification of potentially effective neuroprotective molecules, and to design new approaches in a gene therapy set-up. Microglia could act as both a target and a vehicle for CNS gene delivery of neuroprotective factors, endogenously produced by microglia in physiological conditions, thus strengthening the microglial neuroprotective phenotype, even in a pathological situation.
Collapse
|
33
|
DeCarolis NA, Eisch AJ. Hippocampal neurogenesis as a target for the treatment of mental illness: a critical evaluation. Neuropharmacology 2010; 58:884-93. [PMID: 20060007 DOI: 10.1016/j.neuropharm.2009.12.013] [Citation(s) in RCA: 196] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 12/09/2009] [Accepted: 12/14/2009] [Indexed: 12/21/2022]
Abstract
Over one-quarter of adult Americans are diagnosed with a mental illness like Major Depressive Disorder (MDD), Post-Traumatic Stress Disorder (PTSD), schizophrenia, and Alzheimer's Disease. In addition to the exceptional personal burden these disorders exert on patients and their families, they also have enormous cost to society. Although existing pharmacological and psychosocial treatments alleviate symptoms in many patients, the comorbidity, severity, and intractable nature of mental disorders strongly underscore the need for novel strategies. As the hippocampus is a site of structural and functional pathology in most mental illnesses, a hippocampal-based treatment approach has been proposed to counteract the cognitive deficits and mood dysregulation that are hallmarks of psychiatric disorders. In particular, preclinical and clinical research suggests that hippocampal neurogenesis, the generation of new neurons in the adult dentate gyrus, may be harnessed to treat mental illness. There are obvious applications and allures of this approach; for example, perhaps stimulating hippocampal neurogenesis would reverse the overt and noncontroversial hippocampal atrophy and functional deficits observed in Alzheimer's Disease and schizophrenia, or the more controversial hippocampal deficits seen in MDD and PTSD. However, critical examination suggests that neurogenesis may only correlate with mental illness and treatment, suggesting targeting neurogenesis alone is not a sufficient treatment strategy. Here we review the classic and causative links between adult hippocampal neurogenesis and mental disorders, and provide a critical evaluation of how (and if) our basic knowledge of new neurons in the adult hippocampus might eventually help combat or even prevent mental illness.
Collapse
Affiliation(s)
- Nathan A DeCarolis
- Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX 75390-9070, USA
| | | |
Collapse
|
34
|
Alzheimer's disease affects progenitor cells through aberrant {beta}-catenin signaling. J Neurosci 2009; 29:12369-71. [PMID: 19812311 DOI: 10.1523/jneurosci.3502-09.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|